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Abstract 

Petzold, L.R. and F.A. Potra, ODAE methods for the numerical solution of Euler-Lagrange equations, 
Applied Numerical Mathematics 10 (1992) 397-413. 

In a series of recent papers [5-71 it is shown that many of the numerical methods for solving Euler-Lagrange 
equations can be viewed as generalized solutions of an overdetermined differential-algebraic equation 
(ODAE). For a model with linear constraints, it is shown that if the ODAE is solved by a certain iteration 
technique in conjunction with BDF discretization, then the corresponding numerical solution coincides with 
the numerical solution obtained by applying the same BDF scheme to a state-space form of the original 
Euler-Lagrange equation. In addition, it is shown that using this iteration to solve the ODAE is equivalent to 
numerically solving a DAE which arises from extendmg the mechanical system by adding derivatives of the 
constraints and additional Lagrange multipliers to ensure that those constraints are satisfied. In this paper we 
examine these equivalences to determine to what extent they continue to hold for problems which are more 
general than the linear model. 

Keywords. Euler-Lagrange equations; differential-algebraic equations; overdetermined differential-algebraic 
equations; multibody systems. 

1. Introduction 

In the last years we have witnessed a renewed interest in the field of kinematics and 
dynamics of multibody systems. Several methods for the automatic generation of the equations 
of motion of very complex systems have been developed. Some of them are already integrated 
in general-purpose computer codes (see e.g. [ll]). Also real-time simulators for mechanical 
systems have recently been built [4]. These developments have increased the need for fast and 
reliable numerical methods for solving the equations of motion of constrained mechanical 
systems. These equations, often called the Euler-Lagrange equations, are a classical example 
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of mixed differential-algebraic equations (DAEs). A systematic study of numerical algorithms 
for solving DAEs has begun only in the 1980s (see 131). 

In a series of recent papers [S-7] it is shown that many of the numerical methods for solving 
Euler-Lagrange equations cm be viewed as generalized solutions of an overdetermined 
differential-algebraic equation (ODAE). For a special linear model, it is shown that if the 
ODAE is solved by a special oblique projection technique in conjunction with Newton’s 
method and BDF discretization, then the corresponding numerical solution coincides with the 
numerical solution obtained by applying the same BDF scheme to a certain state-space form of 
the original Euler-Lagrange equation. This motivates the name of ssf-iteration given to the 
numtxical method. In addition, for the linear model it is shown that using the ssf-iteration to 
solve the ODAE is equivalent to numerically solving a DAE which arises from extending the 
mechanical system by adding derivatives of the constraints and additional Lagrange multipliers 
to ensure that those constraints are satisfied [8,9]. 

The objective of this paper is to examine the equivalences shown in [5-71 to determine to 
what extent they continue to hold for problems which are more general than the linear model. 
In Section 2 we introduce the equations of motion of constrained multibody systems. In Section 
3 we review some terminology on the solution of ODAE systems, and explore extended DAE 
systems which have been proposed in [5--71, and a new formulation which has also been 
considered, in a rnore general framework, in [l]. In Section 4 we develop some basic results for 
state-space forms. Finally, in Section 5 we examine the relationship between numerical 
methods based on solving the state-space form, the ODAE, the extended DAEs, and methods 
based on local parameterization, and determine the extent to which they are equivalent. In 
particular, we show that the tangent plane parameterization methods introduced in [16,17] are 
equivalent to the method of projected invariants for a certain projection, which was suggested 
recently in [l] to overcome numerical stability problems associated with the extended DAEs in 
15-71. These two methods are in turn equivalent to a certain solution of the ODAE. 

Before proceeding further, it is useful to make some notational conventions. We denote by 
UP the n-dimensional Euclidian space. An element x E R” is a column vector of the form 
x = (x1, xt, l . l , x,,JTa Let y = ( yl, y,, . . . , Y,,~)~ be an element of IQ’? Then we define the 
augmented vector 

(X, Y) = (XT, JqT= (x, ,..., x,,, yl,..*,y,JTE R~l+m. 

11’ fXRn+‘n + [Wk is a differentiable mapping with components Us : W +-In + R, j = 1,. . . , k, i.e. 

4x7 Y) = (q(x9 Y),.*.,cr,(~, Y,)‘, 

then the Jacobian matrix of CT with respect to x is defined as 



L. R. Petzold, F.A. Potra / Numerical solution of Euler-Lagrange equations 399 

The Jacobian matrix DYa( X, y) is defined in a similar way. For simplicity, we write Da(x, y) 
to denote D(x, y)a( X, y), the Jacobian matrix with respect to all variables. 

2. Equations of motion of constrained multibody systems 

The equations of motion of constrained multibody systems can be written in the following 
general form 

M(t, p)ii + G(t,p)TA =f(t, P, li), (2.la) 

g(t, P) = 0. (2.lb) 

Here the position vector p E R ‘p contains the generalized coordinates chosen to describe the 
multibody system. The number n, of these coordinates as well as their physical interpretation 
depends on the particular formulation. Correspondingly, M( t, p) is a symmetric n, X n, matrix 
called the generalized mass matrix, A E R! no is the vector of Lagrange multipliers or constraint 
forces coupled to the system, f( t, p, fi) is the vector of generalized external forces, g : IF! X lFt"p 
--) R"A is the mapping defining the kinematic (position-level) constraints, and G(t, p) = 
D,,g( t, p) is the Jacobian matrix of g( t, p) with respect to p. 

For a given constrained mechanical system there arl: many equations of the form (2.1) that 
accurately describe the motion of the system. The dimension, physical interpretation, and the 
structure of the quantities entering (2.1) may vary significantly from one formulation to 
another. For example with some formulations, like the Cartesian formulation (see [lo]), the 
mass matrix M( t, p) will be rather sparse, which is not the case with most other formulations. 

By differentiating twice the kinematic constraints (2.lb) we obtain 

G(t, p)li +Qg(t,p) =O, 

G(t, p)ii +z(t, P, d) = 0, 

(2 2) . 

(2 3) . 

where 

z(t, p, jj) = (D,,G(t, p)b)b + 2(QG(t, ~))ri +D,,g(t, p)* 

It is known that, if 

Rank G(t, p) =nh, (2.4a) 

aTM(t, p)a > 0, Va E Ker G(t, p), (2.4b) 

then the Euler-Lagrange equation (2.1) has a unique maximally extended solution for any 
consistent initial values p(O), b(O), A(0) (see [lo]). Clearly any such solution will also satisfy the 
constraints (2.2) and (2.3). The assumption (2.4) implies that the matrix 

M(t, P) G(t, d’ 
G(t, P) 0 

(2 5) . 
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is nonsingular. Therefore the linear system in jj and A formed by (2.la) and (2.3) has a unique 
solution 

ii = r7(t, P, ii), (2 6) . 

A = l(t, P9 ri)* (2 71 . 

For any po, fro E R”I~, the ordinary differential equation (ODE) (2.6) has a unique solution 
satisfying p(0) =po and b(O) =&. If, in addition, the initial values pO and fiO are such that the 
constraints (2.lb) and (2.2) are satisfied for t = 0, p =po, and fi =Ijo, then this unique solution, 
together with A given by (2.7) form a solution of the Euler-Lagrange equations (2.1). 
Therefore, theoretically, the problem of solving the Euler-Lagrange equations (2.1) is reduced 
to the problem of solving the ODE (2.6) with consistent initial values. However it has been 
observed that the numerical solution obtained by applying standard ODE solvers to (2.6) no 
longer satisfies the kinematic constraints (2.lb). This drift off the constrained manifold is not 
admissible in most practical applications. The challenge is therefore to construct reliable 
methods for obtaining an approximate solution of the Euler-Lagrange equations which satisfies 
the kinematic constraints within any given tolerance. Some such methods will be discussed in 
the next section. 

3. DAEs and ODAEs 

The Euler-Lagrange equation; discussed above are second-order equations, It is convenient 
to rewrite them as first-order by introducing the variable v =b. Equations (2.1), (2.2), and (2.3) 
become 

fi-v=o, (3.la) 

M(t, p)fi + G(t, P)~A -f(t, p, u) = 0, (3.lb) 

G(t, p)ti +z(t, p, u) = 0, (3.lc) 

G(b P)U +Q(t, P) = 0, (3.ld) 

g(t, P) = 0. (3.le) 

Let us consider the vector x = (p, v, A) of dimension n, = 2n, + n, and let us denote by 
F(t, X, i) the vector defined by the left-hand sides of (3.la), (3.lb), and (3.le). Then the 
Euler-Lagrange equations can be written as 

qt, x, k) = 0. (3 2) . 

Any equation of the form (3.2) with F a given mapping of 08 x [Wn, x [Wnx into Rnx is called a 

mixed differential-algebraic equation (DAE). On the other hand the system (3.1) can be written 
in the form 

P(t, x, i) =o, 

where !P is a mapping of R x UV x iWnx into [WY with y = n, + 2n,. Any equation of 
(3.3) with !P : lR2nt+1 -P [WY, y > n,, is called an overdetermined differential-algebraic 
(ODAE). The latter terminology was introduced in [S-7]. 

(3 3) . 
the form 
equation 
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In our case (3.3) is obtained from (3.2) by differentiating twice equation (Xle). In general, we 
say that the ODAE (3.3) is generated by the DAE (3.2) if all equations of (3.2) are contained in 
(3.3) and the other equations of (3.3) are obtained by differentiating some of the equations of 
(3.2) with respect to t. 

From this definition it follows that, if (3.3) is generated by (3.2), then x =x(t) is a solution of 
(3.2) if and only if it is a solution of (3.3). 

The index of a general DAE of the form (3.2) is defined as Gze minimum number of times that 
all, or part of (3.2) must be differentiated with respect to t in order to determine i as a continuous 
function of x and t (cf. [3, p. 171). Th e index of a general ODAE of the form (3.3) can be 
defined in a similar way, In our case, i.e. where (3.2) represents the Euler-Lagrange equations 
(3.la), (3.lb), and (3.le), and condition (2.4) is satisfied, the index is 3. Indeed, in the previous 
section we have obtained (2.6) and (2.7) by differentiating (2.1 b) twice and rearranging. One 
more differentiation of (2.7) with respect to t, combined with (2.6), will explicitly express i as a 
function of x and t. Using the same argument we deduce that the ODAE (3.3) (hence (3.1)) 
has index 1. 

The differentiation of constraints is a standard method for reducing the index of a DAE. 
However in order to keep the system square, i.e. to stay within the DAE framework, some of 
the original constraints have to be discarded. Therefore the numerical solution of the lower-in- 
dex DAE may severely violate those constraints. Moreover the lower-index DAE, while 
containing all solutions of the original DAE, may have other solutions as well (cf. [3]). As we 
have seen above this is not the case if we work with lower-index ODAEs generated by the 
original DAE. 

Of course there are many ways in which a lower-index ODAE can bz generated by a DAE. 
For example in [6] one considers the following ODAE generated by the Euler-Lagrange 
equations (3.2) (hence (3.la), (3.1 b), and (3.le)), under the supplementary assumption that the 
matrix M(t, p) is symmetric positive-definite (SPD): 

/i--c=o, (3.4a) 

where 

iw(t, p)fi + G(t, P)~A -f(t, P, rj) =@ 

G(t, p)M(t, p)-‘f(t, p, L!) -H(t, P)A +z(t, P, 1)) =o, 

G(t, P)L’ + Qg(t, P) = 0, 

g(tt P) = 0, 

z(t, P, 11) = (D,,G(‘, p)+ + 2(QG(t, ~))~~+D,,g(tv P), 

H(t, p) = G(t. p)M(t, P)-‘G(t, p)‘. (3Sb) 

The equations of (3.1) and (3.4) coincide with the exception of the middle one: (3.1~) is a 
differential equation while (3.4~) is an algebraic equation. Equation (3.4~) is obtained by solving 
(3.lb) for il and then substituting into (3.1~). We note that if M( t, p) is symmetric positive-defi- 
nite, then so is H( t, p). It is convenient to write (3.4) in the form 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3Sa) 

!b(t, x, i) = 0, (3 6) . 
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where the mapping @ :[wX FPX [Wn, +Ry, y=n,+zn,, is defined by the left-hand side of 
(3.4). 

The equations (3.3) and (3.6) are overdetermined but consistent because they are satisfied by 
any solution of (2.1). This is no longer the case for their discretized versions. For example, by 
applying a BDF scheme to (3.3) we replace the differentiation operator i( t,,) = D, x( tll) by the 
corresponding difference operator k,, = ~px,* defined by 

a0 QO 1 k 
i,,:=px,, :=-x,+px,:=-x,+-z 

h h h i=l 
cyix,-i9 (3 7) . 

where the CY~ are the BDF coefficients and h is the time step used in the integration (i.e. 

t, = t,_ 1 + h). Assuming that x,*-i, i = 1,. . . , k, are known, the current value x, of the 
numerical solution of (3.3) is obtained as the “solution” of the nonlinear system 

$(x,,) := qt,,, x,,, P-q = 0. 

The same scheme applied to (3.6) defines x,, as the “solution” of 

$(x,) := 3(t,,, x,9 P&J = 0. 

(3 8) . 

(3 9) . 
Both (3.8) a;id (3.9) are overdetermined nonlinear algebraic systems and they will in general be 
inconsistent so that they have no (classical) solution. Formally Newton’s method applied to (3.8) 
consists of “solving” the linear system in Ax 

DqQ(x;;“)) Ax + ,(xIII)I)) = 0, (3.10) 

and setting 

x(ln+ 1) = 
n x(“‘) + Ax. I1 (3.11) 

If we apply Newton’s method to (3.9), then the linear system (3.10) is replaced by 

Dt$( x0”)) Ax + $( xi:“)) = 0. II (3.12) 

Both (3.10) and (3.12) are overdetermined inconsistent linear systems. In [5] the notion of the 
ssf-solution of an overdetermined linear system is introduced, by requiring that the residual of 
the system lies in certain lower-dimensional subspaces. More precisely we say that s* is the 
ssf-solution of the overdetermined linear system 

(3.13) 

where A 1 is an N x N matrix, and A, is an M x N matrix with M < IV, if the following 
conditions are satisfied 

A,S” -6, E Range AT. (3.14a) 

A# = 15,. (3.14b) 

It is proved that the above conditions determine s* uniquely, provided that the matrix 
V&A,& is nonsingular, where V2 is a matrix whose columns form a basis for the null space of 
A,. The systems (3.10) and (3.11) are of the ?orm (3.13) with A, being the sub-Jacobian 
corresponding to the first three equations in (3.1) and (3.4) respectively. 
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Suppose that Ax is chosen to be the ssf-solution of the linear system (3.10) and that the 
sequence (x~“)}~=, defined by (3.10)-(3.11) converges to x,*. 
of the nonlinear system (3.8). We also say that xz 

Then x,* is called the ssf-solution 
is the BDF ssf-solution of the ODAE (3.1). 

The ssf-solution of the nonlinear system (3.9) or, equivalently, the BDF ssf-solution of the 
ODAE (3.4) is defined in a similar way. 

Another way of “squaring” the ODAEs (3.1) and (3.4) is by introducing additional multipli- 
ers and transforming them into DAEs of increased dimension. Thus a new multiplier I_C is 
associated with (3.le) and (3.4e) and another new multiplier 7 is associated with (3.ld) and 
(3.4d). The introduction of p and T is equivalent to a projection of the differential equations, 
as described in [S-7]. We note that the Jacobian with respect to p of the latter equation may be 
written as 

L(t, P, u) :=D,(G(t, P)U) +D,G(t, P)* 

Corresponding to (3.1) we have the DAE: 

(3.15) 

~5 -v + G(t, P)~I_L + L(t, p, U)‘T = 0, 

M(t, p)ti + G(t, P)~A + G(t, p)Tr -f(t, P, u) = 0, 

G(t, p)i) +z(t, p, v) =O, 

G(t, P)U +D,g(t, P) = 0, 

g(t, P) = 0. 

Similarly we associate with the ODAE (3.4) the following DAE: 

fi - LJ + G(t, p)Tp + L(t, p, U)~T = 0, 

M(t, p)C + G(t, P)~A + G(t, p)T7 -f(t, P, 0) =o, 

G(t, p)M(t, p)-‘f(t, p, 0) -H(t, P)A +z(t, I), lJ) =% 

G(t, ~)v+D,g(t, P) =O, 

g(t, P) = 0. 

(3.16a) 

(3.16b) 

(3.16~) 

(3.16d) 

(3.16e) 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

(3.17e) 

In both (3.16) and (3.17), z(t, p, ~7) is defined as in (3Sa). For holonomic constraints (3.16) was 
considered in [5], while (3.17) was considered in [6,7]. 

Clearly any solution of (3.1) and (3.4) gives a solution of (3.16) and (3.17) with p = r = 0. In 
what follows we show that any solution (p, v, A, p, T) of (3.17) must have p = T = 0, while 
(3.16) may have solutions with p and/or r different from zero. This contradicts the claim made 
in the proof of [5, Theorem 3.11. However, we note that this version of the equations does not 
appear in the later paper [7]. 

Lemma 3.1. The DAE system (3.16) may have solutions with p and/or 7 different from zero. 

Proof. By differentiating (3.?6dj we obtain 

G(t, p)ir + D,G(t, p)(v +b) + D,,(G(t, p)u)d + D,,g(t, P) = 0, 
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and by using (3Sa) and (3.15) we get 

G(t, p)ti + L(t, p, v)(fi - v) +z(t, p, u) = 0. 

Differentiation of (3. Me) gives 

G(t,P)lj +D,s(t, P) = 0. 

By subtracting (3.16d) from (3.19) we have 

G(t, P)( ri - v) = 0, 

so that premultiplication of (3.16a) by G( t, p) yields the equation 

G(t, p)G(t, P)~P + G(t, p)L(t, P, V)~T = 0. 

Also by comparing (3.16~) and (3.18) we get 

L(t, P, v)(b - 1,) = 0, 

and by premultiplying 63.16a) by L( t, p, v) we obtain 

L(t, P, v)G(t, P)~P +L(t, P, v)L(t, P, U)~T = 0. 

From (3.21) and (3.23) we deduce that, if the matrix 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

is nonsingular, then any solution (p, v, A, p, 7) of (3.16) has p = r = 0, and therefore x = 
(p, v, A) is a solution of (3.1). In this case the index of (3.16) is 2. In case the matrix (3.24) is 
singular, then for any solution p and T of the system (3.21) and (3.23) we have 

G(t, p)Tp = L(t, p, V)~T = 0. (3.25) 

It follows that x = (p, v, h + T) is a solution of (3.1). q 

Lemma 3.2. Any solution of (3.17) must have p = T = 0 (for M symmetric positive-definite). 

Proof. For M(t, p) invertible, (3.17~) is equivalent to saying that 

A = s(tY P9 u), (3.26) 

where 5 is the function defined in (2.7). By premultiplying (3.17b) with W, p)M(t, p)-* and 
using (3.17~) we obtain 

G(t, p)ti + H(t, p)~ +z(t, p, v) = 0. (3.27) 

If we differentiate (3.17d), (3.17e), and (3.26) we obtain (3.18), (3.19), and 

i = D,s(t, P, v) + o,S(t, P, l~)d + DJ(t, P, v)fi. (3.28) 

As before, it follows that p and T satisfy equation (3.21). Also by subtracting (3.18) from (3.27) 
we obtain 

L(t, p, v)(rj-v) --(t&=0, (3.29) 
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and by substituting fi - v from (3.17a) we get 

L(t, p, u)G(t, P)~P + (H(t, P) +L(t, P, v)L(t, P, v)~)T = 0. (3.30) 

The matrix of the linear system (3.21) and (3.30) is nonsingular whenever G(t, p) has full rank. 
This can be seen by noticing that H(t, p) is symmetric positive-definite in this case, and by 
using a Schur complement of the nonsingular block G( t, p)G( t, pJT in the matrix of this 
system. According to (2.4a) it follows that fi = v and ti = q(t, p, v) where q is the function 
from (2.6). Substituting in (3.28) we obtain 

Ii = gJ(t, p, v). (3.31) 

Thus, any solution (p, v, A, p, T) of the DAE (3.17) has p = 7 = 0 and x = (p, v, A) is a 
solution of (3.4). Cl 

There are a number of practical problems associated with the numerical solution of (3.17). In 
the construction of (3.17) we have assumed that the matrix M(t, p) is invertible. With some 
formulations of the Euler-Lagrange equations the matrix M(t, p) satisfies (2.4b) but may be 
singular [14]. Moreover, even for nonsingular M( t, p), (3.17~) is expensive and/or inconvenient 
to evaluate because it requires a decomposition of M on every function call. (Although 
symbolic techniques are available for solving linear systems involving the matrix M in O(n) 
operations [2n], their implementation requires considerable expertise, and the resulting func- 
tion calls are still relatively expensive.) 

Another problem for the numerical solution of (3.17) has to do with stability. In [l], it is 
shown that for linear DAEs with the structure of (3.17), the stepsize of numerical methods such 
as BDF and many implicit Runge-Kutta may need to be restricted to maimain stability. This 
can happen if for example M( t, p) has both large and small eigenvalues (a corresponding 
physical situation is a heterogeneous multibody system, i.e. a system which includes bodies of 
very different masses [21]). The stability restriction arises because the direct discretization of 
the DAE by these methods corresponds to a discretization of an essential underlying ODE 
(EUODE) [l] ‘, where one of the terms has been discretized exphcitiy. If this term is large 
(usually, this causes the EUODE to be stiff), the stepsize must be restricted in order to 
maintain numerical stability. In [l] it is shown that under minimal assumptions there is no 
problem with stability for numerical methods applied to semi-explicit Hessenberg [3] systems, * 
provided that the matrix which is used for the projection (in (3.17) this is the matrix which 
multiplies the Lagrange multipliers I_C and T) is the transpose of the constraint matrix. 
Unfortunately, this is not the case for (3.17), because of the term in (3.17b) which multiplies 7. 
Indeed, examples are given in [l] of systems of the form (3.17) where the stepsize of BDF must 
be restricted to maintain stability. 

An additional practical difficulty for (3.17) is the evaluation of the term LTr in (3.17a). The 
evaluation of L requires the analytical derivatives of G. These are not generally available, and 

‘l-he essential underlying ODE is a set of ODES of minimal dimension which describes the motion of the system. In 
the terminology of the next section, it is a state-space form induced by the matrix A, where A is a basis for the 
null space of G. 
To bring the sysiem (3.17) to Hessenberg form, solve (3.17~) for h and insert into (3.17b), then multiply (3.17b) by 
M-l. The constraints are (3.17~) and (3.17d). 
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their generation requires substantial software and additional expense. The following formula- 
tion works without the L-term. However for some problems with oscillations, inclusion of the 
L-term appears to be desirable [2]. 

To overcome these difficulties, the DAE can be formulated as follows: 

Jj -v + G(t, pjTp = 0, (3.32a) 

M(t, p)ti + G(t, P)~A +M(t, p)G(t, p)T7 -f@ P, 0) =o, (3.32b) 

G(t, p)fi + G(t, p)G(t, p)T7 +z(t, P, v) = 0, (3.32~) 

G(t, P)V +D,g(t, P) = 0, (3.32d) 

gp, P) = 0. 

This method has been also suggested recently in [l], where it is a special case of the method 
called projected invariants. A straightforward extension of the stability analysis in [l] shows that 
the stepsize of BDF applied to this formulation does not need to be restricted to maintain 
numerical stability, even if the constraints bpcome nearly rank-deficient, provided that G 
satisfies certain minimal assumptions (i.e. if 4b ’ f-z X5VT is the singular value decomposition of 
GT, then U’ must be of moderate sizej. In .%_ti I I 5 we will see that BDF applied to the 
projected invariants formulation is equivalent .3 &ne tangent plane parameterization method 
proposed in [16,17], provided that the parameterization is updated continuously, and that these 
methods are in turn equivalent to a certain solution of the ODAE. Finally, we see below that 
the system (3.32) is well-defined. 

Lemma 3.3. Any solution of (3.32) must have p = T = 0 (for M invertible). 

Proof, By differentiating (3.324) and (3.32e) we obtain again (3.18) and (3.19). It follows that 
(3.20) holds in our case too. Then by premultiplying (3.32a) by G(t, p) we obtain that 

.--> 
G(t, p)G(t, p)‘+ = 0. (3.33) 

Hence, according to (2.4a) it follows that p = 0. Now, (3.32a) implies that b = v and from (3.18) 
it follows that 

G(t, p)il +z(t, p, v) =O. (3.34) 

By substituting in (3.32~) we deduce the same as before, that the second additional multiplier r 
must also be equal to zero. q 

In the next section we discuss the notion of a local state-space form for general nonlinear 
DAEs. Using the framework developed in [16,17] we construct local state-space forms for 
nonlinear Euler-Lagrange equations that satisfy (2.4). The numerical solution obtained by 
applying a BDF scheme to the local state-space form may be interpreted as a “generalized 
solution” of (3.8) and (3.9). 
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4. State-space forms 

The concept of solvability of a general DAE of the form (3.2) is defined in [3]. That 
definition has in some sense a local character, but it can be easily “globalized” as follows: 

Definition 4.1. Let 7 be an open interval of IR, 0 a connected open subset of R2”v+l, and F a 
smooth mapping from 0 to IV. Then (3.2) is solvable on Y in 0 if there is a family of 
solutions &t, c), c E ‘Z, where 5? is an r-dimensional manifold such that: 

(1) ((t, c) is d f e ine d on all of 7 for each c E g, 
(2) (t, &t, c), D&t, c)) E 0 for (t, e) E 9X g; 

(3) if x(t) is any other solution of (3.2) with (t, x(t), i(t)) E 0, then x(t) = &( t, c) for some 
cE%Y; 

(4) the graph of e as a function of (t, c) is an (r + l&dimensional manifold. 

In what follows we will always assume that-0 E 7. If the manifold %’ has an-atlas composed 
of a single chart, i.e. if there is an open set 0 c 08' and a diffeomorphism 6 : 0 + 5?, then the 
above definition reduces to the definition given in [3, p. 163. If (3.2) is an ODE, then clearly 
r = n, and %? = lFP. In general r < n, and %? can be viewed as a representation of the manifold 
of consistent initial ualues; r represents the number of “differential variables”, and n, - r the 
number of “algebraic variables”. For example, if (3.2) (equivalently (3.la), (3.lb), and (3.le)) 
are the Euler-Lagrange equations, then the manifold 55’ may be defined as 

59 = (c = (PO, L’(), A,,) E I?+: g(0, PO) = 0, 

G(O, P&J,, + D,g(O, ~0) = 0, 

A,, = 5(09 PO9 Q)), (4 1) . 

where 5 is the function of (2.7). In this case r = 2(n, - n,) and the manifold H considered in 
(4) of the ab ove definition reduces to 

M=((t, P,U, A): g(t, ~)=o,G(t, ~)o+D,g(t, P)=@ 

A = s(t, P, u)). (4 2) . 

We note that the manifold $? defined by (4.1) is the initial data manifold considered in M. 
Following [13] we define the local state-space form of a DAE as follows: 

Definition 4.2. We say that (3.2) has a local state-space form at a point (t,, xc) cd? if there is an 
open neighborhood Y, c 7 of t,, an open neighborhood %C iI%’ of 0, an open neighborhood 
7~ [w".r of x,., a diffeomorphism 

6= (t, $(t, u)), 
and a Lipschitz. continuous mapping 

0:9;.x%-+lR’ 
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such that: 
(1) If &, xg) E Y and if u = I is the solution of the initial value problem (IVP) 

li =a@, u), 44,) = 4, (4 3) . 

(to9 4)) = &-‘(to9 x0)9 
then x =x(t) := 4( t, u(t).’ is a r.\.:?ution of (J.2) satisfying x( t,,) = x0. 

(2) If x=x(t) is any smooth solution of (3.2), then for any t,, E Y, there is a ug E ZY such 
that x(t) =&t, u(t)) with u = ud t) the solution of the IVP (4.3). The pair (@, W) is 
called a focal state-space form of (3.21 at (t,., xc). If YC = Y and Y=J%, then we say that 
the state-space form (+> o) is global. 

In what follows we show that the class of local parameterizations considered in [16,17] 
provide local state-space forms at any (t,., xc) EL&‘. Although the construction is rather general, 
for the purpose of this paper we restrict ourselves to the case where (3.2) are the Euler-Lagrange 
equations (3.la), (3.lb) and (3.le). Together with the manifold & given by (4.2) we also 
consider the (n, - n&dimensional manifold H defined by the original kinematic constraints 
(2.lb): 

J= ((t, p) E Yx lft”“: g(t, P) = 0). (4 4) . 
The following result is proved in [17]. 

Proposition 4.3. Suppose that all the mappings M, f, and g in (2.1) are of class Cl’, p 2 2 (i.e. 
they are p-times continuously differentiable), and assume that (2.4) is satisfied. Let (t,., p,.) EN 
and let A be an nP x nh matrix such that the augmented square matrix 

G( t,. 9 P,. ) ( I AT 
(4 5) . 

is nonsingular. 
Then there is an open neighborhood %, of the origin of W’+‘~, an open neighborhood 

7, c R”I~ of pc, and an open neighborhood Fc c 9 of t,. such that for any q E Z, and t E Fc the 
nonlinear system 

g(t9 P) = 09 

AT(F -P,) =4 

(4.6a) 

(4.6b) 

has a unique solution 

P = #,(t, 4) E p;, (4 7) . 
where ( t, p) E M. MoreoL:er the mapping 

a* : q x z, + (q. x T-,) RN-, 

@,(t9 4) = (t9 4,(t9 4)) (4 8) . 
is a Cl’- ‘-diffeomorphism . 



L.R. Petzold, EA. Potra / Numerical solution of Euler-Lagrange equations 409 

Proof. Without loss of generality we may assume that the neighborhoods Fc, %?,, and Y, from 
Proposition 4.3 are such that the matrix 

G(t9 P) ( 1 AT 
(4 9) . 

is nonsingular for all t E Yc and p E V;. 

Let (t,, p,) be as in Proposition 4.3, and let U, and A, be such that (t,, p,, v,, A,.) ~.k’. Then 
for any t E Yc, q E 2Yl, and s E Rnp-n~ the linear system 

- _ _ _ 

-D&t, &(t, 4)) 
s 

has a unique solution 

Let 5 be 

Then the 

the function from (2.7) and denote 

fl+(t:, 49 s) = l(t, +,(t, &(t, 4)9 &(t9 4, sla, 

u = (4, s), g = g* x ~%--“A, V= v; x IWn,+Q, 

t#@, u) = (&(t, 4), &(t9 cg9 s), &(t9 49 s))9 

@(t, u) = (t, +(t9 U))’ 

mapping @ : rc x % + (9-, x 7) n.d is a CPL*-diffeomorphism. Clearly 

(t, u) = qt, P, v, A), u = (4, s) 

if and only if 

4 =AT(p -P,), s =ATv. 

(4.10) 

(4.11) 

(4.12a) 

(4.12b) 

(4.12~) 

(4.12d) 

(4.13) 

(4.14) 

Now let x =x(t) be a solution of (3.2) and let t, E 9,. Clearly x(t) EM for t E Yc. Taking 
eventually a smaller 9, we may assume that x(t) EMU (9, x ‘7) for t E Fc. Let us define the 
functions 

q(t) =AT( P(l) -a,), (4.15a) 

s(t) =ATv(t), (4.15b) 

u(t) = (4(t), s(t)). (4.15c) 

This is equivalent to 

x(t) = +(t, u(t)), t E rc* (4.16) 

It is easily seen that the function u = u(t) defined by (4.15) is the solution, of an initial value 
problem of the form (4.3), where 

o(t, u) = (S’ AT@9 &(t9 4)9 42(t, 47 S)))T 

with 7 the mapping defined in (2.6) and x0 =x(t,). 
u = u(t) be the solution of the initial value problem (4.3) 

(4.17) 

Conversely, let ( to, x0) E T and let 
Then the function x = x( t ) defined by 
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(4.16) is the solution of (3.2) which satisfies ~(t,,) =+ Thus the pair (4, o) constructed above 
is a local state-space form of (3.2) in the sense of Definition 4.2. q 

This state-space form is called the standard first-order local state-space form induced by the 
matrix A. (Henceforth we will call this the state-space form induced by A.) This name is 
motivated by the fact that condition (4.5) uses only the first derivative of the kinematic 
constraints. In [18], state-space forms have been considered which use the second derivatives of 
the kinematic constraints as well. However, we will not consider these here because it is unclear 
whether they are advantageous. 

5. Numerical integration 

In the remainder of this paper (3.2) will always denote the Euler-Lagrange equations (3.la), 
(3.lb) and (3.le). Let x =x(t) be a solution of this equation and let x,. =x( t,.) be a “current 
point” on this sohrtion. Let (@, w) be the local state-space form of (3.2) at (t,, x,) considered in 
the previous section, and let u = u(t) be the solution of the initial value problem (4.3) with 
(t,,, x,,) = (t,., x,.). Then (4.15) is satisfied. Let h be a positive real number and N a positive 
integer such that 

ti -t,.+jhEq., j=O, l,..., N. 

Assume that for some n, 1 < n G N, some approximations 

llj =(qj, Sj) =U(tj)* j=O, l,.**,il- 1, 

have already been computed. The BDF scheme (3.7) applied to (4.3) defines the new 
approximation u,, = (q,,, s,,) as the solution of the nonlinear system 

P4,, = s,, 9 (5.la) 

P&z =AT?7(t,0 Mtr,, L711)) &(tn, 4,,, s,,))* (5Sb) 

We note that (5.1) defines the solution by BDF of the state-space form induced by A. If 

Xj = (Pj9 vjY “j) = +ttj9 uj)9 (5 2) . 

then 

qjzAT(Pj-Pc)9 Sj = ATUi. (5 3) . 

Substituting in (5.1), noting that the BDF coefficients satisfy CQ + cu, + l l l +a, = 0, and using 
(4.6M4.12) we deduce that, for A constant, P,~ and c,, are uniquely determined by the following 
nonlinear system: 

AT(pp,, - q,) = 0, 

A”(W, - 77(f,,9 P,,, u,J) = 09 
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The quantity wn = $t,, pn, un) is obtained as the solution of a linear system (see (2.6) and 
(2.7)). It follows that (p,, v,, A,, w,,) is the solution of the augmented nonlinear system 

AT(pp, - v,) = 0, (5.4a) 

AT(pLJ, - lVJ = 0, (5.4b) 

M(t,, PJW, + G(t,9 Pn)T& -f(t,, Pn, l’,) = 0, (5.4c) 

G(t,, P,)w~ +z(t,, ~,p u,) = 0, (5.4d) 

GO,, P,)% +D,g(t,9 P,) = 09 (5.4e) 

g(t,, P,) = 0. (5.4f) 

Equations (5.4) define the solution by BDF of a class of local parameterizations discussed in 
[16,17]. For A given by a set of unit vectors chosen such that 

G ( 1 AT 

is nonsingular, this is equivalent to solving the state-space form by the method of generalized 
coordinate partitioning [22]. For A which is a basis for the null space of G(t,, p,), this is the 
tangent plane parameterization method introduced in [16,17]. 

Now, (5.4) is a system of 3n, + n, equations in 3n, + n, unknowns which, under our 
assumptions, has a unique solution satisfying (t,, p,, vns A,) E 2% This sohtion may be viewed 
as a generalized solution of the overdetermined system (3.8). To see this, let us denote 
x, = ( p,, v,, A,,) and consider the residual 

( q, 59 3, 1’9 p I- r r )=IcI(x,), (5 5) l 

where rp, r2, r3, r,,, and r,., correspond to (3.la), (3.lb), (3.lc), (3.ld), and (3.le), respectively. 
We have clearlj- 

r, E Ker AT, (5.6a) 

(5.6b) 

( rL., y,) = 0. (5.6~) 

It is easily proved that under our assumptions there is a unique x, satisfying (5.5)-(5.6) and 
(t,, x,,) E ST. Thus the solution of (5.4) may be considered a “generalized solution” of (3.8). It 
may also be viewed as a “generalized” solution of the overdetermined system (3.9). Indeed by 
solving (5.4~) for wn and substituting in (5.4d) we obtain 

If follows 

G(t,, P&W,,, p,)-‘f(t,, P,, vn) -Hl(t,, P,)%, +& P,> vn> =a 
that the residual 

( i,, F,, f*, Pt., Ffl 1 = G(G) (5 7) . 
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satisfies 

i, E Ker AT, (5.8a) 

f, EM& P,,) Ker AT, (5.8b) 

(5.8~) 

Again it can be shown that X, is uniquely defined by (5.7)-(5.8) and (t,, xn) E W. Any X, 
satisfying (5.7)-(5.8) is called an A-ssf solution of the ODAE (3.9). Thus we see that the local 
parameterization methods are equivalent to the A-ssf solution of the ODAE (3.9). 

Let us choose the matrix A such that 

Rang; A = Ker G( t,., p,). (5 9) . 

Using (5.6) it follows that x,, = (p,,, u,, A,,) is a solution of (5,4) if and only if there are uniquely 
determined multipliers p,,, T,, E UP* such that: 

PP?l - QZ+ G( t,., P~)~E.L~ = 0, (5.10a) 

M(t,,, PJPU, + G(t,, PJTA, +M(t,,, P,,)Gk, PJT7, -f(L Is,,, 4) = 09 ww 

G(t,,, P&4, + G(t,,, PdGk.9 PJT7n + 4t,v PI19 0 = 0, (5.1Oc) 

G(L Pnh4, + m(t,,~ PJ = 0, (5.10d) 

g(t,,, P,,) = 0. (5.1Oe) 

For t, = t,l, (5.10) defines the solution by BDF of the method of projected invariants, for a 
certain projection. 

6. Conclusions 

TO summarize, we note that for the model problem in [5-71, all of the methods we have 
discussed are equivalent because it is implicitly assumed there that the constraint matrix G is 
constant. However, in the general case where G = G(t, p), there are important differences in 
some of the formulations which can dramatically effect the performance of numerical methods. 
Certain methods are equivalent, and seem to offer the best possibilities for the foundation of 
robust solution methodology. 

For A constant, as in the method of generalized coordinate partitioning [22], the following 
methods are equivalent: solution of the local state-space form induced by A, local parameteri- 
zation based on A, and solving the A-ssf of the ODAE. A robust implementation of these 
methods depends on algorithms for detecting the need for updating the coordinate basis A. 

For .A which is not constant but which forms a basis for the null space of G(t, p), and for 
BDF or other similar numerical methods, the tangent plane parameterization (5.4) J6,17] 
(where the parameterization is updated continuously) is equivalent to the A-ssf solution of the 
ODAE (3.9) and the method of projected lnvariants (5.10) [l] for a certain projection. For 
general G these methods are not equivalent to solving the state-space form, however they do 
define a local state-space form in the sense of Section 4. Since the method based on projected 
invariants has been shown [l] under reasonable assumptions to overcome the stability limita- 
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tions of methods based on previously defined extended DAEs [5-71, these equivalent methods 
seem to be among the best potential candidates for the foundation of a robust solution method. 
Efficient solution techniques for these types of systems in some of the above formulations are 
described in [15]. 
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