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Abstract

In spite of a large amount of recent research on the prob-
lem of fluid mixing and its control, there is no consensus
on a proper measure for quantifying mixing. We present
a measure of mixing that is based on the concept of weak
convergence and is capable of probing the “mixedness” at
various scales. The particular problem that this measure,
called the Mix-Norm, resolves is the inability of the scalar
variance (L? variance of the scalar concentration field) to
resolve various stages of contour-level rearrangement by
chaotic maps. The Mix-Norm is a pseudo-metric for the
weak convergence topology on the space of scalar fields.
We demonstrate the utility of the Mix-Norm by showing
how it accurately measures the efficiency of mixing due
to diffusion and discrete dynamical systems.

1 Introduction

Fluid mixing is a very important stage in many engineer-
ing applications. Aref [1] has stuied the use of chaotic
advection to enhance mixing in laminar flows. Books by
Ottino [2] and Wiggins [3] address the problem of mixing
using concepts and methods of dynamical systems the-
ory. In spite of this comprehensive study of mixing from
the point of view of dynamical systems theory, there is
no consensus on how to measure mixing and in particular
how to compare the mixing rates of two different pro-
cesses. Previous approaches to this fundamental prob-
lem of measurement of mixing include using the entropy
of the underlying dynamical system as an objective for
mixing and using the scalar variance of a concentration
field which is being tranported by a dynamical system.
Control of mixing using a maximum entropy approach
for a prototypical mixing problem was studied in [5]. As
the authors themselves point out in [5], the entropy of
a dynamical system (given by a spatial intergral of the
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Lyapunov exponents) is independent of the initial fluid
configuration. Therefore, if we are interested in mixing
only certain portions of the phase space, the maximum
entropy approach is no more applicable. In work by Ash-
win et al. [4], interesting mixing protocols (combination
of diffusion with permutation operations on phase space)
are described. In [4] the L? and L* norms are used to
measure mixing. Any L? norm fails to quantify mixing ac-
curately because it is insensitive to the generation of small
scale structures of the scalar concentration field which is
being transported by a volume-preserving chaotic system.
Mostly, this problem of the LP norm has been ignored
because typically there is diffusion associated with the
mixing protocols as in [4]. In the absence of diffusion,
the LP norm of a scalar concentration being transported
by a volume-preserving system will not decay. We de-
velop a measure, called the Mix-Norm, which is based
on the concept of weak convergence and demonstrate its
relation to the definition of mixing as seen in dynamical
systems literature [6]. The Mix-Norm was motivated by
the mizing variance coefficient proposed in [7]. The for-
mulation of the Mix-Norm overcomes the deficiences of
the two approaches mentioned above. The Mix-Norm de-
pends on the initial fluid configuration and also succeeds
in capturing the mixing efficiency of measure preserving
transformations (in the absence of diffusion) wherein the
standard L? variance fails to do so. In this paper, we
have restricted ourselves to periodic domains for ease of
representation and clarity.

2 Structure of the Mix-Norm

A dynamical system can be considered to be mixing if
every portion of the phase space gets spread uniformly
throughout the phase space under the action of the dy-
namical system. If a scalar density field is being trans-
ported by a volume-preserving dynamical system, it can
be said to be mixing if the mean of the scalar field in all
subsets of the phase space become closer and closer to



the mean of the scalar field over the whole phase space.
These are the guiding lines behind the formulation of the
Mix-Norm.

2.1 The Mix-Norm on the circle

First, we present the mix-norm on the circle and then
generalize it to an n-dimensional torus. We parametrize
the domain by a non-dimensional distance y ranging from
Otol. Let ¢: S* — R and ¢ € L%,. Let
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for all s € (0,1) and p € [0, 1]. d(c, p, 5) is the mean value
of the function ¢ within the interval [p — s/2,p + s/2].

Define

d(c,p,s) =

ses) = ([ e, ) ) g @)

#(c, s) is the root mean square(RMS) of the average val-

ues of ¢ over all subsets [p — s/2,p + s/2]. Then the
Mix-Norm of ¢ is given by
1 3
b(c) = (/ #*(c, s)ds) . (3)
0

The basic idea behind the Mix-Norm is to parametrize all
sub-intervals of S and to take the RMS of the average
values of ¢ over these sub-intervals.

2.2 The Mix-Norm on an n-dimensional
torus
We consider scalar functions ¢ : 7" — R and ¢ € L2.,

where T™ = [0,1]" is an n-dimensional torus. For nota-
tional convenience, we make the following definitions.

For z € ®Y, m(x) = z1T2...TN

S =(0,1)"

For a given s € S and p € T",

Aps) = [p1 —51/2,p1 +51/2] X [p1 — 52/2,p2 + 52/2] X ...
. X [PN — 8n/2,pN + 5N /2]

XAy, 18 the characteristic function on the set Ay, 5.

(4)

Also, in all the discussions, for any two functions f, g €
L%, the inner product is assumed to be

(f.9) = / f@)ew)dy. (5)
U

To define the Mix-Norm let

J
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c(y)dy
(C, XA[p,s])

m(s)
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for all s € S and p € A. d(c,p, s) is the mean value of the
function ¢ within the subset A, ;. Now define

o(c. ) R

p,s]CT™
((d(c, -, 5),d(c, - 5))) 7 -

Just as in the case for the real line, ¢(c, s) is the RMS of
the average values of c over all subsets A, ;). Then the
Mix-Norm of ¢ is given by

(7)

1
20 = | [ #c.ods) - ®)
€s
The following two limits can be easily verified.
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A
lim d(es) = [ cw)dy (10)
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Expressions (9) and (10) are respectively the L? norm
and mean of the scalar field ¢ which are two fundamen-
tal measures associated with any scalar field. Therefore,
¢(c, s) for different values of s € S can be seen as a smooth
transition of measures associated with the scalar field ¢
ranging from the L2 norm to the mean and the Mix-Norm
is the integral of these measures over all possible scales
s€eS.

2.3 The Mix-Norm as an inner product

From the previous sections, one can observe that the Mix-
Norm can be written as a triple integral on the real line
and as a 3n integral on an n-dimensional torus. This
sections shows that the Mix-Norm can be written in a
much more compact form as an inner product. Let the
linear operator Dy : L%, — L%, be defined as follows:

eAf c(y)dy (exa )
[Ducl(p) = == m‘?s[)l (11)
Now ¢(c, s) can be written as:
6(c, 5) = ((Dac, Dac))? = (¢, DiDac))*  (12)



where D} is the adjoint operator of D,. Then the Mix-
Norm ®(c) is given by

®%(c) = /¢(c,s)ds= / (¢, D;Dsc)ds
sesS sES
(13)
=<c, /D:Dsds c> = (¢, Mc)
€s
where
M= /D:Dsds (14)

and which we refer to as the Mix-Operator. Note that
M 1is a symmetric definite operator by construction and
that M depends only on the domain under consideration.
Thus, the square of the Mix-Norm of any function ¢ can
be computed as the inner product of ¢ and Mc. The
formulation of the Mix-Norm as an inner product makes
the computation and any kinds of analysis more efficient.
Also, this quadratic form makes the problem of fluid mix-
ing more tractable as an optimal control problem.

3 Properties of the Mix-Norm

The Mix-Norm is a pseudo-norm on the space of functions
meaning that it satisfies the following properties. For any
ce L.,

1. &(c) > 0,and ¢ =0 = ®(c) = 0.
2. ®(Xc) =| A | ®(c), where A is a scalar constant.
3. @(c1 +e2) < @(cr) + P(ca)-

A pseudo-norm is different from a norm in that a
pseudo-norm can be zero for nonzero functions. In par-
ticular, the mix-norm is zero for a special class of nonzero
functions which have a mean of zero on all sets of nonzero
measure, but have nonzero values on sets of zero measure.
This is exactly the requirement for checking weak conver-
gence and will be discussed in the next sub-section. The
triangular inequality property of the mix-norm is not sur-
prising because clearly each ¢(c, s) is a pseudo-norm and
®(c) is just a summation of these pseudo-norms. The
proof for the triangular inequality property is included in
the Appendix.

3.1 The Mix-Norm and weak convergence

Definition 3.1. A sequence of functions {c,}, ¢p, € L?
is weakly convergent to c € L? if

lim {cn,g) = (c,g) for all g € L*.

n—oo

(15)

Theorem 3.1. A sequence of functions {c,}, ¢, € L?
which is bounded in the L2 norm is weakly convergent to
c € L? if and only if

lim ®(c, —c¢) =0.

n—oo

(16)

Proof. First, assume that {c,} weakly converges to c.
Then limp—o0{cn,g) = (c,g) for any g € L?. In par-
ticular, limy, o0 (cn, XAy,..) = (¢ X4,,.,,) for all s € S and
p € T™. Therefore

<cn -G XA[p,s])

lim d(¢, —¢,p,s) = lim
n—oo n—o0o m(s)
— lim <c”7X-A[p,s]> - <C, XA[p,s]> -0
n—oo m(s)
(17)

forall s € S and p € T™. Therfore lim,_, o ¢(c,—c,s) =0
and lim,,_, o, ®(c, — ¢) = 0.

Now, assume that lim,_,, (¢, — ¢) = 0. Then

lim ¢(c, — ¢, 8) =0.

n—oo

(18)

for all s € S. This follows from the non-negativity and
smoothness of ¢(c, — ¢, s) with respect to s. Therfore
lim,, o d(cn, — ¢,p,8) = 0 for all p € T™ because d(c,, —
¢, p, s) is continuous with respect to p. ie,
n]i_?go(cnaXA[p,s]) = <C7 XA[p,s]>- (19)
Since the set K = {xa,, :s € Sandp € T"} is lin-
early dense in L? and {c,} is bounded, it follows that
lim,, 00 {cn, g) = {c, g) for any g € L?. Thus {c,} weakly
converges to c. O

For example, the series {c,} where ¢, (z) = sin(nnz)
weakly converges to zero. Therefore the function ¢ =
lim,,_, ¢, falls in the nullspace of the Mix-Operator M
described in Section 2.3.

4 Applications of the Mix-Norm

In this section we demonstrate the effectiveness of the
Mix-Norm in the context of mixing protocols generated

This section describes how the mix-norm is useful as pseudo-py diffusion and discrete dynamical systems. An initial

metric for checking weak convergence.

distribution ¢(y, 0) of some passive tracer on a space U is
assumed and the total quantity is normalized so that



/ oy, 0)dy = 1. (20)

U
Let the distribution at time ¢ be c(y,t) > 0. In work
by P. Ashwin et al [4] the L? and L™ norms are used to
measure mixing. Also, they define tg5 is to be the smallest
t > 0 such that

lle(y,t) = 1fla < 0.05 (21)

where a refers to the norm used. Note that tg5 is a func-
tion of the initial distribution, the norm chosen and the
mixing protocol.

4.1 Mixing by diffusion

Here we consider diffusion occuring over a timestep of one
unit with a normalized diffusivity rate D > 0. We assume
the domain to be periodic during one time step, so that
the total quantity of tracer is preserved. The diffusion
equation over one unit time is given by

¢t = Dcy,. (22)
Assume that ¢(y,0) has a Fourier expansion
n=oo .
c(y,0) = Z ane®™my (23)

where a,, = [ c(y,0)e~2""¥dy. The distribution at time
t is given by

n=oo

. 2 2
c(y,t) — E : an627rznye—47r n Dt.

n=—oo

(24)

Thus, one time step of diffusion can be explicitly written
as the operator

(Pais () () = 2 (D / 1 c(m)emdx) .

(25)
A lower bound for tg5 corresponding to the L? norm can
be computed as in [4] to be

ro. = 108(20llc(y, 0) = 1]l2)
5 412D

(26)

Doing the same computation corresponding to the Mix-
Norm we obtain:

®%(c(y,t) - 1)

. 42,2 . 422
— <§ :ane27rznye 47rnDt7M E :ane27rznye 47°n“ Dt >

n#0 n#£0
2 . .
S e—87r Dt <§ :ane27rzny,M § :ane%rzny >
n#0 n+#0

= 6_8”2Dt<1>2(c(y,0) -1).
(27)

Thus a lower bound for tg5 corresponding to the Mix-
Norm can be found as

_ log(20®(c(y,0) — 1))
N 472D )

The changes in the estimates for tg5 obtained using
the Mix-Norm compared to that in (26) can be demon-
strated as follows. Consider initial distributions of the
form ¢(y,0) = ¢, = 1+ sin(2nmy). One can easily show
that the series {c,} weakly converges to the uniform dis-
tribution of 1. In other words, lim, ,,, ®(c, — 1) = 0
whereas ||c, — 1||2 = 1 for all n. According to Equation
28 diffusion will achieve almost perfect mixing in very
less time for very large n whereas the estimate in (26)
does not depend on how large n is. In general, if the ini-
tial distribution has strong high frequency Fourier modes,
then the diffusion process will achieve mixing in very less
time which is reflected by the estimate obtained using the
Mix-Norm.

95 (28)

4.2 Mixing by discrete dynamical systems

We consider discrete dynamical systems and study their
mixing properties using the Mix-Norm. First, we summa-
rize some definitions concerning discrete dynamical sys-
tems and mixing. For a more detailed exposition, one can
refer to [6].

Definition 4.1. Let (X, A, u) be a measure space. If T :
X — X is a nonsingular transformation the unique oper-
ator P : L? — L? defined by (29) is called the Frobenius-
Perron operator corresponding to T.

/ Pe(z)p(de) = / c(z)u(dz), for Ae A (29)
A T-1(A)

The Frobenius-Perron operator P is a linear opera-
tor that expresses how a scalar density field on the do-
main evolves with time corresponding to a mapping 7" on
the domain. For measure-preserving transformations the
Frobenius-Perron operator reduces to (30).



Pc(z) = (T (x)). (30)

Definition 4.2. Let (X, A, pu) be a normalized measure
space and T : X — X be a measure-preserving transfor-
mation. T is called mixing if

lim u(ANT™(B))

n—oo

= p(A)u(B) for all A,B e A (31)
Theorem 4.1. Let A be a normalized periodic domain
and T : A — A a volume-preserving transformation.
Then the following statements are equivalent

1. T is mizing.

2. The sequence of functions {P™c} is weakly conver-
gent to (c,xa) for all c € L*.

3. limy, 0o ®(P"c — {c,x4)) =0 for all c € L?.

Proof. For the proof on the equivalence of statements 1
and 2, the reader can refer to [6]. The equivalence of 2
and 3 follows from Theorem 3.1. O

Statements 1 and 2 help us to classify transformations
as mixing or non-mixing, but don’t give a method for
metrizing mixing or the mixing rate of a transformation.
Statement 3 solves this problem and also makes it possi-
ble to compare the mixing performance of two different
transformations.

4.2.1 Mixing properties of the Standard Map

We consider the standard map T : [0,1] x [0,1] — [0, 1] x
[0,1] in the following form.

z' =z +y + esin(2rz)[modl] (32)
y' =y + esin(2mwx)[modl]

The above map is a diffeomorphism on the 2-torus
and was first introduced by Chirikov [8]. Its behaviour
changes with the value of € and for values of € close to
one, it has been observed to have chaotic properties. Here
we study its mixing properties. In this study, the com-
putational domain is the square [0, 1] x [0, 1] whose sides
are being identified (upper with lower, left with right).We
discretize the computational domain and let the the grid
points be (z;, y;) where z; = idz,y; = jdy fori =0,1,.., N,
and j = 0,1,..,N, and where dz = 1/(N, — 1) and
dy = 1/(Ny, — 1). To approximate the Frobenius-Perron
operator corresponding to this map, for each grid point we
compute T 1(z;,y;) by a Newton iteration. T !(z;,y;)
does not necessarily have to lie on a grid point. We em-
ploy a simple approach of assigning T~ (z;,y;) to the
closest grid point around it. Interpolation schemes can

be used to approximate ¢(T~!(z;,y;)). But, this can in-
troduce artificial diffusion effects which may not be de-
sirable. Therefore, the discrete version of the Frobenius-
Perron operator can be written as

Pe(zi,y;) = c(zir,yjr) (33)

where
i = round(a (T~ (z;,y,))/dz)
3" = round(y(T " (zi,y;))/dy)-

Figure 4.2.1 shows the mixing properties of the Stan-
dard Map when starting with an initial distribution

CO(ny) = {

(34)

—1ify < 0.5

35
lify > 0.5 (35)

Figure 1: Plot showing the variation of the Mix-Norm
with respect to number of iterations of the Standard Map
for different epsilon values. For epsilon(e) = 0, there is no
mixing and as the value of epsilon(¢) increases, the mix-
ing rate increases. These computations were done on a
500 x 500 grid. To compute the Mix-Norm we did not in-
tergrate all they way up to the largest scale, but restricted
ourselves to boxes of size up to 20 grid boxes

5 Conclusions

A multiscale measure for quantifying mixing has been
presented. Its properties as a pseudo-norm induced by
an inner product have been presented. We hope that the
formulation of the Mix-Norm as an inner product makes
the problem of fluid mixing more tractable as an optimal
control problem. The effectiveness of the Mix-Norm in
quantifying accurately the mixing rates due to diffusion
and measure-preserving transformations have been dis-
cussed. Future applications include using it to optimize
mixing in 3-D micromixer flows.



Figure 2: Contour plot of initial density distribution cg

Figure 3: Contour plot of density distribution after 5 it-
erations for e = 0.5

Figure 4: Contour plot of density distribution after 5 it-
erations for e = 1



6 Appendix
6.1 Proof for triangular inequality property of the Mix-Norm
Proof. Let c1,cy € L2.. We need to prove that ®(c; + c2) < ®(c1) + ®(ca). Clearly,
d(cl + C2, D, 5) = d(clapa 8) + d(Cz,p, 8) (36)

Now,

(et + o1, 8) = / d(er + ¢3,p, 5)%dp
A, CT™

= / (d(c1,p, 8) + d(c2,p, ))” dp

A[F,S]CT"

= / I:(d(clapas))2 + (d(CQ,p, S))2 +2(d(61,p, 3)) (d(Cz,p, 3)) dp
A, CT"

= (1, 8) + F(ca,8) + 2 / [d(c1,p, 8)d(cz, p, 8)] dp
App,s) CT™

Applying the Cauchy-Schwartz inequality to above equation, we get

¢*(c1 +c1,8) < 6°(c1,8) + ¢*(c2,8) + 2 / [d(c1,p, )] dp / [d(c2,p, )] dp

Alp,s1 CT™ Alp,s1CT™

= ¢2 (Cla 8) + ¢2(027 S) + 2¢(Cla S)¢(C27 S)

(38)

Then it follows that

B(e1 + a) < Ber) + B (ea) + [ 2600, 9)0(ea, s (39)
seS

Applying the Cauchy-Schwartz inequality once again, we get

®*(c1 4 ¢2) < P*(c1) + *(c2) + 2 (/ ¢2(0173)d‘9) (/ ¢%(ca, 5)d5> (40)
s

€s
= 3%(c1) + D% (c2) + 28 (c1)®(ca) = (®(c1) + B(c2))? (proved)
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