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Abstract—1In recent years, hybrid (discrete/continuous) dynamic systems that exhibit coupled
continuous and discrete behavior have attracted much attention. Many engineering problems can be
formulated as ODE/DAEs which can be solved by numerical methods. In process design, dynamic
optimization and simulation, however, many systems of interest experience significant discontinuities
during transients. This paper describes some simple strategies for discontinuity detecting and han-
dling in DAE embedded systems. The described algorithm supports flexible representation of state
conditions in propositional logic. By making full use of the discontinuity functions, both efficiency
of integration and effectiveness of discontinuity detection are achieved. Considerable care is taken
to handle problems that can arise during mode transitions. We outline the implementation in a
general-purpose solver DASPKE for differential-algebraic equations containing discontimuities, and
present some numerical experiments which illustrate its effectiveness. € 2001 Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

Many dynamic systems may be simulated by ordinary differential equations (ODEs) written as

dy; -
E_fz(ylay2v"':ynvu1t)7 (@__11-'-773)’ (1)
¥i(0) = ya0

or more generally, by differential-algebraic equations

f(y.j,).’d., ya,u,t:l’) = 0: (2)

where y4 and y, are usually referred to as differential and algebraic variables, respectively, u are
known system inputs, and p are parameters. Such a system of DAEs can be most efficiently
integrated using an error controlled variable step algorithm such as Runge-Kutta, Adams, Gear,
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DSL48S, DASPK, etc. In applied simulations, however, the system of equations frequently con-
tains discontinmities in the form of switches, which are thrown when certain conditions are fulfilled.
Equation set {1) then becomes

%zfij(yl:yQH"'vyn!uvt)v (Ié:]'wn; j:l,m), (3)
where the m states of the equation system are determined by a set of arbitrary algebraic discon-
tinuity functions gie(t, y1,y2,. .-, 9n)s (k=1,..., Ng).

A switch or change of state occurs at a critical point defined by one of the g; passing through
zero. Similarly, the DAE model (2) containing discontinuities can be formulated as a combined
discrete/continuous simulation problem [1,2]. The time interval of interest [t(%), (/)] is partitioned
into N, continuous subintervals [t*~1 %), k = 1,..., N,. The combined simulation problem can

be defined as
f(k) (y&k)vafik)’ ng), u(k)n t) = Oa

k) = @ (t), )

where t € [t5=1,t%), (k=1,...,Ns), £(k) : B*"" x B" x R™™ » B X R, and y® e R,

Given the initial time t(%), the end of each subinterval is determined by the occurrence of a state
event during the process of simulation.

These different possible functional forms are some times known as the modes of a hybrid system.
Hybrid systems may be modeled by a variety of embedded differential or difference equations,
and may exhibit discontinucus behavior at discrete points in time known as events, including
nonsmooth forcing, switching of modes, and jumps in the state. A switch refers to discrete
changes in the functional form of (4) as a consequence of events that occur instantaneously at a
point in time. The time of occurrence of events may either be defined a prieri (time event) or
implicitly by the system state satisfving some conditions (state event). For example, a class of
implicit switches can be expressed with the notation

f(”(t, wy,y,p;=19, YVt [G,t(f)] 19t y) >0,

f@@uy,y,p) =0 Vte [Ost(“] L g(t,y) <0,

where (1) is a subset of the model equation (2) that is inserted in the overall model when the
(scalar) state condition g(t,y) > 0, and f(? is inserted otherwise. In this case, the state events
defining switching times, ie., #* = t € (0,t9) : g{t,y) = 0 are not known in advance because
they are functions of the system state, and therefore, the timing and order of equation switches
are also not known in advance.

The logical expression related to a state event is referred to as a state condition. The mode
changes whenever a state condition is satisfied. In practice, the state conditions of a system may
be determined by a simple relational expression a(t,y) > 3(¢,y), such as 1 —y; > 0.5; or by a
complex logical proposition that contains a set of logical operators (e.g., AND, OR, NOT) and a
set of relational expressions (with relational operators <, >, >, <). Taking the friction problem
in [3] as an example, the motion of a sliding object of mass m subject to an applied force F, and
frictional resistance Fr is governed by

mi = F, — Fy.

Friction, Fy, is a discontinuous function for static and dynamic conditions such that
(i} if (£ = 0) A (|F,| £ Fy), Fr = Fy,
(ii) if ((# = 0) A(Fo > F)) V (& > 0), Fy = Fi + For,
(i) if ((2=0)A(F, « —F ) V(2 <0), Ff = —F + Fax.
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State events pose particular problems for simulation. In each step in the DAE model, whenever a
discontinuity function crosses zero the associated state conditions may switch their logical values.
An event is defined as the earliest time at which one of the currently pending state conditions
becomes true. So, in the process of simulation, the actual mode switching depends on which
state condition is satisfied first. This in turn depends on parameters and /or initial conditions.
Once the system is in one of these new modes, it may evolve in a completely different way from
that if it had switched to another mode. Thus, it is very important to locate the state events in
strict time order and implement the correct mode changes. This requires that events must not
be missed by stepping over them completely.

Following a successful event detection, the system enters a new mode and the algorithm must
continue to detect new state events. Most state event detection algorithms are based on the
root-finding of discontinuity functions. One problem, i.e., the problem of false zero crossing
of discontinuity functions, arises during mode transitions and must be handled properly. This
involve the difficulties of discontinuity sticking and erroneous zero crossing. The first difficulty
is related to the transition of state variables, which is concerned with how an initial condition
for the new mode is determined in terms of the final state of the predecessor mode. We use a

transition function
Tj(k) (ycm,y(k),u(k)’y(a)’ym,u(g)’p,t) -0

to map the final values of the variables in the current mode (k) to the initial values in the
next mode (j). After location of a state event, a consistent initialization calculation is required
to restart the integration in the new subinterval [4,5]. This calculation is usually based on the
assumnption of continuity of the differential variables, i.e., given values for the differential variables,
the new system of DAEs is solved to find consistent initial values for the algebraic variables and
the time derivatives of the differential variables, which may be different from their original values
if the event time t* is not on the mesh points. Thus, the process of reinitialization may lead
to false zero crossings, which Barton {6) termed as “discontinuity sticking”, i.e., the same zero
crossing is detected again in the first step following that event. The second type of false zero
crossing happens when the discontinuity function that caused the mode switching deflects at
state event time t* (7). These false zero crossings will greatly reduce the integration efficiency,
and can even lead to completely wrong simulation results if they are not handled properly.

This paper will present some strategies for discontinuity detecting and handling in simulation
with DAE models. These strategies have been implemented in DASPKE for the handling of
mode switching as a new extension to the general-purpose DAE solver DASPK3.0 (8], which uses
variable-order, variable-stepsize backward differention formula (BDF) methods and a choice of
two linear system solution methods: direct (dense or banded) or Krylov (iterative). Finally, we
present some simulation results for a set of example problems.

2. LITERATURE REVIEW

Most approaches to the discontinuity probiem for DAE systems employ a discontinuity locking
mechanism. The idea is to “lock” the function evaluator for the IVP solver so that the equations
evaluated are fixed while an integration step is being taken, thus presenting a smooth vector field
to the solver. During the process of event detection, the same mode is used regardless of the
current values of the inputs and state conditions. This strategy greatly facilitates state event
location in the simulation of hybrid discrete/continuous systems. To detect any event in a step,
a set of discontinuity functions (or variables) z(t) = g(t, u,y) are constructed from the relational
expressions in the pending state conditions. When one or more relational expressions change
their values, the state conditions may change accordingly.

Implemented in conjunction with the gear integration algorithm, Carver (3] tackled the discon-
tinuity problem for stiff equation sets (ODEs). The discontinuity function z(t), instead of being
treated algebraically, is regarded as an additional differential equation, i.e., 3 = g{t,u,y) and
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appended to the ODE system. The functions ¢ of scaled derivatives are stored up to the current
order ¢ such that the prediction of z at time ¢ + A is given simply by

Zeph = 2 + Z%(%)

i=1

and at any other stepsize hy by

q h]_ i
=2t oi( i) 5 ! - 5
Zephy = 2 ; z (h) (5)

The strategy for discontinuity detection is based on the signs of s; = z * zp4p, and s2 = Z¢ * Zpqp.

(a) If sy > 0 and sy > 0, continue the integration.
(b} If 51 > 0 and s3 < 0, reduce the stepsize h and repeat to attain Condition (a) or (c).
{c) If s3 < 0 and s > 0, solve equation (5) for h;.

This method can greatly reduce the number of {unction evaluations in the neighbourhood of the
discontinuity, but needs to adjust (reduce) the stepsize frequently for a possible discontinuity.

As an extension to the general DAE solver DASSL, Petzold [4] developed DASRT which uses
the Illinois algorithm [9] to find the roots of the functions g(t,y) along the trajectory of the
solution. Software for the handling of mode transitions at the discontinuities is not given and
must be provided by the user.

Rather than using discontinuity functions to handle state events, Gear [10] deals with the
problem in a direct manner by examining the behavior of the local truncation error and estimates
the order of the discontinuity, and hence, the stepsize which keeps the errar under control while
stepping over the discontinuity.

Pantelides [11] uses the state conditions directly. The state event is detected by comparing
the logical values of the state conditions at t; and ¢x+;. If an event is detected, the time of its
occurrence is located by a bisection algorithm with interpolation formulae y%(t) and y£(t). The
algorithm supports implicit state conditions having complex logical structures involving muitiple
ciauses linked with AND/OR/NOT operators, but cannot handle discontinuity sticking problems.

Barton [6] noticed possible changes in the values of algebraic variables and discontinuity vari-
ables after reinitialization in the new mode, which may lead to discontinuity sticking problems,
and developed an algorithm consisting of two main phases:

(1) event detection, and
(2) consistent event location (event polishing).

In the first phase, an efficient hierarchical polynomial root-finding procedure based on interval
arithmetic guarantees detection of the state event t* even if multiple state condition transitions
exist in an integration step. In the second phase, an extra equation: ¢*(y4.¥d.¥a,11,t}) = Lgg
is introduced to form a system of nonlinear equations

f(yd’deYG!ustT) = 0,
u = uft;),
y =y*(t),
gi(Yd,memu,t}') = *eg,

(6)

it

where €g, called the discontinuity tolerance, is a small positive value and is bounded by eg‘"‘
and €;'®*. This equation set is solved while imposing time tolerances § and A (§ < A) to
determine the consistent state event time ¢}

) € [t*,t" + 9] or i ettt + A
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at which consistency between the differential and algebraic variables is retained. Thus, the
discontinuity functions (or variables) do not change their signs after consistent reinitialization
under the new mode and consequently avoids discontinuity sticking problems. Barton’s method
needs some extra polishing computations when an event is detected. This polishing process will
encounter erroneous zero crossing problems when the discontinuity function that caused the mode
switching deflects at ¢} (Figure 1). Another special situation as shown in Figure 2 will result in
the second phase failing to find a consistent event time t; even after an event has been found
at t*.

g g
0 Ao t 0 : t
Figure 1. Erroneous zero-crossing. Figure 2. g* tangent to t-axis.

Birta [7] approximates z;(t,¥) using a cubic model to determine whether or not z;(t,y) has a
cross-over within a step. The approach for dealing with the erroneous zero crossing problem is
simply not to monitor that particular discontinuity function until it has, in fact, changed sign. If
another discontinuity function has a zero crossing within the first integration step following £*,
the integration process is returned to t* and the step-size is reduced by half. If the detection
process still predicts a cross-over within the new interval then this process is repeated. In this
way, the integration step-size used in proceeding from a point ¢* at which a discontinuity occurs
is reduced until the detection process is satisfied that no further zero-crossing of discontinuity
functions takes place in this initial interval. This algorithm is very effective and robust, but there
is no provision for the discontinuity sticking problems in DAE-based algorithms, and the first
stepsize may need to be adjusted in the new mode.

3. DESCRIPTION OF THE PROCEDURE

The new algorithm consists of twa phases:

{1) discontinuity detecting, and
{2) discontinuity handling.

3.1. Discontinuity Detecting

3.1.1. Root-finding for the discontinuity functions

The goal is to determine the specific time at which any of the discontinuity functions crosses
zero. Suppose the discontinuity function is a continuous function of ¢ and y, for a given interval
[ta,ts), where g(ta,ya) and g(ts,ys) have opposite signs. According to the intermediate value
theory of calculus, there must exist at least one root r in the interval [t,,%s]. The interval (t,, )
corresponds to any step advanced from t,, to ¢,4;. For a set of arbitrary discontinuity functions
g:(t,¥) (1 =1,...,N,), we use the Illinois algorithm [9] to find the earliest root . in a step. The
algorithm systematically moves the endpoints of the interval closer and closer together until an
interval of arbitrarily small width (&) that brackets the root (zero point) is obtained (Figure 3).

3.1.2. Improvements

As described above, the rootfinding algorithm requires that the signs of g(t, y) at the two ends
of the interval are opposite. Consequently, only odd numbers of roots in the interval are found.
To prevent missing the root detection of an even numer of roots of g(t,y), the interval [¢,, %) or,
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possible range of i

Figure 3. Time tolerance for root-finding algorithm.

in another words, the stepsize must be small enough to include only one root in it. Unfortunately,
the integration and the evaluation of discontinuity functions are two separate processes. Although
the integration process is very efficient, this may lead to problems for the rootfinding. That is, the
stepsize may be relatively “large” compared with the sign changes of the discontinuity functions,
so there exists the risk of missing the detection of the zero crossing within a step. To reduce
this risk, the stepsize should be small enough to include at most one root. Aithough this can be
achieved by directly limiting the stepsize h, the question remains how should a suitable stepsize
be chosen? Another problem is that the efficiency of the integration can be greatly reduced by
choosing the stepsize too conservatively so as not to miss any roots, We relate the discontinuity
functions with the stepsize by appending the differential variables

o dglty)
Yn+i =

or the algebraic variables
Ynt+i = 2L, ¥), (i=1,...,Ng)

to the original DAE system. Because all of the m discontinuity functions are included in the
error control mechanism, the stepsizes are adaptively controlled by the discontinuity functions.
There are, in each step from ¢, to ¢, three possibilities:

(1) if all of the discontinuity functions have sign changes, the earliest root is found using the
Illinois algorithm;

{2) if none of the discontinuity functions have sign changes, we examine the signs of their
derivatives at t, and t; to decide whether one more evaluation of g;(t,y) (¢ = 1....,1Ny)
at the middle of the interval is needed;

(3) if some of the discontinuity functions have sign changes, the Illinois algorithm is used to
find the first root ¢,.

Then for those discontinuity functions having no sign changes, the signs of their derivatives
gi(ta,¥a) and g;(tp, ys) are checked. If they are different, we further search for a possible earlier
root in the interval [tq,¢c]. Thus, the following strategy applies.

In this way, for short-lived switching, only one more evaluation of the discontinuity function
is taken. The event detection is improved without further reducing the stepsize. On the other
hand, the Ny augmented discontinuity variables can be treated as quadrature variables [8], which

Situations Actions
All gi(ta, ¥a) - 9i(ts, ¥s) < O NA Saolve for the first root ¢,
All 9;(ta, ¥a) - G:(ts, ¥p) > O Continue integration
All gi(tas ¥a) - 9:{te, y3) > 0 Divide the interval [t ty] by 2, and

Any dilte, ¥a) - @:(te, ¥p) < D
¥ giltar¥a) - 5illo, ¥s) check for root in the subintervals

. . Solve for the first root te, and
Some gi(ta.¥a) - gi(26, ¥6) >0 | but §;(te,¥a) - gi(ts,¥s) < 0 ¢

search for earlier root in [ta, i)
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can be handled very efficiently in DASPK3.0. Thus, both efficiency of integration and effectiveness
of discontinuity detection are fulfilled. Although the combination of including the discontinuity
functions in the stepsize selection and monitoring the signs of the derivative of the discontinuity
function to decide whether an evaluation of g at the midpoint of the current interval may be
necessary to avoid missing multiple roots does not absolutely guarantee that no roots will be
missed, we have found that it is both reliable and efficient in practice.

3.2. Discontinuity Handling

3.2.1. Notation

For correct mode switching, we not only need to detect the zero crossings of the discontinuity
functions, but also to determine in which direction they cross zero. Here we introduce some
notation to identify the two directions of zero crossing. We define the logical values of the
discontinuity function

logg (i) = +1,  if gi(t,¥) 20, and
logg (i) = -1, U gi{t,y) <O.

If the discontinuity functions have been added to the DAEs, the values of g;(¢,y) (1 = 1,... v IN)
are available by interpolation. But there exists the problem of discontinuity sticking [6]. Here
we evaluate their values by using the interpolation values of the original state variables, The
advantage is that there will be no discontinuity sticking problems if the original system is ODE,
or if the discontinuity function g;(t, y) is related only to the differential variables in a DAE system.

3.2.2. Updating of the logical values of discontinuity functions

We must update the logical values of the discontinuity functions in the following cases:

(1) immediately after each initialization;

(2) at time t* + hmin, where t* is the event time (or %)) and huyi, is the minimal stepsize
determined by the machine € (here hmin = 4.0 % UROUN D * max{|t,|, |tout| });

(3} any time a zero crossing among the discontinuity functions is detected.

For the first case, we use the values of the discontinuity variables (at t*) to determine their logical
values according to the above notation. For the second case, we evaluate gi(t,¥) at t* + by
and use the same notation as in (1), but if g;(t,y) equals to zero, its logical value is updated
by multiplying the original value (at #*) by —1. For the third case, we locate the time t, of
the earliest. zero-crossing of the discontinuity functions in a step, and update the corresponding
logical value(s) (multiplying by —1) for those having a zero-crossing at or a little earlier than f,
(see Figure 3). However, it should also be taken as a simultancous zero crossing if another
discontinuity function has a zero crossing immediately after ¢.. This is achieved by evaluation of
the discontinuity functions at time #,+dz, where 6; > 0 is an assigned parameter that defines the
width of an equivalence band. If the sign of a discontinuity function at t. + &5 is different from
its sign at 2., its logical value is also updated by the current value multiplied by —1, and the zero
crossing time ¢, is replaced by t. + 8.

3.2.3. Checking of state conditions

Whenever a zero crossing at ¢, among the discontinuity functions is found, we first update
the corresponding logical values, then check the state conditions using these logical values to
determine whether a mode switch is needed. If it is, the zero crossing time ¢, is taken as the
event time ¢*, the DAEs are changed and the integration is reinitialized at #*. But instead of
detecting a zero crossing from t*, the algorithm begins a new event detection from t* + fimin. This
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means that we check pending state conditions for possible mode switching only after a minimal
step has been taken in the new mode (but the initial stepsize is not necessarily limited to Pin)-
This strategy assumes that a new mode must remain unchanged for a period of at least hy,, and
is also used to avoid the false zero crossings caused by discontinuity sticking and/or erroneous
zero crossings (see Figure 4).

It may be possible that a zero crossing at t. is found, but no state condition is satisfied. In
this case, the algorithm continues to search for events from t..

g Discontinuity sticking

Erroneous zero crossing

Figure 4. Avoiding false zero crossing.

3.3. Implementation

We have implemented the algorithm described above on the basis of DASPK3.0 to form a
new package DASPKE with the capability of discontinuity handling for DAE systems. In each
integration step, DASPKE searches for the first root(s) of the discontinuity functions. When they
are found, the corresponding logical values of the discontinuity functions are updated (multiplied
by —1) and the related state conditions are checked to see whether mode switching is needed,
and if so, the DAEs change accordingly. INFO(1), INFO(11) are set to “0” and “1”, respectively,
to indicate the restart of the integration and reinitialization under the new mode. Note that the
searching interval is not always from t,, to t,,.;. Depending on which way the user chooses to
run the code, the end point is t,,41 or Z,u:, whichever comes first. Below is the pseudo-code of

the algorithm.
ALGORITHM.

Eventhandle( )
Initialize Jstate, Logg, t, = to
While(t,, < tou) Do
A step forward from t,, to ¢,y = min (¢, + A, tour)
Rootfind (G, Ny, t., Root, Jroot, t., t,41)
if (Root) Then
Loggupdate(Logg, Jroot)
Modcheck({Jstchange, Logg, Jstout, Jstin)
If (Jstchange) Then
=t
Jstate = Jstout
Reinitialize at t* and search for new event from t* + Anin
Else
Continue root-finding from £, to £,4
Endif
Else
tn =ttt
Endif
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Endwhile

Rootfind (G, N,, t., Root, Jroot, t,, tns1)
Begin
te:=min {t : g;(ti — 61) - gi(t!) < 0,8, <t <tnpa}
For i:=1 To N
If (gi(tc — 61) - gi(tc) < 0) Then
Jroot(i):=1
Rroot:=1
Else
If (gi(te + 82) - gi(tc) € 0) Then
Jroot(i)=:1
te = t. + g
Rroot:=1
Endif
Endif
End
End

Loggupdate(Logg, N, Jroot)
Begin
For k:=1 To N,
If (Jroot{k) = 1) Then
Logg(k) = Logg(k) * (—1)
Endif
End
End

Modcheck(Jstchange, Logg, Jstout, Jstin)
Begin

Return Jstout,Jstchange
End

4. NUMERICAL EXPERIMENTS AND DISCUSSION

Here we provide some simulation results for the new algorithm applied to various test problems.
In all of the examples, the absolute and relative tolerances are 10~%. The time tolerances for the
root-finding §; and the time equivalence band of a simultaneous zero crossing 8, are set to 10~°.
For comparison purposes, we also provide some results using Petzold’s root-finder (DASRT) and
Barton’s algorithm (DSL48E).

ExaMpPLE 1. Consider the differential equation

#(t) = y(1), sin{20xt) > 0,
y(t) =0, sin(20xt) < 0,

with

y(0) =0.1, 0<t<35.
To compute the value of y(3.5), we need to define the discontinuity function g(t,y) = sin(20nt).
Its sign changes define the points where the differential equation changes.

Figure 5 shows the integration result of y(t) obtained by using DASRT. Apparently, the al-
gorithm used by DASRT skips over 16 events! This is because an even number of events are
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included in some of the steps, which leads to the algorithm failing to detect any of them. Table 1
shows some of the integration steps (from ¢ = 0.3992 to ¢ = 2.0009) taken by DASRT. It reveals
that the integration steps are inappropriate for the event detection of the discontinuity func-
tion sin(20xt). Figure 6 gives the output of y(¢} using the new algorithm with the discontinuity
function as algebraic variable appended to the original ODE. The stepsizes are adjusted by the
discontiruity function. Consequently, the capability of event detection is increased.

03 T ks T T T ™

01 — — L L 1
2

25

wl

35
t

Figure 5. Output of y(t) by DASRT.

Table 1. Partial steps taken by DASRT for Example 1.

Time (t) sin(20nt) y{t)
0.3992 —0.025113 0.122156
0.5016 —0.050244 | 0.122156
0.7064 —0.199710 0.122156
1.1160 —0.481754 0.122156
1.9352 —0.893841 0.122156
2.0000 0.0000000 0.122156
2.0009 0.0029452 0.122168

EXAMPLE 2. This is an example used by Birta [7]. The prablem is given by

n(t) = (), #1(0) = 0.5,
Y2(t) = aaya(t), y2(0) = —0.5,
() =) +v2(t), wa(0) =10

The initial values of parameters o) and c; are taken to be 2 and —1, respectively. The events of
interest are specified as

(a) y1{t) = +1.0 with ¢;(¢) > 0, and

(b) yo(t) = —1.0 with g2{(¢) < 0.
Upon the occurrence of either of the events, these parameters interchange their values. The
output of y3(t) is most interesting.
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Figure 6. Output of y{t} by DASPKE.

This problem can be described by two discontinuity functions

Gt y)=1-u(t) and  gft,y)=1+y:(t),

which will remain nonuegative on the solution trajectories. This is a distinctive feature of this
example and can be treated satisfactorily by the new discontinuity handling procedure. This
problem, however, can not be expressed and solved with Barton’s [6] software (DSL48E), because
the mode of the system is not absolutely determined by the state conditions, but is determined
by the state conditions at the event time and the mode before the event, i.e., there is no direct
map between a state condition and a mode. The system may be in a different mode even if the
state condition is the same (see Figure 1). In this example, the discontinuity functions deflect
when an event is detected, so DSL48E cannot be used to solve this kind of problem. Figure 7
shows the integration results of y1(t), y2(t), and ya(t) using DASPKE (for ¢ = 0 to 1.4), from
which we can see the exceedingly small separation between event times when ¢ increases in value.

ExAMPLE 3. Taking another problem used by Birta [7] as an example, the dynamics for this
case are specified as

() = wya(t), %(0) =0,
P2(t) = ~wy (t), y2(0) = 1,
ja(t) = w3(1), y3(0) =0,

with w = 7, and the time interval is 0 < ¢ < 3. The initial value of the input function w(0) is 1.
The single discontinuity function associated with the problem is

a(t,¥()) =y (t) — At, (A is a given constant).
Upon the occurrence of each event, the value of u is replaced with —u(t*)y, (t*), where * is the

time of event.

Table 2 gives some results using DASPKE and DSL48E. The event times (in the second column)
for this problem can be obtained directly by solving 1 (t) — At = 0, i.e., sin(nt) — At = 0. For most
of the possible parameters A, both algorithms obtain similar results. But when the parameter A
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Q.81 - -~ - 4
06 - - J

04F -

Figure 7. Solution of Example 2 by DASPKE. (y1(¢): dot-dashed line, y2(t): dashed
line, pa(t): solid line.)

is chosen as A = 0.403, the trajectory of y(¢) = 0.403 +¢ is nearly tangent to y; (t) at some point,
which means that the second and third events are very close. Both algorithms can detect these
events, but around the third event, a lot of steps are needed. This is because frequent events are
detected and very small initial stepsizes are taken. Eventually, our algorithm gets the result of
s(3.0), but due to the short-lived state conditions and the failure to calculate a consistent event
time ¢}, DSL48E failed to compute the final value of y3(3.0).

Table 2. Results for Example 3.

A Event Times Event Times | Event Times z3(3.0) x3(3.0)
(Dirsct) {DASPKE) (DSLA48E) (DASPKE) {DSL48E)
0.898206 0.808223 0.898211
0.35 2.29733 2.207377 2.297334 0.393366 0.393346
2.62827 2.628262 2.628245
0.884843 0.884858 0.884849
0.40 2.41850 2.418639 2.418542 0.243088 0.2431339
2.50000 2.409864 2.499899
0.884047 0.884064 0.884055
0.403 2.446759 2.447192 2.441031 0.242976 Failed
2471331 2.470742 2.471031
0.45 0.871693 0.871708 0.871696 0.7432421 0.743240

Figure 8 shows the integration results of y; (¢) and ys(t) using DASPKE for A = 0.35. There
are three discontinuities in the interval.

ExAMPLE 4. The fourth test problem is concerned with current flow in a diode circuit, and
has been previously used by Carver [3] and Barton [6]. There are three state conditions, each
with four relational expressions. This is a typical DAE system with propositional logic state
conditions. For this problem, all of the three algorithms obtain correct results, but DASRT
experiences six false zero crossings including two instances of discontinuity sticking and four
erroneous zero crossings. The new algorithm successfully avoided all the false zero crossings and
implemented correct mode switching. Compared with DASRT, DASPKE usually needed more
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Figure 8. Solution of Example 3 by DASPKE. (y1(2): dashed line, y3(t): solid line.)

steps and residual evaluations, but fewer discontinuity function evaluations because most of the
false zero crossings can be avoided during event detection. Table 3 shows the number of steps
(NStep), residual evaluations {NRes) and discontinuity function evaluations (NGev) needed when
using DASRT, DASPKE, respectively. Figures 9 and 10 show the solution profile produced by
DASPKE (discontinuity functions as algebraic variables).

Table 3. Comparison of computational cost for Example 4.

NStep | NRes | NGeV | NDis! | NError?
DASRT 477 2220 610 2 4
DASPKE? 486 2178 574 0 0
DASPKE4A 471 3163 568 0 0
DASPKE? 465 2834 572 0 0

1NDis: Number of discontinuity sticking
?NError: Number of erronesus zero crossing

3. Discontinuity functions as quadrature variables
4. Discontinuity functions as differential variables

5. Discontinuity functions as algebraic variables

5. CONCLUSIONS

Efficient integration over discontinuities in a DAE model requires accurate detection and lo-
cation of state events and proper handling of problems arising at mode transitions. While many
ODE/DAE solvers such as DASSL and DASPK are reliable and efficient, they are not equipped
for handling discontinuities. Some root-finding algorithms do a good job of detecting discontinu-
ities, but in case of a short-lived switch such as Example 1, discontinuities can be missed unless
the user is sufficiently alert to impose a stepsize limit. There is a tradeoff between efficiency of
integration and effectiveness of detecting a discontinuity.

By appending the discontinuity functions (either as algebraic variables or differential variables)
to the original DAE system, the stepsizes for the integration are adaptively adjusted in part by the
discontinuity functions. Based on the derivative information of discontinuity variables at the two
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Figure 9. Output of i1{t) and ia(t) by DASPKE. (i1(¢): dashed line, iz(¢): solid
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Figure 10. Qutput of v1(t) and vz(t} by DASPKE. (v1(2): dashed line, v3(t): solid
line.)

ends of a step, a decision regarding whether one extra evaluation of the discontinuity functions in
a step is made, which effectively solves the problem of missing the detection of an even number of
zero crossings in a step without limiting the stepsizes of integration. The root-finding algorithm
itself cannot guarantee that the first root is found when a discontinuity function has multiple
zero crossings in a step, but with these strategies combined, the purpose can be achieved.

With special notation for the logical values of the discontinuity functions, a strategy for state
condition checking and mode determination is proposed, which can handle short-lived (< hmin)
state condition changes and effectively avoid false zero crossings at mode transitions caused by
discontinuity sticking and erroneous zero crossings without adjusting the initial stepsize in the
new mode.
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The new software supports flexible representation of state conditions using propositional logic.
For general engineering problems where the number of discontinuity functions is small relative
to the size of the state system, this algorithm can be very efficient. Simulations from various
test problems show very good results for the computation of state variables in DAE systems
containing discontinuities.
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