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In this paper we survey some recent developments in the numerical solution of nonlinear 
differential/algebraic equation (DAE) systems of the form 0 = F(t, y, y’), where aFlay’ may be 
singular. Initial value problems in DAEs arise in a wide variety of applications, including circuit and 
control theory, chemical kinetics, modeling of constrained mechanical systems, fluid dynamics and 
robotics. DAE systems include standard form ODES as a special case, but they also include problems 
which are in many ways quite different from ODES. We explore some classes of initial value problems 
which can be solved by backward differentiation formulas, and discuss some results on the order of 
convergence of implicit Runge-Kutta methods applied to DAE systems. Finding a consistent set of 
initial conditions is often a problem for DAE systems arising in applications. We outline some recent 
work on a general algorithm for finding consistent initial conditions. Finally, we discuss some new 
developments in the numerical solution of DAE boundary value problems. 

1. Introduction 

In this paper we survey some recent results on the solution by numerical ODE methods of 
linear and nonlinear differential/algebraic (DAE) systems of the form 

0 = F(t, Y, Y') 7 (1.1) 

where aFlay’ may be singular. Differential/algebraic systems include standard form ODES as 
a special case, but they also include problems which are in many ways quite different from 
ODES. Initial value problems in DAEs arise in a wide variety of applications, including circuit 
and control theory, chemical kinetics, modeling of constrained mechanical systems, fluid 
dynamics and robotics. We explore some classes of initial value problems which can be solved 
by backward differentiation formulas, and discuss some results on the order of convergence of 
implicit Runge-Kutta methods applied to DAE systems. Finding a consistent set of initial 
conditions is often a problem for DAE initial value systems arising in applications. We outline 
some recent work on a general algorithm for finding consistent initial conditions. Finally, we 
discuss some new developments in the numerical solution of DAE boundary value problems. 
These problems arise in the modeling of semiconductor devices and in control theory. 

The basic idea of using a numerical method for solving DAE systems was introduced by 
Gear [13], and consists of replacing y and/ or y ’ in (1.1) by a difference approximation, and 
then solving the resulting equation for an approximation to y. In this paper we consider both 
backward differentiation formulas (BDF) and implicit Runge-Kutta methods (IRK) for 
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defining the difference approximation. The simplest example of a numerical ODE method for 
(1.1) is the backward Euler method. Using this approach, the derivative y’(t,) at time t, is 
approximated by a backward difference of y(t) and the resulting system of nonlinear equations 
is solved for y,, 

0= F(t,,, y,, yn -hyn-l), U-2) 

where h = t, - t, _ 1. In this way the solution is advanced from time t, _i to t, . 
This scheme of approximating the solution and/or the derivative in (1.1) and solving the 

resulting nonlinear equations is quite convenient for the solution of many different problems 
arising from practical applications. Systems in applications are often written naturally in the 
form (1.1). If we consider numerical methods for solving these very general systems, there will 
be no need to rewrite the system to fit into some special form. In addition, even though some 
DAE systems can be rewritten as standard form ODES (y’ = f(t, y)) or in other very special 
forms, often this is very inconvenient and it sometimes leads to a loss of sparsity in the 
matrices which are involved in the solution process. Finally, it is quite easy to explain to users 
of codes how to pose a problem in the form (1.1). 

The disadvantage of this quite general formulation is that there are problems which can be 
written in the form (1.1) which are not solvable by ODE methods. Also there are problems 
which are solvable by some numerical ODE methods, but we must take very special care in 
choosing an approp~ate method and also in implementing it. To distinguish these classes of 
problems requires a means of investigating the underlying structure of the DAEs. 

2. Structure of DAE systems 

In some sense the simplest class of DAEs is the class of linear constant-coef~cient systems 
of the form 

Ey ’ 4” Fy = g(t) . (24 

When E + AF is singular for all values of A, then no solutions exist, or infinitely many 
solutions exist. We are not interested in the solution of these systems. The remaining systems, 
where E + hF is nonsingular, can be completely understood by transforming the system to 
Kronecker canonical form [29,12]. These systems are solvable in the sense that solutions exist 
for all sufficiently smooth input functions g(t), and two solutions which have the same initial 
value are identical. For solvable systems, there exist nonsingular matrices P and Q which 
decouple the system, 

where 
P-2) 

into a ‘differential’ part and a ‘singular’ part. The matrix E; is a block diagonal matrix whose 
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blocks have the form 

0 
1 0. 

I ** 

l*‘.. . 
*‘*O 
‘*l 0 1 

The most important concept in classifying these systems is the index. The index is the 
dimension of the largest block of E. The index is zero if there is no ‘singular’ part to the 
system (i.e., if the system is a standard form ODE or a system which can be rewritten as a 
standard form ODE by multiplying by E-l). In general, the higher the index the more 
difficulties we are likely to encounter in trying to solve the system by a numerical ODE 
method. 

To put these definitions into perspective, consider a canonical index two problem 

r; = &z(t) T Y,=Y; 

and note that for this system, in contrast to an ODE, the initial values must be consistent with 
the input function g(t), and the solution is not as smooth as the input. 

For nonlinear systems (l.l), we can define the local index as the index of the local 
constant-coefficient system at any given time, or the global index, which we will be primarily 
concerned with here, in terms of the number of differentiations of the system which are 
necessary to be able to solve for y’ uniquely in terms of y and t [S]. 

DEFINITION 2.1. The global index of a solvable DAE (1.1) is the smallest 
integer m such that F has m continuous derivatives and the nonlinear system 

W, Y, Y'> = 0 7 

g (t, y, y’, y”) = 5 y’ + 5 y" + g = 0 ) 

nonnegative 

(2.3) 

$ (t, y, y’, y", . . . ) ycm+y = 0 ) 

can be solved for y’ uniquely in terms of y and t : y’ = cp( y, t). 

There are two important classes of index one systems. The first is the general fully implicit 
index one system (1.1). If we assume that the rank of aFlay’ is constant, and that the index is 
identically equal to one in a neighborhood of the solution, then we will refer to these systems 
as uniform index one. The second class of index one systems is that of semi-explicit index one 
systems. These are systems which are written in the special form 

0 = W, x’, y, t) , O= F&3 Y, 4, (2.4) 
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where aF, I ax is nonsingular. The system (2.4) is index one if and 
nonsingular. These semi-explicit index one systems arise frequently in 
important to distinguish them from the general index one system (1.1) 
numerical methods which perform well for (2.4) but poorly for (1.1). 

only if aF,iay is 
applications. It is 
because there are 

For high index systems in the general form (1 .l), numerical ODE methods such as the 
backward Euler method can be unstable for small stepsizes [16]. It is often possible to reduce 
the index of a semi-explicit system by analytically differentiating the constraints [16]. 
Campbell [8] has devised an algorithm for solving higher index systems which repeatedly 
differentiates the entire system and solves the resulting overdetermined system for y’ in terms 
of y and t in the spirit of Definition 2.1. However, in its present form this algorithm is not 
useful for the solution of most problems in applications because it requires knowledge of the 
analytic partial derivative matrices of F and time derivatives of these matrices and requires a 
large degree of smoothness which may not be present in all applications. 

Despite the discouraging results on the instability of numerical ODE methods for general 
high index linear systems, we can identify important subsets of high index nonlinear problems 
for which we can obtain positive results. These systems arise in the modeling of electrical 
networks and constrained mechanical systems and in the solution of the equations of fluid 
flow. For index two, these are semi-explicit DAE systems of the form (2.4). The system is 
index two if (dF,lax)(aF,lay) is nonsingular. For index three systems, these are semi-explicit 
systems which can be written in a triangular form which includes the class of index three 
constrained mechanical systems described in the next section. 

Gear [14] has recently noted a simple relationship between the fully implicit index one 
system and the semi-explicit index two system with which it is often possible to transfer 
methods and convergence results from one class of problems to the other. 

3. Backward differentiation formulas 

In this section we explore some results on the solution by BDF methods of nonlinear index 
one systems and some special index two and three nonlinear systems which occur frequently in 
practical applications. We find that BDF methods converge with the expected order of 
accuracy for several large classes of DAEs of practical interest. 

To solve (1.1) by a BDF method, we replace y’(t,) by a k-step backward differentiation 
formula, 

to obtain the system of nonlinear equations 

(3.1) 

(3.2) 

Then we have the following result for BDF applied to index one systems [16]. 
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THEOREM 3.1. If F is uniform index one and is differentiable with respect to y and y’, the 
solution of (1.1) by the k-step BDF method with fixed stepsize h for k < 7 converges to order 
O(hk) if all initial values are correct to order O(hk). 

An extension of this theorem to variable stepsizes is given in [15]. 
While the BDF methods converge as expected for index one problems, there are still 

practical difficulties in implementing these methods for this class of problems [25,27]. One of 
the difficulties is to obtain a consistent set of initial conditions. We will discuss this problem in 
Section 5. It should be noted that systems whose index is less than or equal to one are the 
problems that general-purpose codes [25] are designed to handle. 

For higher index systems, we have noted earlier that it is not possible to obtain convergence 
even of backward Euler, in general. However, we can obtain some encouraging results [22] if 
we restrict our attention to semi-explicit higher index systems (2.4). Systems of this form arise 
for example in the simulation of electrical networks, the solution of constrained mechanical 
systems of the form 

M(q)q”=f(q, q’, t) + G(q)A 3 (p(q)=O, z=Gt, (3.3) 

where q are the positions and A the Lagrange multipliers, and the solution of the finite 
difference or finite element approximation to the equations of fluid flow, 

Mir+(K+N(U))U+CP=f(U,P), c’u=o, (3.4) 

where U is the approximation to the velocity and P approximates the pressure. The index of 
the mechanical systems (3.3) is three and that of the fluid flow equations (3.4) is two. 

A simple example of a system of form (3.3) is given by the equations describing a pendulum 
in Cartesian coordinates. Let L denote the length of the bar, A the force in the bar, and x and y 
the coordinates of the infinitesimal ball of mass one located at the free end of the bar. Then 
X, y and A solve the DAE system 

x” = Ax , y”=Ay-g, 0 = ; (2 + y2 - L2) ) 

where g is the gravity constant. The index of this system is three. 
For semi-explicit index two systems and for index three constrained mechanical systems of 

the form (3.3), the k-step constant-stepsize BDF method converges to order of accuracy 
O(hk) if the initial values are sufficiently accurate [22,3]. Gear et al. [15] generalized this 
result to show that variable stepsize BDF methods converge for semi-explicit index two 
systems. 

It is possible to use a general purpose code based on backward differentiation formulas to 
solve these special high index nonlinear systems [27]. However, there are some practical 
difficulties which must be dealt with. It can be shown that for an index m system, the iteration 
matrix which the code uses in the Newton iteration for solving the nonlinear equation (3.2) 
has a condition number which is 0(1 /hm). This difficulty can be remedied by scaling the 
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equations and the variables. The convergence test and error test must also be modified to 
allow a variable-stepsize BDF code to solve these types of problems. 

4. Implicit Runge-Kutta methods 

In this section we describe some results on the properties of implicit Runge-Kutta methods 
applied to index one DAE systems. These methods are potentially advantageous over 
multistep methods for some systems (e.g., for large systems with frequent discontinuities). 
However, some care must be taken in choosing an implicit Runge-Kutta method which is 
appropriate for DAEs, as these methods do not in general attain the same order of accuracy 
for DAEs as they do for ODES. 

An M-stage implicit Runge-Kutta (IRK) method applied to the system of DAEs (1 .l) is 
written as 

+Cih,Y~_,+h~a,Y;,'~ =O, 
> 

y, = Y,._~ + h 2 biY; . (4.1) 
j=l i=l 

The method can be written in the shorthand notation which displays the matrix of coefficients, 

c1 *11 ff12 . . . @l&f 

5 a21 f22 - * * f2M 

. . *. . 
. . * . 

CM ‘Ml aM2 . . . ‘MM 

1 b, b, . . . 

We will assume that the matrix J$ = (a,) is nonsingular. 
We will first give some results on the properties of implicit Runge-Kutta methods applied 

to different classes of index one systems, and then we will discuss the properties of these 
methods applied to nonlinear semi-explicit index two systems. First we need to define some 
terminology. 

The Runge-Kutta method will be called strictly stable if the difference between a perturbed 
Runge-Kutta step 

F t,_, + cih, z,_~ + h 2 ai& -I- Sci) n ,z;)=o, i = 1,2, . . . ) M ) 
j=l 

z, = z,_~ + h 5 b,Z; + Sn”+l) , 

i=l 

(4.2) 

where z,, = y0 -t S(o”+l), jjSf’/I G A, 

!!li thenDAE . 

and an unperturbed Runge-Kutta step (4.1) satisfies 
- z [I G &A, where 0 < h s h, and K,, h, are constants depending only on the method 

Defining the stability constant r = 1 - bts4-1EM, where &M = (1, 1, . . . , 1): it is easy to show 
for index one DAEs that the IRK method (4.1) is stable if and only if the method coefficients 
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satisfy the strict stability condition ]r] < 1. This stability condition for DAEs is related to the 
stability criterion [R(z)] s 1, R(z) = 1 + zb’(l- z&)-l~~, where z = hh, for the stiff model 
problem y’ = hy because lim,,,,,R(z) = 1 - ~‘zZ-~E,. 

Applying the IRK method (4.1) to a canonical constant-coefficient index one system 
u = g(t), we find that the method is locally accurate to order O(hkO+‘) if and only if the 
method coefficients satisfy A 1 (k,), where A *(w) is defined 

A,(w): b’&Pc’=l, j=l,2 )...) w, (4.3) 

where ci = (ci , ci, . . . , CL)‘. If the method satisfies the strict stability condition and the order 
of the IRK method for purely differential systems is k,, then it is easy to show that the 
method is globally accurate to order 0(hmin(kd3k0+1) ) for index one constant-coefficient DAE 
systems. 

One class of IRK methods which appears to be particularly promising for the solution of 
DAEs is that of stiffly accurate methods. These are methods whose coefficient matrices satisfy 
cM = 1, aMi = bj, j = 1, . . . , M and ti is nonsingular. For semi-explicit index one systems, 
these methods have the property which is analogous to BDF that the constraint equations are 
satisfied exactly at the end of each time step. Griepentrog [17] and Deuflhard et al. [ll] have 
shown that there is no order reduction for stiffly accurate methods applied to semi-explicit 
index one systems. 

For more general implicit Runge-Kutta methods, Roche [28] has recently derived a set of 
order conditions which include (4.3) using the theory of Butcher series and rooted trees, for 
semi-explicit index one systems. 

The IRK methods are, in general, even less accurate for fully implicit nonlinear index one 
systems than for semi-explicit systems. The additional loss of accuracy comes about because of 
mixing which can occur between the errors in the differential and singular parts of the system. 
To state the results, we must first define some terminology. 

Define 

C(w) : ,gl aijc:-’ = $ , i = 1,2, . . . , M , k=1,2,. . . , w, 

B(w) : 3 bjc;-’ = ; , k = 1,2, . . . , w . 

j=l 

(4.4) 

Then we have the following result, which is shown in [6]. 

THEOREM 4.1. Suppose that (1.1) is uniform index one and linear in y’, the Runge-Kutta 
method satisfies the stability condition (r( s 1, the errors in the initial conditions are O(hG) and 
the errors in terminating the Newton iterations are O(h”‘), where S = 1 if jr1 = 1 and 6 = 0 
otherwise, and G 2 2. Then the global errors satisfy (1 e, 11 = O(hG) where 

if C(q) and R(q) y 
if C(q), B(q + 1) and -1 s r < 1, 
if C(q), B(q + l), A,(q + 1) and r = 1. 
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It should be noted that implicit Runge-Kutta methods with ]r] = 1 are in some sense 
unstable. For example Marz [24] observes that if the implicit midpoint method is used to solve 
the algebraic equation y = 0 with initial value y, = 0, and a perturbation of size (- 1)“6 is made 
in each step, we obtain 

Y n+l = -y, + (-1)“6 . 

Thus ]Y~+~] = (n + l)]S]. Th ere is a linear instability in these methods. This is why, in the 
theorem, the Newton iteration must be solved more precisely for ]Y] = 1 than for (r( < 1. Based 
on our experience and numerical experiments, we believe that for most machines and for most 
problems, this instability is not so severe that it would prevent us from considering these 
methods. 

It should also be noted that Theorem 4.1 gives only a lower bound on the order. Thus it is 
possible that the observed order for some methods and some problems may exceed this lower 
bound. In numerical experiments described in [26,6], we found that the lower bounds were 
actually observed for some methods in the stiff ODE literature. A few methods appear to 
perform better than the lower bounds would indicate. 

These results for index one DAEs are in agreement with the order reduction results for stiff 
ODES given in [7] in the limit as the stiffness becomes infinite [6]. 

For nonlinear semi-explicit index two systems, because of the close relationship between 
fully implicit index one problems and semi-explicit index two systems, we have that the global 
error in the ‘differential’ variable x is given by Theorem 4.1. The global errors in the y 
variable are O(hGy) [4], where G, is given by 

if C(q), B(q), A,(q), 
if C(q), B(q + I), A,(q + I), A,(q + 1). 

where A, are the order conditions for Runge-Kutta methods applied to constant-coefficient 
index two systems and are given by 

A,(w): b’&~, = bfsz-2~, 

btC2c’=i, i=2,3,.. ., w. 

Numerical experiments given in [4] show that the additional order reduction does occur for 
index two systems, including problems which are of interest in applications. It is difficult to 
find higher order IRK methods which maintain the same order of accuracy in all of the 
variables for an index two system. 

5. Determining consistent initial conditions 

Given the available software for solving DAEs with BDF methods [25,18], often the most 
difficult part of solving a problem in applications is to determine a consistent set of initial 
conditions with which to start the computation. More precisely, we formulate this problem as 
follows. Given information about the initial state of the system which is sufficient (in a 
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mathematical sense) to specify a unique solution to the DAE, determine the complete initial 
state (x(t,), x’(Q) corresponding to this unique solution. For example, the user may specify 
information about the solution and/or its derivatives at the initial time, and the problem is to 
determine the remaining values of the solution and its derivatives. This work is described in 
more detail by Leimkuhler et al. [21]. 

For a simple algorithm, one might consider substituting y = y,, y’ = y: and solving the 
resulting system, together with the user-defined information, for y, and yh. For example, for 
an ODE y’ = Ay together with user-defined information Cyh + Dy, = qO at the initial point, 
we have 

which we can solve uniquely for y, and yI, provided the left-hand matrix is of full rank and qO is 
in the range of the matrix CA + D. In this case, these are the same conditions which the 
matrices D and C must satisfy to ensure that the user has given enough information about the 
inital state to specify a unique solution to the mathematical problem. 

On the other hand, consider the index one DAE given by 

r; + Y; + Yl = g1(t) ) y2 = g*(t) * (5.2) 

To specify a unique solution to the DAE, it is sufficient to give the value of either Y, or Y; at 
t,, because Y2 and Y; must satisfy the constraint and its derivative. However, evaluating Y,, 
Yi , Y2 and Yi at time t, in (5.2), it is apparent that it is not possible to obtain Y1(t,) uniquely 
if only Yi(t,) is specified. Thus this simple algorithm fails to give the solution, although the 
user has given enough information to specify a unique solution to the original problem. 

Clearly the difficulty with the above procedure for equations (5.2) is that the simple 
algorithm has no way of obtaining the information about the derivative of the constraint which 
is inherent in the system. In the fully implicit index one problem it is not in general possible to 
isolate the constraints and differentiate them. Thus we are led to consider the following 
algorithm, motivated by Definition 2.1. 

Solve 

coupled with the user-defined information 

(5.3) 

It is easy to show that if the user-defined information (5.4) is sufficient to determine a 
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unique solution to the DAE, then (5.3), (5.4) have a solution (yO, yh, . . . , yim”‘) and the 
first two components yO, yh are the solution to the DAE at t,. Note that the higher derivatives 
of y are not determined uniquely by this algorithm. 

Since it is obviously not practical to obtain the derivatives of F analytically, we are led to 
consider approximating the derivatives of F. Because F is possibly only defined for t b t,, it is 
natural to consider using one-sided differences. For example, the simplest one-sided difference 
is given by 

D 
k 

F = F(y, + hy;, Y;, + hy';, to + h) - F(Y,, Y& to) 
h 

We can define higher-order difference approximations by 

by choosing the constants CY~, ci appropriately. The higher derivatives of F can be approxi- 
mated similarIy. 

The algorithm obtained by replacing the consistency equations (5.3) by their approxima- 
tions (5.5), coupled with the user-defined information (5.4) produces a rank-deficient over- 
determined nonlinear system. Unlike the analytic consistency equations, the approximate 
system may not have an exact solution because some of the derivative approximations to F 
may be approximating user-defined information. Thus the approximate system is solved in a 
least squares sense. However, the solution of this system is complicated by the rank-deficiency 
of the Jacobian. Using the structure of the system, it is possible to show that the minimum 
norm solution to this nonlinear least squares problem converges to the correct solution as the 
approximations D, become more accurate, and to formulate a scheme for replacing the system 
with a full-rank system which has the same solution for yn, y,!). Numerical results for this 
technique appear to be promising. 

6. Boundary value problems 

We consider linear boundary value problems in DAEs of the form 

where E, F, fare sufficiently smooth, and Y is the dimension of the solution manifold of the 
homogeneous DAE Ly = 0. E(t) is singular on [a, b], possibly with variable rank, and the 
DAE may have index greater than one. DAE BVPs arise in the modeling of semiconductor 
devices [1] and in control theory [2,9]. 

The literature on DAE BVPs consists mainly of the paper by M&z [24] and its extensions 
summarized in the recent text [23]. The focus of this work is on difference and shooting 
methods for nonlinear fully-implicit systems (1 .l), coupled with the boundary conditions 
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G(YW, YW = 0, under a transferability hypothesis which guarantees that (1.1) is a uniform 
index one system and the nullspace of Fy. is independent of y, y ’ and has constant dimension. 
The numerical approach in [23] requires knowledge of some projection onto ker(F,,) and its 
derivative at each mesh point. There are some theoretical results for the subclass of index two 
systems which are tractable, but it is implied that a successful numerical approach involves 
regularizing the DAE to a nonsingular or index one system and then numerically solving the 
regularization. 

Clark and Petzold [lo] investigate numerical methods for DAE BVPs which do not require 
the use of regularization or the computation of projection matrices at each mesh point. The 
results and details of the theory and methods are straightforward extensions of the methods 
and results for ODE BVPs in [19,20]. Knowledge of the solution manifold is required only at 
the initial time point t, = a, or in the case of parallel shooting at each parallel node T,, and not 
at every mesh point t,. 

We will say that the DAE BVP (6.1), (6.2) is solvable if and only if (6.1) is a solvable DAE 
and for every /3 E 5?’ there exists a unique solution y to (6.1), (6.2). Here a solvable DAE is 
defined as in Section 2, with some additional smoothness conditions which are needed to 
characterize the manifold of consistent initial conditions in the higher index case. 

Let MJa) be the set of consistent initial conditions for (6.1) at t = a. The initial conditions 
are characterized by 

wzY(4 = s(4 7 

where dim(ker(M,)) = r and M,, g(u) depend on E, F, f and, for higher index systems, several 
of their derivatives at t = a. For index one systems, the equation 

[I - EE+]Fy = [I - EE+]f , 

evaluated at t = a, completely specifies the set of consistent initial conditions for (6.1). E’ is 
the Moore-Penrose inverse of E. The additional consistency requirements for the higher 
index case are obtained from differentiations as in Section 5. We can formulate a shooting 
method for the DAE BVP as follows. Let y”p E Mf(a) and assume { cpp}; is any basis for 
M, = ker(M,). Let y,(t) and the fundamental matrix Y(t) = [cpl(t), . . . , cp,(t)] be the solutions 
to the Y + 1 initial value problems 

LY,O) = f(t) 3 Y,(U) = Y"P E M#) 2 (6.3) 

LY(t) = 0 ) Y(u) = Y, = [q$ . . . ) q;] . (6.4) 

Y(t) has full column rank for all t E Z since (6.1) is a solvable system. Using the fact that 

YCt> = YpCt> + 2 Gi9iCt) (6.5) 
i=l 

and imposing the boundary condition (6.2), we find that y is a solution of (6.1), (6.2) if and 
only if the vector $ = (I,!+, . . . , $,)t satisfies 
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As in the ODE case, the r x r matrix 

s = B,Y, + B,Y(b) 

(6.6) 

(6.7) 

is the shooting matrix for (6.1), (6.2) and is unique up to a change of basis for MO. Thus we 
have the BVP is solvable if and only if S is invertible. The desired solution is given by (6.5), 
where y”,, Y satisfy (6.3), (6.4) and 1+9 is the solution to (6.6). For the situation of partially 
separated end conditions, if either B, or B, are rank-deficient, it is possible to formulate the 
algorithm so that the number of initial value problems to be solved can be reduced to 4 + 1, 
where q = min(rank(B,), rank(B, )). 

It is possible to formulate variations of parallel shooting which yield full-rank linear 
systems, and to show that if the underlying initial value method using in the shooting 
technique is globally accurate to O(hk), then the numerical solution to the BVP is accurate to 
O(hk). These results are valid even if the index is larger than one. 

For finite difference methods applied to fully implicit index one BVP systems, wencan 
formulate a BVP method by appending the consistency condition M,y(a) = g(a), where M, is 
a set of II - r linearly independent rows of M,, and g(a) are the corresponding rows of g(u), to 
the boundary conditions. Then it is possible to show, analogously to the ODE case [20] that 
the resulting DAE BVP methods are accurate to order O(hk) if and only if the underlying IVP 
methods are globally accurate to O(hk). The linear systems to be solved in the method are 
square and nonsingular. The Runge-Kutta methods of Section 4 with ]r] = 1 are important in 
this context. We are currently studying a similar method for dealing with semi-explicit index 
two systems directly. 
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