
Algorithms and Software for Stochastic Simulation of

Biochemical Reacting Systems ∗

Hong Li†, Yang Cao‡, Linda R. Petzold§, Daniel T. Gillespie ¶

April 18, 2007

Abstract

Traditional deterministic approaches for simulation of chemically reacting systems fail to

capture the randomness inherent in such systems at scales common in intracellular biochem-

ical processes. In this article we briefly review the state of the art in discrete stochastic and

multiscale algorithms for simulation of biochemical systems and we present the StochKit

software toolkit.

1 Introduction

The time evolution of well stirred chemically reacting systems has traditionally been sim-
ulated by solving a set of coupled ordinary differential equations (ODEs). Although the
deterministic formulation is sufficient in many cases, it fails to capture the inherent stochas-
ticity in many biochemical systems formed by living cells,1–4 in which the small population of
a few critical reactant species can result in discrete and stochastic behavior. The dynamics
of those systems can be simulated accurately using the machinery of Markov process theory,
specifically the stochastic simulation algorithm (SSA) of Gillespie.1,2 SSA, an essentially
exact procedure for generating realizations of the chemical master equation (CME), is in
widespread use for the stochastic simulation of biochemical systems. But for many real bio-
chemical systems, the computational cost of simulation by SSA can be prohibitively high.
This is due to the fact that SSA must simulate every reaction event. When there are large
populations of some chemical species, and/or fast reactions involved in the system, a great
many reaction events must be simulated.

∗This work was supported by the California Institute of Technology under DARPA Award No. F30602-

01-2-0558, by the U. S. Department of Energy under DOE award No. DE-FG03-00ER25430, by the NIH

under awards GM078993 and GM075297, and by the Institute for Collaborative Biotechnologies through

grant DAAD19-03-D-0004 from the U. S. Army Research Office.
†Department of Computer Science, University of California Santa Barbara. CA 93106. email:

hongli@cs.ucsb.edu.
‡Department of Computer Science, Virginia Tech. VA 24061. email: ycao@cs.vt.edu
§Department of Computer Science, University of California Santa Barbara. CA 93106. email: pet-

zold@cs.ucsb.edu.
¶Dan T. Gillespie Consulting, 30504 Cordoba Place. Castaic, CA 91384. email: GillespieDT@mailaps.org

1



It is very important to have a fast SSA implementation. This algorithm is likely to
be a part of any accelerated and multiscale discrete stochastic methodology. A number
of authors have proposed successively more efficient formulations of SSA. The Next Reac-
tion Method (NRM),5 Optimized Direct Method (ODM),6 Sorting Direct Method (SDM),7

fast Kinetic Monte Carlo Method (KMC),8 KMC with minimal searching9 and Logarith-
mic Direct Method (LDM)10 with sparse matrix state update are mathematically equivalent
formulations which offer improved performance over the original SSA. Often SSA is used
to generate ensembles of stochastic realizations from which approximate probability density
functions for species populations can be obtained. Parallel computation has been used to
speed up the calculation of such ensembles.11 Some of our current work and others12 explores
the use of novel computer architectures to speed up SSA simulation. However, there is a
limit to how much SSA can be sped up, given that it must simulate every reaction event in
the system and there are usually a great many reaction events.

Approximate accelerated stochastic methods13–17 have been developed to speed up the
stochastic simulation. The first such method is tau-leaping .13 Tau-leaping advances the
simulation by a pre-selected time τ which can often be chosen large enough to encompass
more than one reaction event. Stiffness (the presence of both fast and slow reactions) is
often an issue in approximate discrete stochastic simulation of chemically reacting systems,
just as it is an important consideration in the deterministic simulation of chemically reacting
systems. To improve the numerical stability for stiff problems, implicit tau-leaping 18 and the
trapezoidal tau-leaping methods19 have been proposed. Another, complementary means of
accelerating discrete stochastic simulation is the use of hybrid methods,14,20 which approx-
imate the fast reactions involving species with large populations via ODEs, and the slow
reactions involving species with small populations via SSA. Although hybrid methods can
be quite effective in solving some problems, they cannot efficiently handle the situation of
a system with fast reactions involving a chemical species for which the population is small.
The slow-scale SSA (ssSSA)15 was developed to deal with this type of situation. The ssSSA
makes use of a stochastic partial equilibrium approximation to advance the system at the
scale of the slow reactions.

There is a great need for reliable and efficient software that makes these state of the art
simulation tools available to the systems biology community. To this end, we have developed
StochKit, a software toolkit for discrete stochastic and multiscale simulation of chemically
reacting systems. The aim of StochKit is to make reliable and efficient stochastic and
multiscale simulation accessible to practicing biologists and chemists, while remaining open
to extension by accommodating new algorithms and implementations.

In this paper we review the recent work on algorithms for discrete stochastic and multiscale
simulation of biochemical reaction networks. We introduce StochKit and briefly describe
some early success stories with StochKit.

2 Discrete Stochastic Simulation Methods

Our concern here is with a system of molecules of N chemical species {S1, . . . , SN} which
interact through M chemical reactions channels {R1, . . . , RM}. We assume the system to
be “well-stirred,” and confined to some constant volume Ω at a constant temperature. The

2



state of the system at time t is specified by the vector X(t) ≡ (X1(t), . . . , XN(t)), where
Xi(t) is the number of Si molecules in the system at time t.

Each reaction channel Rj is assumed to be characterized mathematically by two quan-
tities. The first is its state-change vector ν j ≡ (ν1j , . . . , νNj), where νij is the change in
the Si molecular population caused by one Rj reaction; i.e., Rj causes the system to jump,
essentially instantaneously, from its present state x to state x+ν j. The other characterizing
quantity for Rj is its propensity function aj. This is defined so that aj(x) dt is the proba-
bility, given X(t) = x, that one Rj reaction will occur somewhere inside the system in the
next infinitesimal time interval [t, t + dt). For a reaction of the form S1 → product(s), aj(x)
typically has the form cjx1, where cj is some constant. For a reaction of the form S1 +S2 →
product(s), aj(x) typically has the form cjx1x2, or cj

1
2
x1(x1 − 1) if S2 = S1, where again cj

is some constant.

2.1 The SSA and its Various Formulations

The basic procedure for generating trajectories or “realizations” of X(t) is called the stochas-
tic simulation algorithm (SSA).1,2 The theoretical basis for the SSA is the function p(τ, j |x, t),
which is defined so that p(τ, j |x, t) dτ is the probability, given X(t) = x, that the next re-
action in the system will occur in the infinitesimal time interval [t + τ, t + τ + dτ), and
will be an Rj reaction. This function is thus the joint probability density function of the
two random variables “time to the next reaction” (τ) and “index of the next reaction” (j),
given that the system is currently in state x. It is not hard to show, by applying the laws of
probability, that1

p(τ, j |x, t) = aj(x) e−a0(x) τ = a0(x) e−a0(x) τ ×
aj(x)

a0(x)
, (1)

where a0(x) ≡
∑M

k=1 ak(x). The last form here implies that τ is an exponential random
variable with mean 1/a0(x), and j is a statistically independent integer random variable
with point probabilities aj(x)/a0(x).

There are several statistically equivalent formualtions of SSA for generating samples of τ

and j according to these distributions. Perhaps the simplest is the so-called direct method
(DM):1,2 We draw two random numbers r1 and r2 from the uniform distribution in the
unit-interval and take

τ =
1

a0(x)
ln

(

1

r1

)

, (2a)

j = the smallest integer satisfying

j
∑

k=1

ak(x) > r2 a0(x). (2b)

Therefore, for the system in state x at time t, we can advance the system to the next
reaction by computing τ and j according to these formulas and then replacing t← t+ τ and
x← x + νj.

There are several other exact algorithms for moving the system forward in time to the
next reaction according to the joint density function (1). The first reaction method (FRM)1,2

generates a putative time τk = a−1
k (x) ln (1/rk) to the next Rk event for k = 1, . . . , M , and

3



then chooses τ to be the smallest of the τk’s, and j the index of the smallest. This method is
usually slower than the DM because it requires Munit-interval uniform random numbers rk.
Execution time is in fact the main limitation of the SSA, because generating every reaction
event one at a time can be very time-consuming if, as is usually the case, an enormous
number of reaction events occurs during the times of interest. But since most accelerated
“multiscale” or “hybrid” methods use the SSA as a core component, it is important to make
the SSA as efficient as possible.

The next reaction method (NRM)5 is a heavily modified version of the FRM that in some
cases is more efficient than the DM. It essentially saves the putative next firing times of
all reaction channels in an indexed binary tree priority queue, and it uses a dependency
graph to determine which propensities need to be updated after each reaction. However, the
maintenance overhead for these data structures limits the benefits of the FRM to very large,
very loosely coupled systems. The optimized direct method (ODM)6 increases the efficiency
of the reaction-selection step (2b), a key bottleneck in the DM, by pre-ordering the reactions
so that those with larger propensity functions have smaller index values. The sorting direct
method (SDM)7 carries this strategy one step further by dynamically re-ordering the reactions
via a bubble-up sorting method, in which each time a reaction fires it swaps indices with
the next lower-indexed reaction. Formally, the computation times of both the ODM and the
SDM are O(M).

SSA may be viewed as a special kind of Kinetic Monte Carlo algorithm which is applied to
well-mixed chemically reacting systems. Since SSA is always applied to well-mixed chemically
reacting systems, it has been possible to use the structure of these problems to put it on a
solid theoretical foundation. A fast algorithm for KMC has been proposed9 which fixes the
search depth to be O(log M) by reusing the intermediate data during the calculation of a0.
This algorithm is independent of the order of reactions. Further efficiency can be achieved
in the implementation by using sparse matrix techniques in the system state update stage.10

2.2 Tau-leaping and Beyond

Significant speedups in the SSA will inevitably involve approximations of one kind or another.
One prominent approximate acceleration procedure is the tau-leaping simulation method,13

which also provides the theoretical connection between the SSA and the deterministic ODEs
of traditional chemical kinetics.21 The basic idea of tau-leaping is to advance the system by a
pre-selected time τ during which many reactions occur. To do this accurately, we must choose
τ small enough that no propensity function changes “appreciably” during τ . To the extent
that this leap condition is satisfied, then given the system in state x at time t, the number
of times that reaction Rj will fire in [t, t + τ) will be approximately Pj (aj(x)τ), the Poisson
random variable with mean (and variance) aj(x)τ . This leads to the basic (approximate)
update formula for tau-leaping:

X(t + τ)
.
= x +

M
∑

j=1

Pj (aj(x)τ) νj. (3)

Practical considerations cause the actual implementation of tau-leaping to be more compli-
cated than simply substituting into formula (3) the current state x and generating M Poisson

4



random numbers with the indicated means. First is the problem of choosing the leap time
τ . The latest recipe for doing this22 efficiently estimates the largest τ for which the expected
fractional change in every propensity function will be bounded by a user-specified amount ε

(typically ε = 0.04). This is tricky to do since the change induced in any propensity function
during a leap by τ will be a random variable, so the estimation procedure needs to take
account of not only the mean of that change but also the fluctuations in that change about
its mean. Second is the problem of ensuring that no reactant population be driven negative
in a leap. This problem was originally attributed to the unbounded character of the Poisson
random variable; however it was subsequently found to be more often a consequence of two
or more reaction channels independently consuming the same reactant. One resolution of
this problem23 is to classify as “critical” all reactions that are within a user-specified number
nc firings of exhausting some reactant, and then to allow no more than one firing of a critical
reaction during a leap (typically nc = 10). This procedure23 has the additional advantage
that, as all reactions become critical, or equivalently as nc → ∞, it segues smoothly to the
exact SSA. This is useful since (3) as it stands does not segue to the SSA in a computationally
efficient way.

The foregoing “explicit” tau-leaping procedure has been shown to work well provided the
time-scales of all the reactions are not too different. But it will seem very slow when applied
to systems that evolve on widely separated timescales, because the leap condition generally
restricts τ to the smallest (fastest) timescale. Much work has been devoted recently to
finding approximate workarounds for such systems. For overtly “stiff” systems – systems for
which the fastest evolving modes are stable – a variety of methods has been proposed. The
implicit tau-leaping method18 is a generalization of the implicit Euler method for handling
stiff ordinary differential equations. It basically replaces (3) with

X(t + τ)
.
= x +

M
∑

j=1

[Pj (aj(x)τ )− aj(x)τ + aj(X(t + τ))τ ]νj. (4)

This formula must be solved implicitly for the state at time t + τ ; usually this is done
numerically using Newton’s method. A slight modification of (4) will keep the state of the
system on the integer lattice. Implicit tau-leaping avoids the stability limitations of explicit
tau-leaping, and thus allows much larger values of τ to be used. Its main drawback is that
it overdamps the natural fluctuations of the fast species, and requires that a strategy called
“down-shifting” be applied to recover those fast species fluctuations whenever required. The
trapezoidal tau-leaping method 19 puts a factor of 1/2 in front of the last two terms in brackets
in (4). It has been shown to improve simulation accuracy for some systems. The most
recent improvement in tau-leaping is the adaptive explicit-implicit tau-leaping procedure,24

which automatically identifies when stiffness is present and dynamically chooses between the
explicit and implicit tau-leaping schemes.

Another approach to handling stiff systems involves a stochastic generalization of the
quasi-steady state and partial equilibrium methods of deterministic chemical kinetics.14–16,20,25–31

The theoretical basis for these methods is captured most comprehensively by the slow-scale
SSA15,27,31 and its practical implementation as the multiscale SSA.16 The slow-scale SSA is
a systematic procedure for partitioning the system into fast and slow reactions and species,
and then simulating only the slow reactions, using specially modified propensity functions.

5



StochKit

SBML Model Plot

Input Files

for

StochKit

Output Data

SBML &

StochKit

Converter

Data

Analyzer

Figure 1: Simulation Process of StochKit

Implementing this procedure requires one to estimate, either theoretically or numerically,
certain very specific features of the process consisting of the fast species undergoing only the
fast reactions – the so-called the “virtual fast process”. When this can be done with suffi-
cient accuracy, enormous speedups can be achieved for very stiff systems without appreciable
loss of accuracy. The important Michaelis-Menten enzyme-substrate reaction typically falls
within the provenance of the slow-scale SSA.

3 StochKit– Stochastic Simulation Toolkit

3.1 What is StochKit

StochKit is an efficient, extensible stochastic simulation toolkit developed in C++ that
aims to make state of the art stochastic simulation algorithms accessible to biologists and
chemists, while remaining open to extension via new stochastic and multiscale algorithms.
StochKit consists of a suite of software for stochastic simulation. The StochKit core
implements the simulation algorithms. Additional tools are provided for the convenience of
the simulation and analysis. A typical simulation process of StochKit is shown in Figure
3.1

The intended audience for StochKit can be divided into two distinct groups: those
doing research on and development of stochastic simulation methods, and those seeking to
employ such methods to further their biological or chemical research. Thus the package is
designed to be both simple to use and easy to extend. StochKit is freely available for
download at www.engr.ucsb.edu/∼cse.

6



3.2 The Core Package of StochKit

The StochKit core implements state of the art stochastic simulation algorithms through a
unified interface. These algorithms include Gillespie’s SSA algorithm,1,2 the optimized SSA
algorithm,6 tau-leaping methods (explicit tau-leaping,13 implicit tau-leaping18 and trape-
zoidal tau-leaping19 with fixed stepsize, and adaptive stepsize, nonnegativity-preserving ex-
plicit tau-leaping method22,23), slow scale SSA15 and multiscale SSA16 methods. These al-
gorithms were implemented as modules. Users who are not experts in stochastic simulation
can simply use the default option (1 for SSA and 0 for adaptive explicit tau-leaping method)
to let StochKit automatically select the simulation algorithm and the corresponding step-
size. Advanced users can select different options for better performance or accuracy. Those
developing new algorithms (or simply refining existing ones) need only supply a new module
that captures their particular innovation (i.e. stepsize selection, single step execution, data
management, etc.). Basic matrix and vector operations are provided in the Math library of
StochKit, which facilitates the development of new modules. Examples are provided to
explain how to use and extend these algorithms (see11). The capacity to run an ensemble of
stochastic simulations is provided.

Besides the convenience of usage and extension, special attention has been paid to the
accuracy of simulation results by StochKit. An essential concern is the pseudorandom
number generator. High quality pseudorandom number generation is the cornerstone of any
stochastic simulation system. In fact, statistical results can only be relied upon if the in-
dependence of the samples can be guaranteed. Thus, a high quality pseudorandom number
generator is crucial for StochKit. The standard library routines rand() from C could in
principle be used for a uniform random number generator in our simulations. However, fa-
voring speed over quality, rand() usually produces a short random sequence period which
leads to a realistic possibility of random sequence repetition for simulations that require huge
amounts of random numbers. Thus StochKit uses the Scalable Parallel Random Number
Generators Library (SPRNG),32,33 which provides multiple high-quality pseudorandom uni-
form number generators. In addition, SPRNG provides a facility for generating uncorrelated
random numbers in parallel. Non-uniform distributions are generated by ranlib.c,34 which
provides generators for a wide variety of distributions. Nevertheless, we adapted ranlib.c
to use SPRNG’s linear congruential generator as its uniform generator, to further minimize
the probability of sequence repetition. A simple C++ wrapper was provided for the relevant
ranlib.c routines to improve user-friendliness.

3.3 Useful Tools

In addition to the core simulation package, StochKit provides three useful tools to support
stochastic simulation and analysis. These tools include a simple converter to translate an
SBML model file to the input files required by StochKit, a data analyzer to calculate and
compare the statistical information from simulation results, and a convenient MPI interface
which enables the Monte Carlo simulation ensemble to run on a parallel cluster.

SBML2StochKit Converter SBML (System Biology Markup Language)35 is a computer-
readable format for representing models of biochemical reaction networks. Many biochem-
ical models have been represented with SBML files. For the convenience of SBML users,

7



0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

9
x 10

−3

 X Value

B
in

 P
ro

ba
bi

lit
y

Difference Area = 0.292400 (50 bins)

 

 

Histogram for
SSA ensemble

Histogram for
tau−leaping
ensemble

Figure 2: A histogram distance plot for the Schlögl model.37,38 This plot is based on 10, 000
samples of the state variable generated from the SSA and the explicit tau-leaping method
with tau = 0.4.

StochKit provides this tool to convert an SBML35 file to the input files required by
StochKit. With this converter, users can conveniently construct their problem files us-
ing a separate SBML model builder, make the conversion and run the simulation using
StochKit. The current version of StochKit supplies only a command-line implementa-
tion for the translation. A more user-friendly GUI is under development.

DataAnalyzer For stochastic modeling, it is important to collect the statistical infor-
mation from an ensemble of many independent simulations. The DataAnalyzer is a simple
Matlab package to generate and plot statistical information from an ensemble. Moreover,
the DataAnalyzer provides functions to evaluate the distribution differences36 between mul-
tiple ensembles. For example, the accuracy of different algorithms with different parameters
can be measured by calculating the distribution distance36 between the probability density
functions (PDFs) generated via the ensemble from the simulation and the corresponding
PDFs from the experimental data, or from an ensemble of an “exact” simulation such as
SSA. Figure 2 shows a plot generated by DataAnalyzer, which gives the histogram distance
between ensembles of the state variable generated from the SSA and the explicit tau-leaping
method with fixed tau value τ = 0.4 for the Schlögl model.37,38 1

MPI Parallel Toolbox In many applications, one has to run a large number of stochastic
realizations to collect the ensemble and study the statistics. This task is naturally suited to
parallel computation. StochKit provides an MPI toolbox for running many simulations
on multiple processors using MPI protocol. We recommend using SPRNG to generate the
random numbers since it provides better performance and accuracy, which is particularly

1The Schlögl model is a famous chemical reaction system that for certain parameters exhibits bistable

behavior in the state variable. Details are available in the references.37, 38

8



important in parallel random number generation on a parallel machine.

4 Success Stories

Although the development of StochKit is still in its early stages, there are already around
100 StochKit users worldwide, including model developers who use StochKit to run
stochastic simulation and algorithm developers who use and modify StochKit to conduct
research on stochastic simulation algorithms. Success stories come from both sides.

Most of the initial success stories come from the side of algorithm development. StochKit

provides a simulation framework and a unified interface to help stochastic simulation algo-
rithm research. The modular feature of this package makes the algorithm extension very
convenient. For example, if a new stepsize selection formula or even a new simulation for-
mula is to be developed, one only needs to replace the corresponding module in StochKit

with the newly developed one and make full use of other modules that are already in the
package to generate the simulation and make the comparison. In this way, we have success-
fully developed the adaptive tau-leaping22,23 algorithm using StochKit. The convergence39

and stability40 of tau-leaping methods have also been studied with the help from StochKit.
The convenience of extension and the ability to use parallel computation to generate a large
number of independent simulations makes the research cycle dramatically shorter. Besides
our own algorithm development, success stories also come from other research groups. Gu-
nawan et al41 has used StochKit to generate ensembles with different parameters and
conducted the parametric sensitivity analysis. Kim et al42 has used StochKit to speed
up their research on the spectral method for sensitivity analysis. Munsky and Khammash43

have developed a numerical algorithm to approximately solve the chemical master equation
by comparing ensemble data generated from StochKit.

On the other side, model developers have made use of this powerful simulation and analysis
package to speed up their model development. The most successful application is in the model
development of the gene regulatory networks in the heat-shock response (HSR) of E. Coli.44,45

This model exhibits a multiscale and stochastic nature, which makes the system very stiff.
By using multiscale SSA16 in StochKit, the numerical simulation of the HSR model is
100 times faster than the direct SSA. The time savings in the numerical simulation helped
shorten the total time of model development. Another ongoing example is the stochastic cell
cycle model of budding yeast46 by Tyson’s research group. They have successfully combined
the simulation power of StochKit with the convenient GUI from their model development
tool JigCell.47 With the help of StochKit they have been able to model, simulate and
compare the statistics given by the model and the experimental data.48

5 Acknowledgement

We would like to thank Andrew Hall, Sotiria Lampoudi and the rest of the StochKit team
for their contributions to the development of the StochKit package.

9



References

[1] D.T. Gillespie. A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical reactions. J. Comp. Phys., 22:403–434, 1976.

[2] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81:2340–2361, 1977.

[3] H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proc. Natl.
Acad. Sci. USA, 94:814–819, 1997.

[4] A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage λ-infected E. Coli cells. Genetics, 149:1633–1648, Aug
1998.

[5] J. Bruck M. Gibson. Efficient exact stochastic simulation of chemical systems with
many species and many channels. J. Phys. Chem., 105:1876–1889, 2000.

[6] H. Li Y. Cao and L. Petzold. Efficient formulation of the stochastic simulation algorithm
for chemically reacting systems. J. Phys. Chem., 121(9):4059–4067, 2004.

[7] J. M. McColluma, G. D. Peterson, C. D. Coxc, M. L. Simpson and N. F. Samatova.
The sorting direct method for stochastic simulation of biochemical systems with varying
reaction execution behavior. J. Comput. Biol. Chem., 30:39–49, Feb. 2005.

[8] I. Beichl J. Blue and F. Sullivan. Faster Monte Carlo simulations. Physical Rev. E,
51:867–868, 1995.

[9] T. P. Schulze. Kinetic Monte Carlo simulations with minimal searching. Physical Review
E, 65(3):036704, 2002.

[10] H. Li and L. Petzold. Logarithmic direct method for discrete stochastic simulation
of chemically reacting systems. Technical report, Department of Computer Science,
University of California, Santa Barbara, 2006. http://www.engr.ucsb.edu/∼cse.

[11] StochKit Team. User’s guide for stochkit. http://www.engr.ucsb.edu/∼cse.

[12] M. Yoshimi, Y. Osana, Y. lwaoka, A. Funahashi, N-Hiroi, Y. Shibata, N. lwanaga,
H. Kitano and H. Amano. The design of scalable stochastic biochemical simulator
on FPGA. In Proc. of I. C. on Field Programmable Technologies (FPT2005), pages
139–140, 2005.

[13] D.T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys., 115(4):1716–1733, 2001.

[14] C. Rao and A. Arkin. Stochastic chemical kinetics and the quasi steady-state assump-
tion: application to the Gillespie algorithm. J. Chem. Phys., 118:4999–5010, 2003.

[15] D. Gillespie Y. Cao and L. Petzold. The slow-scale stochastic simulation algorithm. J.
Chem. Phys., 122:014116, 2005.

10



[16] D. Gillespie Y. Cao and L. Petzold. Multiscale stochastic simulation algorithm with
stochastic partial equilibrium assumption for chemically reacting systems. J. Comp.
Phys., 206(2):395–411, 2005.

[17] M. Frankowicz, M. Moreau, P.P. Szczȩsny, J. Tóth, and L. Vicente. Fast variables
elimination in stochastic kinetics. J. Phys. Chem., 97:1891–1895, 1993.

[18] M. Rathinam, Y. Cao, L.R. Petzold, and D.T. Gillespie. Stiffness in stochastic chemi-
cally reacting systems: The implicit tau-leaping method. Journal of Chemical Physics,
2003.

[19] Y. Cao and L. Petzold. Trapezoidal tau-leaping formula for the stochastic simulation of
biochemical systems. In Proceedings of Foundations of Systems Biology in Engineering,
pages 149–152, FOSBE 2005.

[20] E.L. Haseltine and J.B. Rawlings. Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics. J. Chem. Phys., 117(15):6959–6969, 2002.

[21] D.T. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113:297–306, 2000.

[22] D. Gillespie Y. Cao and L. Petzold. Efficient stepsize selection for the tau-leaping
method. J. Chem. Phys., 124:044109, 2006.

[23] D. Gillespie Y. Cao and L. Petzold. Avoiding negative populations in explicit tau
leaping. J. Chem. Phys., 123:054104–054112, 2005.

[24] D. Gillespie Y. Cao and L. Petzold. The adaptive explicit-implicit tau-leaping method
with automatic tau selection. submitted to J. Chem. Phys., 2006.

[25] J. Goutsias. Quasiequilibrium approximation of fast reaction kinetics in stochastic
biochemical systems. J. Chem. Phys., 122(18):184102, 2005.

[26] A. Samant and D. G. Vlachos. Overcoming stiffness in stochastic simulation stemming
from partial equilibrium: A multiscale Monte Carlo algorithm. J. Chem. Phys., 123,
2005.

[27] D. T. Gillespie Y. Cao and L. R. Petzold. Accelerated stochastic simulation of the stiff
enzyme-substrate reaction. J. Chem. Phys., 123, 2005.

[28] E. L. Haseltine and J. B. Rawlings. On the origins of approximations for stochastic
chemical kinetics. J. Chem. Phys., 123, 2005.

[29] D. Liu W. E and E. Vanden-Eijnden. Nested stochastic simulation algorithm for chem-
ical kinetic systems with disparate rates. J. Chem. Phys., 123, 2005.

[30] Y. Kaznessis H. Salis. An equation-free probabilistic steady-state approximation: dy-
namic application to the stochastic simulation of biochemical reaction networks. J.
Chem. Phys., 123(21):214106, 2005.

11



[31] Y. Cao D. Gillespie, L. Petzold. Comment on nested stochastic simulation algorithm
for chemical kinetic systems with disparate rates[J. Chem. Phys. 123, 194107 (2005)].
J. Chem. Phys., 126:137101, 2007.

[32] M. Mascagni. SPRNG: A scalable library for pseudorandom number generation. In Pro-
ceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, Texas, 1999.

[33] M. Mascagni and A. Srinivasan. SPRNG: A scalable library for pseudorandom number
generation. In ACM Transactions on Mathematical Software, volume 26, pages 436–461,
2000.

[34] B.W. Brown, J. Lovato, and K. Russell. RANLIB.C Library of C Routines for Random
Number Generation. M.D. Anderson Cancer Center, The University of Texas, 1991.

[35] M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J. C. Doyle, and H. Kitano. The sys-
tems biology markup Language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[36] Y. Cao and L. Petzold. Accuracy limitations and the measurement of errors in the
stochastic simulation of chemically reacting systems. J. Comput. Phys., 212:6–24, 2006.

[37] F. Schlögl. On thermodynamics near a steady state. Zeitschirft fur Physik, 248:446–58,
1971.

[38] D. Gillespie. Markov Processes: An Introduction for Physical Scientists. Academic
Press, 1992.

[39] Y. Cao M. Rathinam, L. Petzold and D. Gillespie. Consistency and stability of tau
leaping schemes for chemical reaction systems. In SIAM Multiscale Modeling, volume 4,
pages 867–895, 2005.

[40] M. Rathinam Y. Cao, L. Petzold and D. Gillespie. The numerical stability of leaping
methods for stochastic simulation of chemically reacting systems. J. Chem. Phys.,
121(24):12169–12178, 2004.

[41] L. Petzold R. Gunawan, Y. Cao and F. J. Doyle III*. Sensitivity analysis of discrete
stochastic systems. J. Biophys., 88:2530–2540, 2005.

[42] B. J. Debusschere D. Kim and H. N. Najm. Spectral methods for parametric sensitivity
in stochastic dynamical systems. J. Biophys., 92:379–393, 2007.

[43] M. Khammash B. Munsky. The finite state projection algorithm for the solution of the
chemical master equation. J. Chem. Phys., 124(4):044104, 2006.

[44] H. Kurata, H. El-Samad, T. Yi, M. Khammash and J. Doyle. Feedback regulation of the
heat shock response in E. Coli. In Proceedings of the 40th IEEE conference on Decision
and Control, volume 1, pages 837–842, 2001.

12



[45] M. Khammash H. Kurata and J. Doyle. Stochastic analysis of the heat shock response
in E. Coli. In 3rd International Conference on Systems Biology, 2002.

[46] J.J. Tyson and B. Novak. Regulation of the eukaryotic cell cycle: Molecular antagonism,
hysteresis, and irreversible transitions. J. Theoretical Biology, 2001.

[47] Vass, M., N Allen, C.A. Shaffer, N. Ramakrishnan, L.T. Watson, and J.J. Tyson. The
jigcell model builder and run manager. Bioinformatics, 18:3680–3681, 2004.

[48] J.J. Tyson. Personal communication.

13


