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Abstract. This paper gives a preliminary description of DASOPT, a software sys
tem for the optimal control of processes described by time-dependent partial differential 
equations (PDEs). DASOPT combines the use of efficient numerical methods for solv
ing differential-algebraic equations (DAEs) with a package for large-scale optimization 
based on sequential quadratic programming (SQP). DASOPT is intended for the com
putation of the optimal control of time-dependent nonlinear systems of PDEs in two 
(and eventually three) spatial dimensions, including possible inequality constraints on 
the state variables. By the use of either finite-difference or finite-element approxima
tions to the spatial derivatives, the PDEs are converted into a large system of ODEs or 
DAEs. Special techniques are needed in order to solve this very large optimal control 
problem. The use of DASOPT is illustrated by its application to a nonlinear parabolic 
PDE boundary control problem in two spatial dimensions. Computational results with 
and without bounds on the state variables are presented. 
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1. Introduction. We describe a numerical method (DASOPT) for 
finding the solution of a general optimal control problem. We assume 
that the problem is described with an objective function that must be min
imized subject to constraints involving a system of DAEs and (possibly) 
inequality constraints. The numerical method uses the general-purpose 
packages DASPKSO (§4) and SNOPT (§3) in an essential way, and takes 
full advantage of their capabilities. 

In the method proposed, large-scale nonlinear programming is used to 

• This research was partially supported by National Science Foundation grants CCR-
95-27151 and DMI-9424639, National Institute of Standards and Technology contract 
60 NANB2D 1272, Department of Energy grant FG02-92ER25130, Office of Naval Re
search grants N00014-90-J-1242 and N00014-96-1-0274, the Army High Performance 
Computing Research Center ARL Cooperative agreement DAAH04-95-2-0003 and con
tract DAAH04-95-C-0008, and the Minnesota Supercomputing Institute. 

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 
55455. 

! Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 
55455, and Department of Computer Science and Engineering, University of California, 
San Diego, La Jolla, California 92093-0114. 

§ Department of Mathematics, University of California, San Diego, La Jolla, Califor
nia 92093-0112. 

II Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 
55455. 

II School of Mechanical Engineering, Kookrnin University, Seoul, Korea. 

L. T. Biegler et al. (eds.), Large-Scale Optimization with Applications
© Springer-Verlag New York, Inc. 1997



272 L. PETZOLD ET AL. 

solve the optimization/optimal control problem. The original time interval 
is divided into subintervals in a multiple-shooting type approach that pro
vides a source of parallelism. (For other approaches, see, e.g., Dickmanns 
and Well [11], Kraft [20], Hargraves and Paris [19], Pesch [28], Lamour 
[21], Betts and Huffman [3], von Stryk and Bulirsch [35], Bulirsch et al. 
[9], von Stryk [34], Betts [2], Brenan [6], Schulz, Bock and Steinbach [30], 
Tanartkit and Biegler [32], Pantelides, Sargent and Vassiliadis [27], and 
Gritsis, Pantelides and Sargent [18].) 

The associated finite-dimensional optimization problem is character
ized by: (a) many variables and constraints; (b) sparse constraint and 
objective derivatives; and (c) many constraints active at the solution. The 
optimization problem is solved using the package SNOPT (§3), which is 
specifically designed for this type of problem. SNOPT uses a sequen
tial quadratic programming (SQP) method in conjunction with a limited
memory quasi-Newton approximation of the Lagrangian Hessian. There 
has been considerable interest elsewhere in extending SQP methods to the 
large structured p,roblems. Much of this work has focused on reduced
Hessian methods, which maintain a dense quasi-Newton approximation 
to a smaller dimensional reduced Hessian (see, e.g., Biegler, Nocedal and 
Schmidt [4], Eldersveld [12], Tjoa and Biegler [33], and Schultz [29]). Our 
preference for approximating the full Hessian is motivated by substantial 
improvements in reliability and efficiency compared to earlier versions of 
SNOPT based on the reduced-Hessian approach. 

The function and derivative computations for the optimization involve 
computing the solution of a large-scale DAE system, and solution sensi
tivities with respect to the initial conditions and the control parameters. 
The general-purpose package DASPKSO (§4) is used to compute the DAE 
solution and sensitivities. The sensitivity equations can be solved very 
efficiently, and in parallel with the original DAE. 

In §5, a typical application is described, consisting of a nonlinear 
parabolic PDE in two spatial dimensions, with boundary control of the 
interior temperature distribution. This application serves as an initial test 
problem for DASOPT, and has the important feature that the size of the 
problem is readily increased by simply using a finer spatial grid size. It is 
shown in §5 how the PDE is reduced to a suitable finite-dimensional op
timization problem. The numerical results, obtained by DASOPT for ten 
related cases, are summarized in §6. These results are displayed in ten 
figures that show, as a function of time, the optimal control and the tem
peratures at interior points obtained with different constraints and degrees 
of nonlinearity. 

We assume that the continuous problem is given in the form 
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