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A b s t r a c t - - I n  recent years, hybrid (discrete/continuous) dynamic systems that exhibit coupled 
continuous and discrete behavior have attracted much attention. Many engineering problems can be 
formulated as ODE/DAEs which can be solved by numerical methods. In process design, dynamic 
optimization and simulation, however, many systems of interest experience significant discontinuities 
during transients. This paper describes some simple strategies for discontinuity detecting and han- 
dling in DAE embedded systems. The described algorithm supports flexible representation of state 
conditions in propositional logic. By making full use of the discontinuity functions, both efficiency 
of integration and effectiveness of discontinuity detection are achieved. Considerable care is taken 
to handle problems that can arise during mode transitions. We outline the implementation in a 
general-purpose solver DASPKE for differential-algebraic equations containing discontinuities, and 
present some numerical experiments which illustrate its effectiveness. © 2001 Elsevier Science Ltd. 
All rights reserved. 

1. I N T R O D U C T I O N  

Many dynamic systems may be simulated by ordinary differential equations (ODEs) written as 

dy~ 
d-T --  f ~ ( y l , y 2 , . . .  , y , ,u ,Q,  

yi(0) = y~0 

(i = 1 , . . . , n ) ,  
(1) 

or more  general ly,  by  d i f ferent ia l -a lgebra ic  equa t ions  

f(Yd, Yd, Ya, U, t, p) = O, (2) 

where  Yd and  Ya are  usua l ly  referred to  as different ial  and  a lgebra ic  var iables ,  respect ively ,  u a re  

known  sys t em inputs ,  and  p are  pa ramete r s .  Such a sy s t em of D A E s  can  be  mos t  efficiently 

i n t e g r a t e d  us ing an  er ror  cont ro l led  var iable  s tep  a lgo r i thm such as R u n g e - K u t t a ,  A d a m s ,  Gear ,  
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0898-1221/01/$ - see front matter (~) 2001 Elsevier Science Ltd. All rights reserved. Typeset by .4A4S-TEX 
PII: S0898-1221 (01)00272-3 



66 G. MAO AND L. R. PETZOLD 

DSL48S, DASPK, etc. In applied simulations, however, the system of equations frequently con- 
tains discontinuities in the form of switches, which are thrown when certain conditions are fulfilled. 
Equation set (1) then becomes 

dy~ = f~j (Yl, Y2,.. . ,  Yn, u, t), (i = 1, n; j = 1, m) ,  (3) 
dt 

where the m states of the equation system are determined by a set of arbitrary algebraic discon- 
tinuity functions gk(t, yl, Y2,. . . ,  Yn), (k = 1 , . . . ,  Ng). 

A switch or change of state occurs at a critical point defined by one of the gk passing through 
zero. Similarly, the DAE model (2) containing discontinuities can be formulated as a combined 
discrete/continuous simulation problem [1,2]. The time interval of interest [t (°), t (/)] is partitioned 
into Ns continuous subintervals It k - l ,  tk), k = 1,. . . , /Vs. The combined simulation problem can 
be defined as 

f(k, (y (k) ,y (ak) ,y (k) ,u(k) , t  ~ = O, 
(4)  

u (k) = u (k ) ( t ) ,  

where t ~ [ t k - l , t k ) ,  (k = 1 , . . .  , N s ) ,  f(k) : R n(k) × R n(k) x R re(k) × R l(k) × R, and y(k) E R n(k). 
Given the initial time t (°), the end of each subinterval is determined by the occurrence of a state 
event during the process of simulation. 

These different possible functional forms are some times known as the modes of a hybrid system. 
Hybrid systems may be modeled by a variety of embedded differential or difference equations, 
and may exhibit discontinuous behavior at discrete points in time known as events ,  including 
nonsmooth forcing, switching of modes, and jumps in the state. A switch refers to discrete 
changes in the functional form of (4) as a consequence of events that  occur instantaneously at a 
point in time. The time of occurrence of events may either be defined a priori (time event) or 
implicitly by the system state satisfying some conditions (state event). For example, a class of 
implicit switches can be expressed with the notation 

f (1)( t ,  u , y , : ~ , p )  = O, 

f(2) (t, u, y, 3r, p) = O, 

V t E  [0, t(/)] : g ( t , y ) >  0, 

Vt E [0, t(/)] : g( t ,y)  _< 0, 

where f(1) is a subset of the model equation (2) that  is inserted in the overall model when the 
(scalar) state condition g(t, y) > 0, and f(2) is inserted otherwise. In this case, the state events 
defining switching times, i.e., t* = t c (0, t (/)) : g( t ,y)  = 0 are not known in advance because 
they are functions of the system state, and therefore, the timing and order of equation switches 
are also not known in advance. 

The logical expression related to a state event is referred to as a state condition. The mode 
changes whenever a state condition is satisfied. In practice, the state conditions of a system may 
be determined by a simple relational expression c~(t,y) > ~3(t,y), such as 1 - Yl > 0.5; or by a 
complex logical proposition that  contains a set of logical operators (e.g., AND, OR, NOT) and a 
set of relational expressions (with relational operators <, >, _>, _<). Taking the friction problem 
in [3] as an example, the motion of a sliding object of mass m subject to an applied force F~ and 
frictional resistance F / i s  governed by 

mS=Fo -F/ .  

Friction, F / ,  is a discontinuous function for static and dynamic conditions such that  

(i) if (2 = 0) A (IFa] _< F~), F /  = Fa, 
(ii) if ((~ = 0) A (F~ > Fs))  V (Jc > 0), F /  = F1 + F2x, 

(iii) if ((i" = 0) A (Fa < - F s ) )  V (~ < 0), FI  = -F1  + F2x. 
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State events pose particular problems for simulation. In each step in the DAE model, whenever a 
discontinuity function crosses zero the associated state conditions may switch their logical values. 

An event is defined as the earliest t ime at which one of the currently pending state conditions 
becomes true. So, in the process of simulation, the actual mode switching depends on which 
state condition is satisfied first. This in turn depends on parameters a n d / o r  initial conditions. 
Once the system is in one of these new modes, it may evolve in a completely different way from 
that  if it had switched to another mode. Thus, it is very important to locate the state events in 
strict t ime order and implement the correct mode changes. This requires that  events must not 
be missed by stepping over them completely. 

Following a successful event detection, the system enters a new mode and the algorithm must 
continue to detect new state events. Most state event detection algorithms are based on the 
root-finding of discontinuity functions. One problem, i.e., the problem of false zero crossing 
of discontinuity functions, arises during mode transitions and must be handled properly. This 
involve the difficulties of discontinuity sticking and erroneous zero crossing. The first difficulty 
is related to the transition of state variables, which is concerned with how an initial condition 
for the new mode is determined in terms of the final state of the predecessor mode. We use a 
transition function 

T(k) (y (k)y(k) ,  U(k),~r(J),y(j), u (J ) ,p , t  ) ---- 0 

to map the final values of the variables in the current mode (k) to the initial values in the 
next mode (j). After location of a state event, a consistent initialization calculation is required 
to restart  the integration in the new subinterval [4,5[. This calculation is usually based on the 
assumption of continuity of the differential variables, i.e., given values for the differential variables, 
the new system of DAEs is solved to find consistent initial values for the algebraic variables and 
the time derivatives of the differential variables, which may be different from their original values 
if the event time t* is not on the mesh points. Thus, the process of reinitialization may lead 
to false zero crossings, which Barton [6] termed as "discontinuity sticking", i.e., the same zero 
crossing is detected again in the first step following that  event. The second type of false zero 
crossing happens when the discontinuity function that  caused the mode switching deflects at 
state event t ime t* [7]. These false zero crossings will greatly reduce the integration efficiency, 
and can even lead to completely wrong simulation results if they are not handled properly. 

This paper will present some strategies for discontinuity detecting and handling in simulation 
with DAE models. These strategies have been implemented in DASPKE for the handling of 
mode switching as a new extension to the general-purpose DAE solver DASPK3.0 [8], which uses 
variable-order, variable-stepsize backward differention formula (BDF) methods and a choice of 
two linear system solution methods: direct (dense or banded) or Krylov (iterative). Finally, we 
present some simulation results for a set of example problems. 

2.  L I T E R A T U R E  R E V I E W  

Most approaches to the discontinuity problem for DAE systems employ a discontinuity locking 
mechanism. The idea is to "lock" the function evaluator for the IVP solver so that  the equations 
evaluated are fixed while an integration step is being taken, thus presenting a smooth vector field 
to the solver. During the process of event detection, the same mode is used regardless of the 
current values of the inputs and state conditions. This strategy greatly facilitates state event 
location in the simulation of hybrid discrete/continuous systems. To detect any event in a step, 
a set of discontinuity functions (or variables) z(t) = g(t, u, y) are constructed from the relational 
expressions in the pending state conditions. When one or more relational expressions change 
their values, the state conditions may change accordingly. 

Implemented in conjunction with the gear integration algorithm, Carver [3] tackled the discon- 
tinuity problem for stiff equation sets (ODEs). The discontinuity function z(t), instead of being 
treated algebraically, is regarded as an additional differential equation, i.e., k = g(t, u , y )  and 
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appended to the ODE system. The functions ¢ of scaled derivatives are stored up to the current 
order q such that  the prediction of z at time t + h is given simply by 

q 

z t +  h = zt  + 

i = 1  

and at any other stepsize hi by 

z +hl = + (5 )  
i----1 

The strategy for discontinuity detection is based on the signs of s l  = z t  * Zt+h and s2 = 2t * ~t+h. 

(a) If sl > 0 and s2 > 0, continue the integration. 
(b) If sl > 0 and s2 < 0, reduce the stepsize h and repeat to attain Condition (a) or (c). 
(c) If sl < 0 and s2 > 0, solve equation (5) for hi. 

This method can greatly reduce the number of function evaluations in the neighbourhood of the 
discontinuity, but needs to adjust (reduce) the stepsize frequently for a possible discontinuity. 

As an extension to the general DAE solver DASSL, Petzold [4] developed DASRT which uses 
the Illinois algorithm [9] to find the roots of the functions g(t, y) along the trajectory of the 
solution. Software for the handling of mode transitions at the discontinuities is not given and 
must be provided by the user. 

Rather than using discontinuity functions to handle state events, Gear [10] deals with the 
problem in a direct manner by examining the behavior of the local truncation error and estimates 
the order of the discontinuity, and hence, the stepsize which keeps the error under control while 
stepping over the discontinuity. 

Pantelides [11] uses the state conditions directly. The state event is detected by comparing 
the logical values of the state conditions at tk  and tk+l. If an event is detected, the time of its 
occurrence is located by a bisection algorithm with interpolation formulae P Yd(t) and yaP(t). The 
algorithm supports implicit state conditions having complex logical structures involving multiple 
clauses linked with AND/OR/NOT operators, but cannot handle discontinuity sticking problems. 

Barton [6] noticed possible changes in the values of algebraic variables and discontinuity vari- 
ables after reinitialization in the new mode, which may lead to discontinuity sticking problems, 
and developed an algorithm consisting of two main phases: 

(1) event detection, and 
(2) consistent event location (event polishing). 

In the first phase, an efficient hierarchical polynomial root-finding procedure based on interval 
arithmetic guarantees detection of the state event t* even if multiple state condition transitions 
exist in an integration step. In the second phase, an extra equation: g*(Yd,:Yd, Ya, u, t~) -- ±Eg 
is introduced to form a system of nonlinear equations 

f ( yd ,~ rd ,Ya ,  U, t~) ~ O, 

= u ( t D ,  
p . (6 )  

y - - - y  (tl), 

g*(Yd ,S 'd ,Ya ,  u ,  tT) = +eg, 

rain where eg, called the discontinuity tolerance, is a small positive value and is bounded by % 
and e~ nax. This equation set is solved while imposing time tolerances 5 and A (8 < A) to 
determine the consistent state event time t~' 

t[ e [t*, t* + or t[  e It*, t* + 
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at which consistency between the differential and algebraic variables is retained. Thus, the 
discontinuity functions (or variables) do not change their signs after consistent reinitialization 
under the new mode and consequently avoids discontinuity sticking problems. Barton's method 
needs some extra polishing computations when an event is detected. This polishing process will 
encounter erroneous zero crossing problems when the discontinuity function that  caused the mode 
switching deflects at t~ (Figure 1). Another special situation as shown in Figure 2 will result in 
the second phase failing to find a consistent event time t~ even after an event has been found 
at t*. 

t :l t 
Figure 1. Erroneous zero-crossing. Figure 2. g* tangent to t-axis. 

Birta [7] approximates z~(t, y) using a cubic model to determine whether or not zi(t, y) has a 
cross-over within a step. The approach for dealing with the erroneous zero crossing problem is 
simply not to monitor that  particular discontinuity function until it has, in fact, changed sign. If 
another discontinuity function has a zero crossing within the first integration step following t*, 
the integration process is returned to t* and the step-size is reduced by half. If the detection 
process still predicts a cross-over within the new interval then this process is repeated. In this 
way, the integration step-size used in proceeding from a point t* at which a discontinuity occurs 
is reduced until the detection process is satisfied that  no further zero-crossing of discontinuity 
functions takes place in this initial interval. This algorithm is very effective and robust, but there 
is no provision for the discontinuity sticking problems in DAE-based algorithms, and the first 
stepsize may need to be adjusted in the new mode. 

3. D E S C R I P T I O N  

The new algorithm consists of two phases: 

(1) discontinuity detecting, and 
(2) discontinuity handling. 

OF THE P R O C E D U R E  

3.1. D i s c o n t i n u i t y  Detecting 

3.1.1. R o o t - f i n d i n g  for t h e  d i s con t i nu i t y  functions 

The goal is to determine the specific time at which any of the discontinuity functions crosses 
zero. Suppose the discontinuity function is a continuous function of t and y,  for a given interval 
[ta, tb], where g(ta, Ya) and g(tb, Yb) have opposite signs. According to the intermediate value 
theory of calculus, there must exist at least one root r in the interval [ta, tb]. The interval Ira, tb] 
corresponds to any step advanced from tn to tn+l. For a set of arbitrary discontinuity functions 
gi(t, y) (i = 1 . . . .  , Ng), we use the Illinois algorithm [9] to find the earliest root tc in a step. The 
algorithm systematically moves the endpoints of the interval closer and closer together until an 
interval of arbitrarily small width (51) that  brackets the root (zero point) is obtained (Figure 3). 

3.1.2. Improvements 

As described above, the rootfinding algorithm requires that the signs of g(t, y) at the two ends 
of the interval are opposite. Consequently, only odd numbers of roots in the interval are found. 

To prevent missing the root detection of an even numer of roots of g(t, y), the interval [ta, tb] or, 
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g 

~ ~ a n g e  of t~ 

t 

Figure 3. Time tolerance for root-finding algorithm. 

in another words, the stepsize must be small enough to include only one root in it. Unfortunately, 
the integration and the evaluation of discontinuity functions are two separate processes. Although 
the integration process is very efficient, this may lead to problems for the rootfinding. That is, the 
stepsize may be relatively "large" compared with the sign changes of the discontinuity functions, 
so there exists the risk of missing the detection of the zero crossing within a step. To reduce 
this risk, the stepsize should be small enough to include at most one root. Although this can be 
achieved by directly limiting the stepsize h, the question remains how should a suitable stepsize 
be chosen? Another problem is that the efficiency of the integration can be greatly reduced by 
choosing the stepsize too conservatively so as not to miss any roots. We relate the discontinuity 
functions with the stepsize by appending the differential variables 

or the algebraic variables 

dg (t, y) 
~1~+~ - dt 

Y~+i = gi( t ,  y), (i = 1 , . . . ,  Ng) 

to the original DAE system. Because all of the m discontinuity functions are included in the 
error control mechanism, the stepsizes are adaptively controlled by the discontinuity functions. 

There are, in each step from ta to tb, three possibilities: 

(1) if all of the discontinuity functions have sign changes, the earliest root is found using the 
Illinois algorithm; 

(2) if none of the discontinuity functions have sign changes, we examine the signs of their 
derivatives at ta and tb to decide whether one more evaluation of gi(t,y) (i = 1 , . . . ,  Ng) 
at the middle of the interval is needed; 

(3) if some of the discontinuity functions have sign changes, the Illinois algorithm is used to 
find the first root tc. 

Then for those discontinuity functions having no sign changes, the signs of their derivatives 
gi(ta, y~) and gi(tb, Yb) are checked. If they are different, we further search for a possible earlier 
root in the interval Ira, tc]. Thus, the following strategy applies. 

In this way, for short-lived switching, only one more evaluation of the discontinuity function 
is taken. The event detection is improved without further reducing the stepsize. On the other 
hand, the N 9 augmented discontinuity variables can be treated as quadrature variables [8], which 

Situations Actions 

All gi (t~, y ~ ) .  gi (tb, Yb) < 0 NA Solve for the first root tc 

All gi(ta, ya) " gi(tb, Yb) > 0 Continue integration 

All gi ( ta ,ya)  • gi(tb,Yb) > 0 
Any gi ( ta ,ya)  " gi(tb,Yb) < 0 

Solve for the first root to, and 
Some gi(ta, ya) "gi(tb, Yb) > O but g i ( ta ,ya)  " gi(tb,Yb) < O 

search for earlier root in [ta, to] 

Divide the interval [ta, tb] by 2, and 

check for root in the subintervals 
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can be handled very efficiently in DASPK3.0. Thus, both efficiency of integration and effectiveness 
of discontinuity detection are fulfilled. Although the combination of including the discontinuity 
functions in the stepsize selection and monitoring the signs of the derivative of the discontinuity 
function to decide whether an evaluation of 9 at the midpoint of the current interval may be 
necessary to avoid missing multiple roots does not absolutely guarantee that  no roots will be 
missed, we have found that  it is both reliable and efficient in practice. 

3.2. D i s c o n t i n u i t y  H a n d l i n g  

3.2.1. Notat ion  

For correct mode switching, we not only need to detect the zero crossings of the discontinuity 
functions, but also to determine in which direction they cross zero. Here we introduce some 
notation to identify the two directions of zero crossing. We define the logical values of the 
discontinuity function 

logg (i) = +1, 

logg (i) = -1 ,  

if g~(t,y) _> 0, 

if g~(t, y) < 0. 

and 

If the discontinuity functions have been added to the DAEs, the values of gi(t, y) (i = 1 , . . . ,  Ng) 
are available by interpolation. But there exists the problem of discontinuity sticking [6]. Here 
we evaluate their values by using the interpolation values of the original state variables. The 
advantage is that  there will be no discontinuity sticking problems if the original system is ODE, 
or if the discontinuity function 9i(t, y) is related only to the differential variables in a DAE system. 

3.2.2. U p d a t i n g  of  the logical values of  discontinuity functions 

We must update the logical values of the discontinuity functions in the following cases: 

(1) immediately after each initialization; 
(2) at time t* + hmin, where t* is the event time (or t (°)) and hmin is the minimal stepsize 

determined by the machine e (here hmin = 4.0 * U R O U N D  * max{Itnl , Itoutl}); 
(3) any time a zero crossing among the discontinuity functions is detected. 

For the first case, we use the values of the discontinuity variables (at t*) to determine their logical 
values according to the above notation. For the second case, we evaluate g~(t,y) at t* + hmin 
and use the same notation as in (1), but if gi(t ,y) equals to zero, its logical value is updated 
by multiplying the original value (at t*) by -1 .  For the third case, we locate the time tc of 
the earliest zero-crossing of the discontinuity functions in a step, and update the corresponding 
logical value(s) (multiplying by -1)  for those having a zero-crossing at or a little earlier than tc 
(see Figure 3). However, it should also be taken as a simultaneous zero crossing if another 
discontinuity function has a zero crossing immediately after t~. This is achieved by evaluation of 
the discontinuity functions at time tc+52, where 52 > 0 is an assigned parameter that  defines the 
width of an equivalence band. If the sign of a discontinuity function at tc + 62 is different from 
its sign at t~, its logical value is also updated by the current value multiplied by -1 ,  and the zero 
crossing time tc is replaced by tc + 52. 

3.2.3. Checking of  state conditions 

Whenever a zero crossing at tc among the discontinuity functions is found, we first update 
the corresponding logical values, then check the state conditions using these logical values to 
determine whether a mode switch is needed. If it is, the zero crossing time tc is taken as the 
event time t*, the DAEs are changed and the integration is reinitialized at t*. But instead of 
detecting a zero crossing from t*, the algorithm begins a new event detection from t* + hmin. This 
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means that  we check pending state conditions for possible mode switching only after a minimal 
step has been taken in the new mode (but the initial stepsize is not necessarily limited to hmin). 

This strategy assumes that  a new mode must remain unchanged for a period of at least hmin and 
is also used to avoid the false zero crossings caused by discontinuity sticking and/or  erroneous 
zero crossings (see Figure 4). 

It may be possible that  a zero crossing at tc is found, but no state condition is satisfied. In 
this case, the algorithm continues to search for events from t~. 

g 

J 

Discontinuity sticking 

Erroneous zero crossing 

Figure 4. Avoiding false zero crossing. 

3.3. I m p l e m e n t a t i o n  

We have implemented the algorithm described above on the basis of DASPK3.0 to form a 
new package DASPKE with the capability of discontinuity handling for DAE systems. In each 
integration step, DASPKE searches for the first root(s) of the discontinuity functions. When they 
are found, the corresponding logical values of the discontinuity functions are updated (multiplied 
by -1 )  and the related state conditions are checked to see whether mode switching is needed, 
and if so, the DAEs change accordingly. INFO(1), INFO(l l )  are set to "0" and "1", respectively, 
to indicate the restart of the integration and reinitialization under the new mode. Note that  the 
searching interval is not always from t n to tn+ 1. Depending on which way the user chooses to 
run the code, the end point is tn+l or tout, whichever comes first. Below is the pseudo-code of 
the algorithm. 

ALGORITHM. 

E v e n t h a n d l e (  ) 
Initialize Jstate, Logg, tn = to 
While(tn < tout) Do 

A step forward from tn to t,~+l = min (tn + h, tout) 
Rootfind (G, Ng, to, Root, Jroot, tn, tn+l) 
If (Root) Then 

Loggupdate(Logg, Jroot) 
Modcheck(Jstchange, Logg, Jstout, Jstin) 
If (Jstchange) Then 

t* := tc 
Jstate = Jstout 
Reinitialize at t* and search for new event from t* + hmin 

Else 
Continue root-finding from t~ to tn+l 
Endif 

Else 
tn = tn+l 

Endif 
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Endwhile 

Roo t f i nd  (G, N 9, to, Root, Jroot, t~, t,~+l) 
Begin 

to := mAn {t~c: g~(t~ - 51). g~(t~) ~_ O, tn < t~c ~_ tn+l} 
For i:=l To Ng 

If (gi(tc - 51)" gi(tc) <_ 0) Then 
Jroot(i) :=1 
Rroot:=l  

Else 
If (gi(tc + 52)-g~(tc) _< 0) Then 

Jroot(i)=:l 
tc = tc + 52 
Rroot:=l  

Endif 
Endif 

End 
End 

Loggupdate(Logg,  Ng, Jroot) 
Begin 

For k:--1 To Ng 
If (Jroot(k) = 1) Then 

Logg(k) = Logg(k) * (-1)  
Endif 

End 
End 

Modcheck(Jstchange, Log:g, Jstout, Jstin) 
Begin 

Return Jstout,Jstchange 
End 

4. N U M E R I C A L  E X P E R I M E N T S  A N D  D I S C U S S I O N  

Here we provide some simulation results for the new algorithm applied to various test problems. 
In all of the examples, the absolute and relative tolerances are 10 -5 . The time tolerances for the 
root-finding 51 and the time equivalence band of a simultaneous zero crossing 52 are set to 10 -°. 
For comparison purposes, we also provide some results using Petzold's root-finder (DASRT) and 
Barton's algorithm (DSL48E). 

EXAMPLE l. Consider the differential equation 

y(t) = y(t), sin(20 t) > 0, 

y(t) = 0, sin(20~t) < 0, 

with 

y(0) = 0.1, 0 < t < 3.5. 

To compute the value of y(3.5), we need to define the discontinuity function g(t, y) : sin(20~t). 
Its sign changes define the points where the differential equation changes. 

Figure 5 shows the integration result of y(t)  obtained by using DASRT. Apparently, the al- 
gorithm used by DASRT skips over 16 events! This is because an even number of events are 
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included in some of the steps, which leads to the algorithm failing to detect any of them. Table 1 
shows some of the integration steps (from t = 0.3992 to t = 2.0009) taken by DASRT. It reveals 
that  the integration steps are inappropriate for the event detection of the discontinuity func- 
tion sin(20rrt). Figure 6 gives the output  of y(t) using the new algorithm with the discontinuity 
function as algebraic variable appended to the original ODE. The stepsizes are adjusted by the 
discontinuity function. Consequently, the capability of event detection is increased. 

0.3 

0.25 

>, 0.2 

0.15 

0.1 

J 

/ 
/ -  

i I I i I 
05  1 1.5 2 2 5  3 

Figure 5. Output  of y(t)  by DASRT. 

Table 1. Part ial  steps taken by DASRT for Example 1. 

Time (t) 

0.3992 

0.5016 

0.7064 

1.1160 

1.9352 

2.0000 

2.0009 

sin(20~t) y(t) 

-0.025113 0.122156 

-0.050244 0.122156 

-0.199710 0.122156 

--0.481754 0.122156 

-0.893841 0.122156 

0.0000000 0.122156 

0.0029452 0.122168 

3.5 

EXAMPLE 2. This is an example used by Birta [7]. The problem is given by 

y2(t)  = a2y2( t ) ,  

93(t)  = y (t) + 

y1(0)=0.5, 
y2(0)=-0.5, 
y3(0)=0. 

The initial values of parameters ~1 and c~2 are taken to be 2 and -1 ,  respectively. The events of 
interest are specified as 

(a) yl(t) = +1.0 with yl(t) _> 0, and 
(b) y2(t) = -1.0  with y2(t) _< 0. 

Upon the occurrence of either of the events, these parameters interchange their values. The 
output of y3(t) is most interesting. 
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Figure 6. Output of y(t) by DASPKE. 

This problem can be described by two discontinuity functions 

g l ( t ,y )  = 1 - yl(t) and g2(t ,y) = 1 + y2(t), 

which will remain nonnegative on the solution trajectories. This is a distinctive feature of this 
example and can be treated satisfactorily by the new discontinuity handling procedure. This 
problem, however, can not be expressed and solved with Barton's [6] software (DSL48E), because 
the mode of the system is not absolutely determined by the state conditions, but is determined 
by the state conditions at the event time and the mode before the event, i.e., there is no direct 
map between a state condition and a mode. The system may be in a different mode even if the 
state condition is the same (see Figure 1). In this example, the discontinuity functions deflect 
when an event is detected, so DSL48E cannot be used to solve this kind of problem. Figure 7 
shows the integration results of yl(t), y2(t), and y3(t) using DASPKE (for t = 0 to 1.4), from 
which we can see the exceedingly small separation between event times when t increases in value. 

EXAMPLE 3. Taking another problem used by Birta [7] as an example, the dynamics for this 
case are specified as 

9 1 ( 0  = ~ y 2 ( t ) ,  y l (o )  = o, 

y2(t)  = - w y l ( t ) ,  y2(O) --- 1, 

9 3 ( 0  : u3(t) ,  y3(o) : o, 

with w = lr, and the time interval is 0 < t < 3. The initial value of the input function u(0) is 1. 
The single discontinuity function associated with the problem is 

gl(t,y(t)) = yl(t)  - At, (A is a given constant). 

Upon the occurrence of each event, the value of u is replaced with -u(t*)yl(t*), where t* is the 
time of event. 

Table 2 gives some results using DASPKE and DSL48E. The event times (in the second column) 
for this problem can be obtained directly by solving y l ( t ) -  At = 0, i.e., sin(Trt) - A t  = 0. For most 
of the possible parameters A, both algorithms obtain similar results. But  when the parameter  A 
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Figure 7. Solution of Example 2 by DASPKE. (yl(t): dot-dashed line, y2(t): dashed 
line, ya(t): solid line.) 

is chosen as A = 0.403, the t ra jectory of y(t) = 0.403 * t is nearly tangent to Yl (t) at some point, 
which means tha t  the second and third events are very close. Both algorithms can detect these 

events, but  around the third event, a lot of steps are needed. This is because frequent events are 
detected and very small initial stepsizes are taken. Eventually, our algorithm gets the result of 
y3(3.0), but  due to the short-lived state conditions and the failure to calculate a consistent event 

t ime t~, DSL48E failed to compute the final value of y3(3.0). 

Table 2. Results for Example 3. 

Event Times 
A (Direct) 

0.35 

0.40 

0.403 

0.45 

0.898206 

2.29733 
2.62827 

0.884843 
2.41850 
2.50000 

0.884047 
2.446759 

2.471331 

0.871693 

Event Times 
(DASPKE) 

0.898223 
2.297377 

2.628262 

0.884858 
2.418639 
2.499864 

0.884064 
2.447192 

2.470742 

0.871708 

Event Times 
(DSL48E) 

0.898211 
2.297334 

2.628245 

0.884849 
2.418542 
2.499899 
0.884055 

2.441031 
2.471031 

0.871696 

x3(3.0) 
(DASPKE) 

0.393366 

0.243088 

0.242976 

0.7432421 

x3(3.0) 
(DSL48E) 

0.393346 

0.2431339 

Failed 

0.743240 

Figure 8 shows the integration results of yl(t)  and y3(t) using DASPKE for A = 0.35. There  

are three discontinuities in the interval. 

EXAMPLE 4. The fourth test  problem is concerned with current flow in a diode circuit, and 
has been previously used by Carver [3] and Barton [6]. There are three s tate  conditions, each 
with four relational expressions. This is a typical DAE system with propositional logic s ta te  
conditions. For this problem, all of the three algorithms obtain correct results, but DASRT 
experiences six false zero crossings including two instances of discontinuity sticking and four 
erroneous zero crossings. The new algorithm successfully avoided all the false zero crossings and 
implemented correct mode switching. Compared with DASRT, DASPKE usually needed more 
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Figure 8. Solution of Example  3 by DASPKE.  (yl( t ) :  dashed line, y3(t): solid line.) 

steps and residual evaluations, but fewer discontinuity function evaluations because most of the 
false zero crossings can be avoided during event detection. Table 3 shows the number of steps 
(NStep), residual evaluations (NRes) and discontinuity function evaluations (NGev) needed when 
using DASRT, DASPKE, respectively. Figures 9 and 10 show the solution profile produced by 
DASPKE (discontinuity functions as algebraic variables). 

Table 3. Comparison of computational  cost for Example  4. 

NStep NRes  N G e V  NDis  1 NError 2 

D A S R T  477 2229 610 2 4 

D A S P K E  3 486 2778 574 0 0 

D A S P K E  4 471 3163 568 0 0 

D A S P K E  5 465 2834 572 0 0 
/ 

1NDis: Number of discontinuity sticking 

2NError: Number of erroneous zero crossing 

3: Discontinuity functions as quadrature variables 

a: Discontinuity functions as differential variables 

5: Discontinuity functions as algebraic variables 

5.  C O N C L U S I O N S  

Efficient integration over discontinuities in a DAE model requires accurate detection and lo- 
cation of state events and proper handling of problems arising at mode transitions. While many 
ODE/DAE solvers such as DASSL and DASPK are reliable and efficient, they are not equipped 
for handling discontinuities. Some root-finding algorithms do a good job of detecting discontinu- 
ities, but in case of a short-lived switch such as Example 1, discontinuities can be missed unless 
the user is sufficiently alert to impose a stepsize limit. There is a tradeoff between efficiency of 
integration and effectiveness of detecting a discontinuity. 

By appending the discontinuity functions (either as algebraic variables or differential variables) 
to the original DAE system, the stepsizes for the integration are adaptively adjusted in part by the 
discontinuity functions. Based on the derivative information of discontinuity variables at the two 
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Figure 10. Output of vz(t) and v3(t) by DASPKE. (vz(t): dashed line, v3(t): solid 
line.) 

ends of a step, a decision regarding whether one extra evaluation of the discontinuity functions in 
a step is made, which effectively solves the problem of missing the detection of an even number of 
zero crossings in a step without limiting the stepsizes of  integration. The root-finding algorithm 
itself cannot  guarantee that the first root is found when a discontinuity function has multiple 
zero crossings in a step, but with these strategies combined, the purpose can be achieved. 

With special notation for the logical values of  the discontinuity functions, a strategy for state 
condition checking and mode determination is proposed, which can handle short-lived ( <  hmin) 
state condition changes and effectively avoid false zero crossings at mode  transitions caused by 
discontinuity sticking and erroneous zero crossings without  adjusting the initial stepsize in the 
new mode. 
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T h e  new sof tware  s u p p o r t s  flexible r ep resen ta t ion  of s t a t e  condi t ions  using p ropos i t i ona l  logic. 

For  genera l  engineer ing  p rob lems  where  t h e  number  of d i scon t inu i ty  funct ions  is smal l  re la t ive  

to  t he  size of  t he  s t a t e  sys tem,  th is  a lgo r i t hm can  be  very  efficient. S imula t ions  f rom var ious  

t e s t  p rob l ems  show very  good  resul ts  for the  c o m p u t a t i o n  of s t a t e  var iables  in D A E  sys t ems  

con ta in ing  discont inui t ies .  
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