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Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel
c� c0 Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound
spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy
classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the
solution heat-treated condition. Comparisons are made between the elastic properties of the
three alloy classes and among the alloys of a single class, with the following trends observed. A
monotonic rise in the c44 (shear) elastic constant by a total of 12 pct is observed between the
three alloy classes as Co is substituted for Ni. Elastic anisotropy (A) is also increased, with a
large majority of the nearly 13 pct increase occurring after Co becomes the dominant
constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited
remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy
CMSX-4. Custom code demonstrating a substantial advance over previously reported methods
for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the
open-source probabilistic programing language of Stan and formulates the inverse problem
using Bayesian methods. Bayesian posterior distributions are efficiently computed with
Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from
weakly informative prior distributions. Remarkably robust convergence behavior is demon-
strated across multiple independent HMC chains in spite of initial parameterization often very
far from actual parameter values. Experimental procedures are substantially simplified by
allowing any arbitrary misorientation between the specimen and crystal axes, as elastic
properties and misorientation are estimated simultaneously.

https://doi.org/10.1007/s11661-018-4575-6
� The Minerals, Metals & Materials Society and ASM International 2018

I. INTRODUCTION

PROPELLED by incredible advances in engineering
and materials science—and the promise of greater
turbine efficiencies and reduced emissions—the opera-
tional limits of Ni-based superalloys have been extended
to regimes that include periods at over 90 pct of their
melting point,[1] all while maintaining considerable

mechanical loads in deleterious environmental condi-
tions. Inherent limits exist for future development, as the
melting temperature (or more accurately the liquidus
and solidus temperatures) is intrinsic to the material and
cannot be appreciably increased. This reality has
spurred research and development of ordered inter-
metallic alloys such as NiAl-,[2] Nb-, and Mo-based
refractory alloys,[3–6] and ceramic composites of alu-
mina[7] and silicon carbide,[8] all with the goal of
supplanting Ni-based superalloys for the most demand-
ing high-temperature applications. However, these alter-
natives often suffer from poor fracture toughness and
processing constraints that make their current use costly
and limited,[3–5,9] especially considering the safety
requirements for use in aerospace.
Given the payoff for increased turbine engine oper-

ating temperatures and the limitations of current alter-
natives to Ni-based superalloys, considerable attention
has been directed toward potential intermediate
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solutions such as c� c0 Co-based superalloys[10] and
hybrid CoNi-based alloys.[11] The primary motivation
for studying these alloys is clear, as the melting point of
Co exceeds that of Ni by 40 �C.[12] They also have the
benefit of being cast and processed similar to existing
Ni-based superalloys, minimizing the cost of develop-
ment by leveraging existing infrastructure. Of course
there are some outstanding issues that must be
addressed before these alloys may become technically
relevant, including: a low c0 solvus temperature,[13] poor
oxidation resistance,[14] and in some cases a less favor-
able thermal expansion coefficient for adhesion of
protective alumina as compared to Ni-based superal-
loys.[15] Due to the promise of future operating temper-
ature improvements, this research focuses on measuring
the single crystal elastic constants of select Co- and
CoNi-based superalloys. Since turbine blades operate
under nominally elastic conditions, elastic properties are
critically important to design, though have not yet been
measured for these new classes of Co-based materials.

In a prior publication,[16] we demonstrated the first
full Bayesian approach to determining elastic constants
from simple and non-destructive resonant ultrasound
spectroscopy (RUS) measurements. While simultane-
ously evaluating elastic constants and crystal orienta-
tion, this new approach is remarkably robust in
comparison to traditional optimization algorithms only
estimating elastic constants. The ability to evaluate
elastic constants of a parallelepiped specimen cut with
arbitrary alignment of the crystallographic axes greatly
simplifies specimen preparation requirements and elim-
inates a major potential source of measurement error.[16]

The goals of this paper are threefold. First, provide an
introduction to RUS Bayesian inference including the
basic theory, the distinguishing characteristics from tradi-
tional optimization methods, and the nomenclature nec-
essary for discussing and achieving the remaining goals.
Second, report the key features of CmdStan-RUS—a
custom distribution of the open-source probabilistic pro-
graming language Stan,[17] dedicated to RUS Bayesian
inference. Third, demonstrate the capabilities of CmdS-
tan-RUS by determining the elastic properties of nine
single crystal c0 containing Co-, Ni-, and CoNi-based
alloys, and through parametric studies on the effects of
polynomial order, missing modes, and resonance mode
selection.

II. EXPERIMENTAL METHODS

A. Materials

The discovery of a stable c� c0 two-phase field in the
Co-Al-W ternary in 2006 by Sato et al.[12] with mor-
phologically identical microstructure to Ni-based c� c0

superalloys[10] generated considerable interest from the
materials science community. Expanding upon the
Co-9.2Al-9W at. pct alloy reported by Sato et al. the
first investigations on the mechanical properties of
several L12-containing Co-based alloys demonstrated
high potential for turbine material application.[11,15,18,19]

The Co-based alloys were based primarily on

quaternary elemental additions to study a variety of
effects including: 2 at. pct Ta for precipitate strength-
ening, 2 at. pct Re for matrix strengthening, 4.5 at. pct
Cr for oxidation behavior, 20 at. pct Ni for expanded c0

phase field stability, and 1.5 to 6 at. pct Mo/V for
density reduction.[10] A CoNi-based alloy series explored
many of the same alloying effects mentioned previously,
but started from a modified base of approximately 30 at.
pct Ni to the Co-Al-W ternary alloy, with variable
amounts of Ta, Cr, Mo, Al, Ni, and C + B. Table I
summarizes the chemical composition of each alloy
from the previous investigations that were examined as
part of this research, with the distinguishing elemental
additions in bold.

1. Preparation of experimental materials
Prior to conducting any resonance measurements, the

as-received material was solution heat treated and fully
aged. Heat treatment schedules devised for the novel
Co- and CoNi-based alloys were based on previously
measured solidus and solvus temperatures, while the
CMSX-4 material (a commercial Ni-based single crystal
alloy included for comparison) was heat treated accord-
ing to industry standards specifying a step-wise solution
treatment and a two-step age.[20] Table II summarizes
the heat treatment schedules for each alloy. Solution
heat treatments were conducted using a vacuum furnace
with a Ti getter for at least 12 hours. Following the
solution heat treatment, the material was furnace cooled
except for the CMSX-4 material which was furnace
quenched with gettered Ar. Co-6Ti, CoNi-A, and
CMSX-4, constituting one alloy from each class, were
evaluated with RUS in the solution heat-treated condi-
tion prior to aging. Then all specimens were sealed
under vacuum in quartz tubes and aged in a box furnace
according to Table II, followed by an air cool.
Figure 1 demonstrates the consistent microstructure

achievable across the three alloy classes by comparing
scanning electron microscopy (SEM) micrographs from
the Co-6Ti, CoNi-A+, and CMSX-4 alloys in their fully
aged conditions. Lower magnification micrographs on
the left show aligned dendrites that remain from the
directional solidification process, while higher magnifi-
cation micrographs (center and right) show a significant
volume fraction of cuboidal c0 precipitates in a matrix of
c. Microscopy specimens were prepared perpendicular
to the nominal [001] growth direction using diamond
suspensions down to 1 lm, then vibratory polished
using alumina and colloidal silica to achieve a mirror
finish. SEM characterization was completed using a FEI
SEM with a field emission gun operating at 15 kV using
secondary and backscatter electron detectors.

B. Resonant Ultrasound Spectroscopy

1. RUS specimen preparation
Two parallelepiped (PP) specimens for each alloy

were machined from cylindrical single crystal castings
via wire electrical discharge machining (EDM). All PP
specimen dimensions were approximately the same at
9� 10� 11 mm, though the exact dimensions of each
PP varied slightly as the EDM damage layer was
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Table I. Alloy Designations and Composition in Atomic Percent

Alloy Co Ni Al W Ta Cr Ti Mo Hf Re C B

CMSX-4 9.9 62.9 12.6 2.1 2.2 7.6 1.3 0.4 < 0.1 1.0 — —
Co-Ternary 79.9 — 9.4 10.7 — — — — — — — —
Co-2Ta 79.4 — 8.8 9.8 2.0 — — — — — — —
Co-6Ti 79.0 — 6.7 8.1 — — 6.2 — — — — —
CoNi-A 45.9 29.2 9.8 6.3 2.4 6.4 — — — — — —
CoNi-A+ 45.9 29.2 9.8 6.3 2.4 6.3 — — — — 0.14 0.02

CoNi-B 44.5 28.2 8.8 6.3 2.1 10.1 — — — — — —
CoNi-C 38.1 38.0 9.3 6.9 1.4 6.3 — — — — — —
CoNi-D 44.8 30.7 9.6 4.8 1.9 6.2 — 2.0 — — — —

Table II. Heat Treatment Schedules for the Various Co-, Ni-, and CoNi-Based Alloys Investigated in this Study

Alloy Solution Age

CMSX-4 1277 �C, 4 h fi 1287 �C, 2 h fi 1296 �C, 3 h fi 1304 �C, 2 h fi
1313 �C, 2 h fi 1316 �C, 2 h fi 1318 �C, 2 h

1140 �C, 6 h fi 871 �C, 20 h

Co-Ternary 1350 �C, 12 h 950 �C, 100 h
Co-2Ta 1350 �C, 12 h 1000 �C, 100 h
Co-6Ti 1225 �C, 14 h 1000 �C, 100 h
CoNi-based 1215 �C, 12 h 950 �C, 100 h

Fig. 1—Backscatter SEM micrographs of the (a) CMSX-4, (b) Co-6Ti, and (c) CoNi-A+ alloys in the solution heat-treated and aged condition.
Low magnification micrographs on the left (a1, b1, c1) show the remnant dendritic microstructure, while higher magnification micrographs in
the center (a2, b2, c2) and on the right (a3, b3, c3) show the cuboidal c� c0 microstructure characteristic of superalloys.
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removed from each face by hand grinding with 800 grit
sandpaper. Precise measurements of the specimen
geometry were made with a Mitutoyo outside microm-
eter with 0.001 mm precision. The mass of each PP was
measured with a digital Acculab scale precise to 0.0001
g, and the density was calculated. Note that the
9� 10� 11 mm geometry was devised to both minimize
the aspect ratio ensuring bending modes sensitive to
non-shear moduli occur along each dimension and at
relatively low frequencies, and to limit the likelihood of
overlapping resonances that are more likely to occur
when PP dimensions are nearly equivalent or half-inte-
ger multiples of each other.

Analysis of RUS data is substantially simplified when
both the single crystal elastic constants and the arbitrary
crystal reference frame rotation are determined simul-
taneously.[16] Otherwise, the specimen must be precisely
cut from a parent single crystal of known orientation
(typically measured with X-ray diffraction techniques)
such that the rotation between the crystal and specimen
reference frames is nearly (ideally) zero.[21]

2. RUS equipment
Resonance frequencies were measured with a custom

experimental setup provided by the Vibrant Corpora-
tion, detailed schematically in Figure 2. This setup
included a desktop computer for control and data

visualization, linked to a transceiver with three channels
for operating piezoelectric transducers. Coaxial cables
connect the transceiver to three identical, custom built,
omni-directional piezoelectric transducers (PT) with
hemispherical silicon carbide tips to protect the piezo-
electric element below. The three PTs were positioned
using optical table fixtures affixed to a vibration
dampening breadboard, collectively referred to as the
transducer cradle and pictured in Figure 3.
To excite a specimen, a swept sinusoidal frequency

generated by the transceiver was transmitted to one of
the PTs (noted as the drive PT in Figure 2). As the drive
frequency nears a resonance frequency of the PP
specimen, it begins to resonate with amplified deflections
hundreds to thousands of times greater than the
displacements produced by the drive transducer. These
amplified deflections were then registered by the two
additional receive PTs contacting the specimen, with the
signal returned to the transceiver and visualized through
the computer controller to produce a broadband reso-
nance spectra such as those depicted at the bottom of
Figure 2. While the signal amplitudes are generally
unreliable given the transducer cradle configuration that
allows the specimen to freely lift off of the PTs during a
measurement, the frequency values are reliably mea-
sured to better than 0.02 pct precision.
The transducer cradle was designed to fully support

the PP specimen along three faces at roughly 90-deg
angles and near the edge of the PP. Note that the corners
of a PP specimen are the points of lowest symmetry[22–25]

and provide the lowest elastic coupling/impedance[22,26]

for minimal biasing of the measured resonance frequen-
cies. For the three transducer cradle configuration
described above, contacting the PP specimen on its
faces near the corners was found to provide sufficient
signal-to-noise ratio with minimal variance in frequency
to allow for precise estimates of elastic constants.

3. RUS measurements
All RUS measurements were completed at standard

temperature and pressure. To ensure that all of the PP
specimen resonance modes were measured, each PP was
scanned five times across the range of 70 to 445 kHz,
with the specimen removed, rotated, and then replaced
on the transducer cradle after each scan. While this
procedure occasionally resulted in a single mode being
missed from a broadband scan, each of the first 70
resonance modes were effectively measured for all of the
PP specimens investigated in this study.
Distilling a list of resonance frequencies from each

broadband RUS spectrum was partially automated
based on peak amplitude, peak width, separation from
neighboring peaks, and the second derivative of the
amplitude with respect to frequency. Each of these
parameters were set for individual bands (approximately
20 kHz wide) such that the automated process reliably
identified most modes. Each scan was then individually
verified for any missing or spuriously identified modes
before the frequency list was exported from the collec-
tion computer for further analysis. Next, an averaged
list of frequencies was created for each PP from the five
individual frequency lists, inspecting the standard

Fig. 2—Diagram of RUS measurement setup and broadband RUS
spectrum plots from 5 measurements of the Co-Ternary-B specimen.
The spectrum plots are vertically offset to demonstrate the
repeatability of the frequency measurement, while the amplitudes are
not repeatable and are thus plotted in arbitrary units (a.u.).
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deviation across the five scans was within 0.1 kHz to
assure that no modes were missed or erroneously
recorded. An example mode list for PP specimen
CoNi-A+1 (referring to CoNi-A+ PP 1, of 2) is
provided in Table III, which clearly demonstrates that
measurement precision of � 0:02 kHz (or less) is reliably
achieved. This measurement precision is remarkable
given that a single broadband scan of 70 resonance
modes is collected in less than 10 minutes. Such reliable
precision is what makes RUS an ideal measurement
technique for estimating elastic constants.[21]

III. COMPUTATIONAL METHODS

As there is no direct solution to the general inverse
problem of determining elastic properties from RUS
measurements, elastic properties must be determined
indirectly through least-squares optimization[21,27,28] or
statistical inference[16] methods. Both of these inversion
methods ultimately rely on numerous forward problem
evaluations,[16,21] therefore, computational methods
begins by introducing the forward problem for calcu-
lating resonance frequencies of a specimen in Sec-
tion III–A. Next, Section III–B details inversion with a
short summary on traditional optimization-based meth-
ods followed by the distinguishing characteristics of a
Bayesian approach. The statistical RUS model is for-
mulated in Section III–D, which details the Bayesian
posterior and necessary assumptions. Computation of
the posterior with Hamiltonian Monte Carlo (HMC)[29]

is outlined in Section III–E, with example traceplots and
initial parameterization discussed in Section III–E–1.
Finally, methods of validation are discussed in Sec-
tion III–E–3, where the concept of posterior predictive
distributions is introduced, followed by details regarding
posterior predictive plots and how they can be used to
diagnose some of the more common problems that may
arise during RUS Bayesian inference.

A. The Forward Problem

Visscher’s xyz algorithm is used to efficiently solve the
forward problem by calculating resonance modes of a
parallelepiped specimen given its geometry, density, and
effective elastic constants.[30] The effective elastic

Fig. 3—Photo of a parallelepiped specimen positioned on the
piezoelectric transducer cradle prior to a broadband RUS
measurement.

Table III. Mean and Standard Deviation (SD) for the First 50 Resonance Modes of CoNi-A+1, Based on five Broadband RUS
Scans

Mode No. Frequency (kHz) Mean ± SD Mode No. Frequency (kHz) Mean ± SD

1 135.618 ± 0.016 26 286.690 ± 0.013
2 142.851 ± 0.010 27 290.809 ± 0.002
3 144.923 ± 0.010 28 299.620 ± 0.011
4 154.308 ± 0.018 29 304.619 ± 0.013
5 163.844 ± 0.013 30 308.081 ± 0.012
6 164.111 ± 0.008 31 310.982 ± 0.012
7 168.193 ± 0.014 32 320.033 ± 0.015
8 188.061 ± 0.011 33 321.824 ± 0.011
9 202.506 ± 0.010 34 326.095 ± 0.009
10 204.747 ± 0.009 35 332.206 ± 0.013
11 210.693 ± 0.011 36 334.222 ± 0.013
12 211.414 ± 0.012 37 337.300 ± 0.012
13 211.985 ± 0.010 38 341.681 ± 0.011
14 219.423 ± 0.011 39 344.413 ± 0.014
15 220.491 ± 0.014 40 348.664 ± 0.016
16 237.149 ± 0.012 41 354.642 ± 0.012
17 241.558 ± 0.010 42 355.491 ± 0.012
18 244.404 ± 0.016 43 363.661 ± 0.012
19 246.905 ± 0.009 44 367.021 ± 0.012
20 248.223 ± 0.013 45 367.950 ± 0.018
21 259.814 ± 0.014 46 370.402 ± 0.013
22 266.153 ± 0.01 47 373.411 ± 0.012
23 273.195 ± 0.016 48 379.083 ± 0.013
24 275.341 ± 0.013 49 381.878 ± 0.008
25 285.808 ± 0.010 50 383.998 ± 0.011
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constants are themselves a product of the single crystal
elastic constants and an arbitrary rotation of the crystal
reference frame with respect to the specimen reference
frame, parameterized in cubochoric coordinates[31] as
addressed in Section III–A–1. The xyz algorithm is a
Rayleigh–Ritz method that is named after the simple
polynomial basis functions that describe the displace-
ments of the specimen as a product of powers of the
Cartesian coordinates with the form: xl ym zn.[30] The
powers l, m, and n correspond to non-negative integer
values and lþmþ n � P defines the maximum polyno-
mial order (P). With the size of the forward calculation
governed by P, one must be cognizant of the fact that
the matrix calculations grow by S ¼ ðPþ 1Þ ðPþ 2Þ
ðPþ 3Þ=6 such that typical values of P ¼ 8; 10; 12 result
in matrices of order S ¼ 165; 286; 455.

The CmdStan-RUS code is currently limited to a
parallelepiped geometry, though Visscher’s polynomial
basis functions can be used for a variety of geometries
including spheres, hemispheres, spheroids, ellipsoids,
cylinders, bells, sandwiches, cones, pyramids, prisms,
tetrahedra, octahedra, and others.[30] However, the
parallelepiped geometry is optimal for a variety of
reasons including ease of specimen machining and a lack
of rotational symmetry that could hinder efforts to
estimate crystal orientation. When RUS experimental
methods are attentive to minimizing error in the
frequency measurements, uncertainty in the geometry
of the specimen becomes a dominant source of mea-
surement error that can inhibit precise parameter
estimates.

1. Orientations
In Bales et al.,[16] the arbitrary rotation of the crystal

reference frame was parameterized as a passive unit
quaternion. A unit quaternion is expressed in four
dimensions (w,x,y,z) but resides on a 3D manifold
characterized by w2 þ x2 þ y2 þ z2 ¼ 1. While parame-
terization of the rotation as a unit quaternion con-
founded the default HMC sampler in Stan,[17] the No
U-Turn Sampler,[32] alternative parameterization with
cubochoric coordinates resolved this issue. Cubochoric
coordinates are a volume-preserving projection of a

regularly gridded cube of side length p
2
3 into a unit ball,

followed a homochoric mapping from the ball to a unit
quaternion.[31] Thus, the three components of a cubo-

choric rotation are valid between the range � 1
2 p

2
3 to 1

2 p
2
3.

B. Inversion

Inversion of elastic properties from RUS measured
resonance frequencies has historically been accom-
plished using optimization algorithms that yield maxi-
mum likelihood estimates (MLE) of the unknown
parameters. Some of the more popular optimization
algorithms include the Levenberg–Marquardt (New-
ton-steepest decent) algorithm popularized by Migliori
et al.,[21,22] the derivativeless fixed point iteration (FPI)

method used by Plesek et al.[33] for finite element (FE)
implementations where derivative information is less
accessible, and genetic algorithms as used by Remillieux
et al.[34] Each of these algorithms perform a least-
squares regression of an overdetermined system, with
more resonance modes being used than parameters
being estimated, by iteratively updating an initial guess
set of elastic constants to minimize the sum of squared
errors (SSE) between a measured and computed list of
resonance frequencies.[21,22,33,34] Various convergence
criteria are then used to terminate the optimization,
typically when successive iterations fail to reduce the
SSE or after a desired precision is reached.
Instead of pursuing MLEs (point estimates) of

unknown parameters by way of optimization, here we
formulate the inverse problem as a Bayesian inference
which yields probability distributions for the unknown
parameters (elastic constants, crystal orientation, etc.).
When the parameter distributions are normally dis-
tributed—a characteristic typically verified a posteriori
by fitting the distribution as a Gaussian—the mean and
the variance of the distribution provide estimates of the
parameter value and its uncertainty. While estimating
error in the elastic constants from optimization methods
is far less straightforward, Migliori and Sarrao[21]

discuss an empirical approach to determining uncer-
tainty by exploring the curvature of the (SSE) error
surface in the vicinity of the MLE. But this approach
only estimates the error in linear combinations of
parameters that may be difficult to isolate when the
curvature of the error surface is shallow. Confronting
these same issues, Spoor[27] employed Monte Carlo
methods to estimate parameter uncertainty in a manner
similar to this work by assigning normally distributed
random perturbations to his measured resonance
modes, then characterizing the distribution of the MLEs
to infer uncertainty.[27] Both are meaningful endeavors,
but involve complicated additional steps, while uncer-
tainty in the Bayesian estimates are obtained automat-
ically from the posterior distributions.

C. Scaled and Transformed Parameters

For improved numerical stability and HMC sam-
pling, all single crystal elastic constants are scaled by a
common factor of 10�11=Pa such that a value of 200
GPa (2:0� 1011Pa), is handled by Stan as a scaled
unitless parameter: 2.0. Conveniently, the r (noise)
parameter (in units of kHz) and the three cubochoric
orientation parameters did not require scaling. Note
that the traceplots and histograms present parameters as
they are handled by CmdStan-RUS, while common
units of GPa and kHz are used for tables and result
summaries.
In addition to scaling parameters, transformed

parameters can improve HMC mobility and efficiency.
An example of a transformed parameter is provided by
first considering the fully anisotropic stiffness tensor in
Voigt notation:
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Cij ¼

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

2
666666664

3
777777775
: ½1�

As the matrix is symmetric, there are 21 independent
elastic constants which can be simplified to three inde-
pendent constants through enforcing cubic elastic
symmetry:

Cij ¼

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
666666664

3
777777775
: ½2�

Superalloys cast as single crystals, with a coherent
two-phase microstructure possessing a cube-on-cube
orientation relationship between the L12 precipitates
and the FCC matrix,[1] exhibit cubic elastic symmetry
that appears homogeneous on the macroscopic scale.
This apparent homogeneity occurs whenever the
microstructure is orders of magnitude smaller than the
wavelength of the resonance modes. In previous
work,[16] it was observed that the (c11, c12, c44) elastic
parameter space led to inferior sampling as the c11 and
c12 parameters were highly correlated. Therefore, the
c12 parameter was transformed into the Zener aniso-
tropy ratio:[35]

A ¼ 2c44
c11 � c12

; ½3�

such that sampling now takes place over a transformed
(c11, A, c44) elastic parameter space.[16] The present
investigation also used the (c11, A, c44) parameter space,
while any alternative elastic symmetry with arbitrary
parameter transformations is possible through simple
modifications of the Stan input files.

D. Building a Statistical RUS Model

Bayes’ rule can be presented in its common form:[36]

PðhjMÞ|fflfflfflffl{zfflfflfflffl}
Posterior

¼ PðMjhÞ
zfflfflfflffl}|fflfflfflffl{Likelihood

PðhÞ
zffl}|ffl{Prior

PðMÞ|fflffl{zfflffl}
PriorPredictive

; ½4�

where statements of conditional probability Pð. . . j . . .Þ,
measured data M, and estimated parameters h, are
combined to read ‘‘PðMjhÞ’’ as ‘‘the probability of the
data given the parameters.’’[37]

To perform a Bayesian inference, a statistical model
representing the likelihood is first developed and initial-
ized based on prior knowledge and some observed data.

Then new data in the form of previous posterior samples
are used to update the prior knowledge in a systematic
manner and to inform future posterior evaluations. This
iterative learning process minimizes the uncertainty of
estimated parameters with regard to the information
available and may ultimately allow for precise estimates
given enough posterior samples are available and the
statistical model accurately describes the problem.
The statistical RUS model employed in this work is

described in more detail elsewhere,[16] so only a cursory
description highlighting key elements and assumptions
will be made here. The first assumption is that resonance
modes (m1;m2;m3; . . . ;mN), in a frequency ordered list
of modes M with length N can be modeled as

M ¼ m1;m2; . . . ;mN ¼ fðL;C;Cu; qÞ þ n: ½5�

The forward model f(...) is a function of the properties of
the modeled specimen (L;C;Cu; q) and a normally dis-
tributed random noise n. Concerning the terms of the
forwardmodel,L ¼ ðl1; l2; l3Þ represents thedimensionsof
the parallelepiped, C ¼ ðc11; c12; c44Þ are the single crystal
elastic constants (with cubic elastic symmetry assumed for
this example), Cu ¼ ðcu1; cu2; cu3Þ are the cubochoric
crystal orientation coordinates, and q is the mass density
of the specimen; collectively expressed as h = L;C;Cu; q
for short. n is assumed normally distributed about each
mode with a single variance r2 (i.e., n is the same for every
mode) and represents the combined uncertainty in the
model and the measurements.[38] While it is unlikely that
the noise is actually the same for every mode, Sec-
tion III–E–3 discusses a posteriori methods by which this
and other assumptions are deemed acceptable.
The formulation of Eq. [5] means that the resonance

modes produced by either the forward model or by
measurement are themselves random variables.[16,38]

Thus, a statement of the conditional probability of
measuring a set of modes M from a specimen with a
fixed set of parameters h may be written in terms of the
forward model f as

PðMjhÞ � Nðf ðhÞ; rÞ; ½6�

with the tilde (�) indicating that the statement PðMjhÞ
‘‘has the probability distribution of’’ and N indicating
‘‘a normal distribution’’ of modes with variance r2

about fðhÞ. In terms of a Bayesian formulation
(Eq. [4]), PðMjhÞ is the likelihood. With a rigorous
treatment of the mathematics and assumptions, a com-
plete statement of the likelihood can be given as

PðMjhÞ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffi
2pr2i

p e
ðfiðhÞ�MiÞ2

2r2
i ; ½7�

where i is the index of the computed (fiðhÞ) and
measured (Mi) modes.[16]

Prior probability distributions (PðhÞ in Eq. [4])
express prior beliefs about the parameters that can be
based on values cited in literature, previous measure-
ments on the same or similar material, or even based on
an intuitive understanding of the natural range a
parameter may exhibit. Importantly, priors express
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knowledge or beliefs about ultimately unknown quan-
tities, they can be estimated from the data itself, and
they do not necessarily precede the data in time.[39] Prior
probability distributions can be simple expressions like
assuming the c11 elastic constant ranges between 0 and
500 GPa with uniform probability:

c11 � U 0GPa; 500GPað Þ ½8�

Or more informed statements like c11 being normally
distributed about a mean of 250 GPa with a standard
deviation of 50 GPa:

c11 � N 250GPa; 50GPað Þ ½9�

Alternative distributions are also available including
exponential, Cauchy, Student’s-T, and others.[17,40]

With linear combinations of parameters implemented
simply as

c11 � c12 � Nð100GPa; 50GPaÞ: ½10�

All of the inferences in this work assumed the same set
of weakly informative priors as summarized below:

r � Nð0 kHz; 1:0 kHz)

c11 � Nð250GPa; 75GPa)

c44 � Nð125GPa; 50GPa)

A � Nð3:0; 0:75Þ
c11 � c44 � Nð125GPa; 50GPa):

Ultimately, we want to find the posterior distributions
that express the probability that of our parameters h
take certain values given a measured set of modes M.
We now have the likelihood and the priors, but the prior
predictive distributions P(M) are unknown. Fortu-
nately, Bayes’ rule can be simplified to

PðhjMÞ / PðMjhÞPðhÞ ½11�

when sampling with Markov chain Monte Carlo
(MCMC) methods[41] because posterior samples are
generated proportional to the true posterior distribu-
tion.[17] Now with a complete formulation of the inverse
problem, the Bayesian posterior is computed with
HMC.

E. Computing the Posterior with HMC

Hamiltonian Monte Carlo is a hybrid Markov chain
Monte Carlo (MCMC) method[17,29,42] that avoids the
random walk exploration behavior common to other
MC methods[43] by informing the sampler with first-
order gradient information.[32,42] As for the derivatives
necessary for Hamiltonian dynamics, they were detailed
in our previous work Bales et al.,[16] and are now fully
handled within CmdStan-RUS. Like other MCMC
methods, HMC involves sequentially building a Markov
chain of samples based on memoryless exploration from
the current state, with distributions proportional to the
true posterior distribution.[17] With zero consideration

given to previously accepted states, a proposed state at
the end of an exploration period is only added to the
chain when it is accepted through a Metropolis update
based on the relative probability of the proposed state
with respect to the current.[29] The Metropolis update
accepts proposed states evaluated with a higher prob-
ability than the current state, but may reject a proposed
state of lower probability in favor of retaining the
current state.
Hamiltonian dynamics provide superior sampling by

proposing distant and less correlated samples to the
Metropolis update, and are accomplished through
introduction of a fictitious momentum term at the
beginning of an exploration period.[29,32] This momen-
tum term can assist in propelling the sampler beyond
local minima and bring the sampler towards the
steady-state region of the posterior. When a proposed
state is rejected, a new momentum term is generated
and the exploration is restarted from the retained
state.[29]

1. Initial parameterization and constraints
Initial parameterization of the HMC chains is ran-

domly generated from distributions specified by the
priors given in Section III–D. The traceplots in Figure 4
show the first 100 samples for four independent HMC
chains of the CmdStan-RUS inversion of CoNi-C1 (the
first parallelepiped of alloy CoNi-C). Clearly, the
random initial parameterization is only weakly informed
by the given priors. For example, the c11 parameter
initial values range from over 650 GPa for chain 2, to
less than 50 GPa for chains 1 and 3. These are by all
means ‘‘poor initial guess values,’’ from the perspective
of RUS inversion literature that consistently cites ‘‘good
initial guess value’’ as important for ensuring conver-
gence.[21,26,27,33,34,44] In fact, the robust convergence
behavior of the RUS Bayesian inference framework,
despite poor initial values and no efforts to identify
measured resonance modes, is one of the key contribu-
tions of this work.
As the traceplots in Figure 4 show, the four HMC

chains reach the stationary region of the posterior
relatively early (in this case, after less than 100 samples)
in the 500 sample warm-up period—despite initial
parameterization in extremely low probability regions
of the posterior. Only the samples generated after the
warm-up period are used to characterize the posterior
distributions, so the rate at which the stationary region
of the posterior is reached is a secondary concern. Each
chain is run for a total of 1500 samples, with the first 500
warm-up samples ultimately discarded, a chain that
reaches the stationary region before the warm-up period
is complete is deemed a success.
The rapidly converging behavior detailed by Figure 4

is not always achieved, though it is by far the most
common occurrence. Upwards of 90 pct of the individ-
ual chains reached a common stationary region of the
posterior within the first half of the warm-up period. Of
the approximately 10 pct of chains that fail to reach the
stationary region, the vast majority of these cases were
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due to the sampler stalling as it asymptotically
approached a constraint specified when parameters are
first defined in CmdStan-RUS. Below is a list of
constraints applied:

r; c11; c12; c44 ¼ ð0;1Þ
A ¼ ð1;1Þ

c44=c11 ¼ ð0; 3=2Þ
cu1; cu2; cu3 ¼ ð�1:072515; 1:072515Þ:

While all of these constraints are not strictly forbidden,
e.g., c12 can be negative,[45] the stiffness matrix (Eq. [2])
must be positive definite which restricts c11; c44; and all
constants along the diagonal to be positive. Instead,
these constraints were developed through trial and error
to minimally restrict the sampler while also mitigating
the occurrence of initial parameterizations that would
confound the sampler. Fewer constraints afford fewer
opportunities for the sampler to find local regions of
parameter space where the posterior probability
increases as a constraint is approached. For these
reasons, it is recommended that implausible yet physi-
cally permissible values not be restricted through con-
straints, but instead discouraged through specifying
priors whenever possible as detailed by Section III–D.

2. Verifying sampling behavior
The full scales on Figure 4 do not allow one to

observe the sampling behavior in the stationary region
of the posterior. Instead, a detailed view of the last 100
samples of the CoNi-C1 inversion is provided in
Figure 5. Here, one can verify quality sampling by
observing the following: sufficient mixing as each chain
freely explores the posterior, no obvious trends (i.e.,
stationary), no multimodal tendencies, and mostly
uncorrelated behavior between subsequent samples of
a given chain. Of the four parameters plotted, the noise
parameter r is clearly being sampled with the least
efficiency as it exhibits some correlated sampling behav-
ior. Overall, the traceplots provided in Figures 4 and 5
provide great confidence in our efforts to use HMC to
calculate the posterior distributions, with further mea-
sures for validation discussed in Section III–E–3.
After verifying quality sampling, all samples gener-

ated after the warm-up period across the various HMC
chains are combined to generate histograms for visual
summary of the results. Figure 6 provides a set of
histograms from specimen CoNi-B2 that contain 4000
samples, from four combined chains of 1000 samples
each, that are typical of the results collected. Fitting
with a Gaussian distribution confirms the normal

Fig. 4—Traceplots of the first 100 warm-up samples of four
independent HMC chains for the CoNi-C1 specimen demonstrating
robust convergence to the stationary region of the posterior from
remarkably distant, randomly generated, initial conditions.

Fig. 5—Traceplots of the last 100 sampling samples of four
independent HMC chains for the CoNi-C1 specimen demonstrating
desirable uncorrelated sampling behavior of the stationary region of
the posterior for the noise and three elastic parameters.
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behavior of the parameter distributions around a single
mode, and allows for the distributions to be character-
ized by their mean and standard deviation (SD). With
SD being a direct estimate of the uncertainty, it can be
reduced through the generation of additional HMC

samples according to 1=
ffiffiffiffiffiffiffiffi
Neff

p
, where Neff is the number

of effective samples.[17]

3. Posterior predictive distributions and validation
A check on the posterior predictive distributions as

detailed in this section provides essential information for
validating results. Posterior predictive distributions are
developed by taking posterior samples of the estimated
parameters and generating new resonance modes that
reflect the implications of the uncertainty in the param-
eter estimates. Upon inspection, 95 pct of the measured
modes should fall within the 95 pct intervals, otherwise
this suggests that there are likely outliers in the
measured data or the model is ill-defined.[16]

As a visual aid, posterior predictive plots like those
shown in Figure 7 are generated. Both plots show the
difference between the posterior predictive and the
measured mode frequencies, designated as the error on
the abscissa, for the first 40 modes of specimen

Co-Ternary-B. The length of the bars about each point
indicates the 95 pct intervals. With units of kHz, this
interval is not the mode invariant noise parameter r,
instead it represents the frequency range about which 95
pct of resonance mode frequencies from the generated
posterior predictive distributions exist. With only a 5 pct
chance that a measured mode and a posterior predictive
mode would differ by more than the interval indicated, a
posterior predictive plot with 40 modes might be
expected to exhibit 2 modes with an error beyond the
95 pct interval. The difference between the plots in
Figure 7 is the polynomial order used for the forward
calculation, with P ¼ 10 for Figure 7(a) and P ¼ 12 for
Figure 7(b).
For validation, one should inspect the posterior

predictive plot to ensure that there is neither an
observable trend in the error, nor any discernible
patterns or structure that may indicate an ill-defined
model. A positive trend in the error of Figure 7(a) is
apparent by the first 12 modes exhibiting a negative
error, while six of the last 7 modes are above the zero
line. Additionally, the last two modes of Figure 7(a) lie
unusually far beyond the 95 pct interval, suggesting
either the noise is not independent and identically
distributed, or there is a problem with the forward
calculation. The fact that the unusual behavior exhibited
by modes 39 and 40 in Figure 7(a) is not observed in
Figure 7(b) is a clear sign that numerical imprecision of
the forward calculation is the root cause, and may lead
to biased inference results. For these reasons, the P ¼ 10
results are discounted in favor of the P ¼ 12 results.
Although it is worth noting that the P ¼ 10 inference
ran for 20.3 hours, while the P ¼ 12 inference ran for
60.9 hours. For situations where computational time is
of concern, using fewer resonance modes (N) would
allow a smaller P without introducing numerical error
into the results.

IV. RESULTS AND DISCUSSION

Table IV summarizes the elastic parameter estimates
from two parallelepiped specimens (A and B or 1 and 2)
of each alloy composition, measured at room temper-
ature, in the solution heat-treated and fully aged
condition. Very good agreement is observed between
the specimen pairs, with the largest deviation for
Co-6Ti. The estimates of the anisotropy ratio (A) for
Co-6Ti-A and Co-6Ti-B vary by about 1 pct, and as a
result the estimates of c12 (which was not estimated
directly) vary by just over 2 pct.

A. Influence of Alloy Chemistry on Elastic Constants

First consider a comparison between the five CoNi-
based alloys in Table IV. CoNi-C exhibits the lowest
anisotropy of the class at 2.83, while CoNi-A+ exhibits
the largest A of 2.88. The c44 value of CoNi-C is also the
smallest of the CoNi-based alloys, about 1 pct smaller
than the largest c44 again belonging to CoNi-A+.
CoNi-C is compositionally the most distinct CoNi alloy
with 6.6–11.9 at. pct less Co and 7.3–9.8 at. pct more Ni

Fig. 6—Histogram populated with 4000 samples (four chains of 1000
samples each) for the CoNi-B2 specimen. Gaussian distributions
overlay the histograms to demonstrate the parameters are normally
distributed and justify describing the distributions with a mean and
standard deviation.
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likely contributing to its lower c12; c44; and A values.
Interestingly, the c11 constant barely varies beyond the
approximately 1 GPa uncertainty for the 5 CoNi alloys.
Overall, the data in Table IV indicate that all of the
CoNi alloys are elastically quite similar, while even
moderate alloying additions within the CoNi alloy class
have only a small effect on elastic constants.

The Co-based alloy class offers an interesting oppor-
tunity to compare three alloys with nearly constant Co
concentrations, which appeared to be a significant factor
in CoNi-based alloys discussed previously. Overall, the
elastic constants of the Co-based alloys differ from each
other by a greater extent than the CoNi-based alloys,
indicating that Co-based alloy elastic constants are more
dependent on small to moderate compositional differ-
ences than their CoNi-based counterparts. Interestingly,
the Co-6Ti alloy was the least stiff of the three Co-based
alloys, exhibiting smaller c11, c12; and c44 elastic constants.

The Co-Ternary alloy exhibited the greatest c44 and A,
while Co-2Ta was marginally stiffer in the c11. With a
range varying by 3.3 pct, the c44 parameter changed the
most as a result of alloying, followed by the anisotropy
ratio varying by 2.2 pct among the Co-based alloys.
One of the greatest differences between the moduli of

the various alloy classes is the anisotropy ratio exhibited
by the Co-based alloys. A increased from a low of about
2.81 for the Ni-based alloy CMSX-4 to around 2.86 for
the CoNi-based alloys, or approximately + 1.8 pct. A
more dramatic increase was observed between the
CoNi-based alloys and the Co-based alloys as A
increased by an additional 11 pct, from an average of
2.86 to an average of 3.17. With a nearly negligible
increase between CMSX-4 and the CoNi alloy class, the
c12 elastic constant exhibited a much more significant
increase of about 4 to 6 GPa (+ 3 pct) between the
CoNi- and the Co-based alloy classes.
Following a similar progression from lowest to

highest Co concentration, the c44 modulus is observed
to consistently increase with increasing Co. Except now,
the most dramatic increase in c44 is between the
Ni-based alloy and the CoNi alloys. A smaller, yet still
significant, increase exists between the CoNi- and the
Co-based alloy classes. Quantifying this, the c44 modu-
lus increased by 10 GPa (+ 8 pct) from CMSX-4 to the
CoNi alloy class, before increasing by a more modest 4
to 8 GPa from the CoNi- to the Co-based alloy class.
Initially, c11 follows a similar trend with increasing

Co, with an increase of about 7 to 8 GPa (or about 3
pct) between CMSX-4 and the average CoNi-based
alloy. However, the c11 elastic constant fails to increase
much beyond the 256 to 257 GPa range exhibited by the
CoNi alloy class. With approximately 35 pct more Co
than the average CoNi alloy: Co-2Ta exhibits a c11 that
is only 2 to 3 GPa higher, Co-Ternary is basically
equivalent, while Co-6Ti exhibits a c11 that is 7 GPa
lower than the average CoNi alloy.

B. Effect of Heat Treatments on Elastic Properties

In addition to the results summarized in Table IV, one
alloy from each class was evaluated in the solution
heat-treated condition to investigate the potential role of
changing volume fractions of the FCC and L12 phases.
Specifically, two parallelepipeds of CMSX-4, Co-6Ti,
and CoNi-A were solution heat treated, then measured
with RUS, aged, and finally measured with RUS again.
The results of this heat treatment study are summarized
in Table V, with the heat treatment schedules summa-
rized previously in Table II. Clearly, the thermal history
does not appreciably affect the elastic properties of the
alloys investigated. While a similar result is reported by
Parsa et al.[46] who used RUS to study the effect of heat
treatments on the elastic properties of a single crystal
Ni-based superalloy with a composition similar to that
of CMSX-4. These results suggest that the room
temperature elastic constants of the ordered and disor-
dered phases of the Co- and CoNi-based alloys are not
substantially different from each other, as has been
previously reported for Ni-based alloys.[47,48]

Fig. 7—Co-Ternary-B posterior predictive plots demonstrating (a)
undesirable trends in the error when P ¼ 10, i.e., polynomial order is
insufficiently small, and how (b) using P ¼ 12 resolves this issue.
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C. Effect of Mode Selection and Polynomial Order

In theory, each specimen has one true set of elastic
constants that are probed indirectly by fitting a subset of
the lowest-frequency modes, measured via RUS, with an
appropriately parameterized model. Although even a
well-fitting model may yield biased parameter estimates if
the measured data contain outliers, or lack necessary
information about the complete elastic response. Con-
sidering that the shape of a specimen influences the types
of modes that occur,[49] and that the lowest-frequency
modes of a specimen are dominated by the smallest (i.e.,
shear) elastic moduli,[44,49] it is logical to be concerned
that any small sampling of these lowest-frequency modes
might provide incomplete information. Although the
definition of a small sampling ofmodes is not obvious and
warrants further attention, it is noted in Section II–B–1
that the 9� 10� 11 mm parallelepiped geometry was
intentionally devised with these concerns in mind.

One obvious way to mitigate the potential of a
non-representative sampling of resonance modes being
used for a given inversion is to simply use more modes.
This assumes that a larger sampling of the lowest-fre-
quency resonance modes would be less influenced by any

single outlier mode, more likely to contain a variety of
mode types, and include resonances that are sensitive to
the larger moduli that influence higher-frequency
modes. Of course, there are a couple of potential
problems with this strategy that need to be mentioned.
First, the larger the number of modes used (N), the more
likely it is that the list contains a missing or spuriously
identified mode that could confound the inversion.
Fortunately, with the transducer cradle configuration as
described, and the fact that each inference is based on an
average of five individual broad measurements, missing
or spurious modes are quite rare occurrences. Further-
more, Section IV–D demonstrates how a missing mode
is readily identifiable using posterior predictive plots,
allowing for the measured mode list to be corrected. A
second and potentially less obvious issue is that the
accuracy of the forward model generally decreases as the
order of the resonance modes increases, necessitating a
higher polynomial order (P) and substantially greater
evaluation time. This is all motivation for a study of
inference results as a function of N and P.
Table VI summarizes the parameter estimates from

a series of Bayesian inferences of specimen CoNi-A+2

Table IV. Summary of the Best Inferences of Elastic Parameters for Two Parallelepiped Specimens of Each Alloy

Specimen Name c11 (GPa) Mean ± SD c12 (GPa) Mean ± SD c44 (GPa) Mean ± SD A (unitless) Mean ± SD

CMSX-4-A 249.0 ± 2.3 157.0 ± 2.4 129.2 ± 0.29 2.811 ± 0.011
CMSX-4-B 248.3 ± 2.0 156.3 ± 2.1 129.6 ± 0.28 2.817 ± 0.0097
Co-Ternary-A 257.3 ± 0.79 164.2 ± 0.83 149.9 ± 0.13 3.219 ± 0.0045
Co-Ternary-B 256.7 ± 0.58 163.4 ± 0.60 150.0 ± 0.10 3.217 ± 0.0035
Co-2Ta-A 258.8 ± 1.8 164.5 ± 1.9 147.7 ± 0.26 3.134 ± 0.0085
Co-2Ta-B 259.3 ± 1.6 165.1 ± 1.7 147.9 ± 0.23 3.141 ± 0.0077
Co-6Ti-A 248.1 ± 1.4 156.8 ± 1.4 145.4 ± 0.24 3.188 ± 0.0086
Co-6Ti-B 250.7 ± 1.8 160.2 ± 1.9 145.2 ± 0.23 3.211 ± 0.0086
CoNi-A1 256.7 ± 0.36 157.6 ± 0.37 142.1 ± 0.08 2.868 ± 0.0029
CoNi-A2 256.4 ± 0.41 157.6 ± 0.41 141.9 ± 0.09 2.873 ± 0.0032
CoNi-A+1 256.7 ± 0.86 157.9 ± 0.90 142.2 ± 0.11 2.880 ± 0.0036
CoNi-A+2 255.9 ± 0.66 157.2 ± 0.70 142.0 ± 0.09 2.880 ± 0.0030
CoNi-B1 257.1 ± 1.3 158.2 ± 1.4 141.6 ± 0.21 2.864 ± 0.0068
CoNi-B2 257.5 ± 1.0 158.7 ± 1.1 141.7 ± 0.17 2.868 ± 0.0057
CoNi-C1 256.0 ± 0.67 156.8 ± 0.70 140.3 ± 0.13 2.828 ± 0.0044
CoNi-C2 256.1 ± 0.75 156.6 ± 0.79 140.6 ± 0.14 2.825 ± 0.0048
CoNi-D1 256.2 ± 0.60 157.2 ± 0.62 141.2 ± 0.09 2.853 ± 0.0029
CoNi-D2 257.8 ± 0.78 158.6 ± 0.82 141.3 ± 0.12 2.849 ± 0.0036

Table V. Effect of Solution Heat Treatment and Subsequent Aging Treatment on Elastic Constants

Specimen name c11 (GPa) Mean ± SD c12 (GPa) Mean ± SD c44 (GPa) Mean ± SD A (unitless) Mean ± SD

CMSX-4-A-SHT 247.1 ± 2.1 155.4 ± 2.2 129.1 ± 0.28 2.813 ± 0.010
CMSX-4-A-Aged 249.0 ± 2.3 157.0 ± 2.4 129.2 ± 0.29 2.811 ± 0.011
CMSX-4-B-SHT 246.1 ± 1.8 154.3 ± 1.9 129.4 ± 0.31 2.819 ± 0.011
CMSX-4-B-Aged 248.3 ± 2.0 156.3 ± 2.1 129.6 ± 0.28 2.817 ± 0.0097
Co-6Ti-A-SHT 248.5 ± 0.77 157.6 ± 0.80 146.0 ± 0.14 3.211 ± 0.0049
Co-6Ti-A-Aged 248.1 ± 1.4 156.8 ± 1.4 145.4 ± 0.24 3.188 ± 0.0086
Co-6Ti-B-SHT 250.1 ± 1.1 159.6 ± 1.1 145.6 ± 0.13 3.218 ± 0.0046
Co-6Ti-B-Aged 250.7 ± 1.8 160.2 ± 1.9 145.2 ± 0.23 3.211 ± 0.0086
CoNi-A1-SHT 255.5 ± 0.70 156.2 ± 0.72 142.2 ± 0.10 2.864 ± 0.0029
CoNi-A1-Aged 256.7 ± 0.36 157.6 ± 0.37 142.1 ± 0.08 2.868 ± 0.0029
CoNi-A2-SHT 256.2 ± 0.43 156.9 ± 0.44 142.2 ± 0.10 2.864 ± 0.0033
CoNi-A2-Aged 256.4 ± 0.41 157.6 ± 0.41 141.9 ± 0.09 2.873 ± 0.0032

METALLURGICAL AND MATERIALS TRANSACTIONS A



using various N and P values. The first takeaway is
that consistent results are achieved despite the choice
of N, with the best results from the perspective of the
lowest uncertainty achieved when N ¼ 40. Recalling
Figure 7 and the discussion in Section III–E–3, it is
apparent that P ¼ 10 is insufficient when N ¼ 40, thus
P ¼ 12 is exclusively used for inferences when N>30.
The case where N ¼ 30 provides an interesting com-
parison as both P ¼ 10 and P ¼ 12 inferences were
conducted. As this comparison makes clear, P ¼ 12
leads to more precise parameter estimates, but the
mean values are not appreciably different. A similar
observation comes from the N ¼ 60 and N ¼ 70
inversions where the uncertainty due to an insuffi-
ciently small P, as determined through careful inspec-
tion of the posterior predictive plots, contributes to
slightly worse precision. Fortunately, the accuracy
appears minimally affected when numerical error is
introduced by an insufficiently small P.

D. Impact of Missing or Spurious Modes

A common issue that confounds RUS inversion
efforts is missing or spuriously identified modes from a
broadband RUS measurement. This is particularly
problematic when the mode is of lower frequency and
near the beginning of a frequency ordered list because it
displaces every subsequent mode in the list. When prior
information about the elastic properties of a specimen is
absent and no mode shape measurement capabilities are
available, it is almost impossible for one to be certain
that a given measured list of modes is complete and
without error. Furthermore, conducting an inversion
(either an optimization or a Bayesian inference) from a
measured frequency list with a missing mode may lead
to erroneous elastic property estimates, or unsatisfacto-
rily large uncertainty bounds. Fortunately, by estimat-
ing the noise parameter (r) as part of the Bayesian
inference and conducting the validation checks dis-
cussed in Section III–E–3, missing or spurious modes
are readily identifiable. Then, the spurious mode can
easily be excluded to correct the measured frequency list
and the inversion repeated for significantly improved
results.
For example, mode 32 of specimen CoNi-D1 was not

identified prior to running an N ¼ 40, P ¼ 12 inversion,
with results summarized in Table VII. The first indica-
tion of a problem with the inversion was the estimate of
r = 2.70 ± 0.28 kHz. This noise estimate is an order of
magnitude larger than a typical successful inversions,
and over 15 times larger than the same inversion after
properly accounting for the missing mode. Although a
high r estimate is indicative of an ill-defined model, it
does not help with identifying the location of a
potentially missing mode. For this, a posterior predic-
tive plot like Figure 8 is instrumental, as it clearly
indicates the location of the outlier as mode 32. Given
that error is defined here as the modeled mode frequency
minus the measured mode frequency, an outlier with a
negative error indicates a missing mode while a positive
error indicates a spurious mode in the measured
frequency list.

Table VI. Summary of Parameter Estimates as a Function of the Number of Modes Used for Specimen CoNi-A+2

Modes
Used

Polynomial
Order

Noise r (kHz)
Mean ± SD

c11 (GPa)
Mean ± SD

c12 (GPa)
Mean ± SD

c44 (GPa)
Mean ± SD

A (Unitless)
Mean ± SD

1–10 10 0.24 ± 0.15 256.7 ± 4.6 158.0 ± 4.7 141.7 ± 0.85 2.869 ± 0.022

1–15 10 0.134 ± 0.041 255.3 ± 1.7 156.5 ± 1.8 142.0 ± 0.30 2.875 ± 0.0080

1–20 10 0.135 ± 0.029 256.9 ± 1.3 158.2 ± 1.3 142.1 ± 0.14 2.880 ± 0.0040
1–25 10 0.180 ± 0.032 255.8 ± 1.5 157.2 ± 1.5 142.1 ± 0.15 2.882 ± 0.0044
1–30 10 0.216 ± 0.033 257.4 ± 1.5 158.9 ± 1.6 141.9 ± 0.16 2.880 ± 0.0051

1–30 12 0.152 ± 0.025 256.9 ± 1.1 158.3 ± 1.1 142.0 ± 0.12 2.882 ± 0.0037
1–35 12 0.144 ± 0.020 256.4 ± 0.90 157.8 ± 0.94 142.0 ± 0.099 2.880 ± 0.0032
1–40 12 0.138 ± 0.018 255.9 ± 0.66 157.2 ± 0.70 142.0 ± 0.095 2.880 ± 0.0030
1–45 12 0.210 ± 0.024 256.3 ± 1.0 157.7 ± 1.1 141.9 ± 0.13 2.879 ± 0.0042
1–50 12 0.218 ± 0.023 256.5 ± 0.98 158.0 ± 1.0 141.8 ± 0.12 2.878 ± 0.0041
1–60 12 0.242 ± 0.024 255.6 ± 1.0 157.0 ± 1.1 141.7 ± 0.14 2.875 ± 0.0046
1–70 12 0.336 ± 0.031 255.3 ± 1.2 156.8 ± 1.3 141.6 ± 0.18 2.874 ± 0.0061

Note the results highlighted in bold values are only provided for explanatory purposes as they are either biased by numerical error (i.e., insufficient
polynomial order) or insufficient data.

Fig. 8—Posterior predictive plot of CoNi-D1 demonstrating how
such a plot can be used to quickly identify which mode was missed
during RUS measurement.
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E. Inversion Without Estimating Orientation

To demonstrate the necessity of estimating crystal
orientation and elastic properties simultaneously, a
previously successful inversion is repeated with the
orientation parameters now fixed. CoNi-A1 was selected
for this demonstration because the specimen resulted in
one of the best inversions as demonstrated by the precise
parameter estimates summarized in Table IV. The effect
of fixing the three cubochoric orientation parameters
enforces the (incorrect) assumption that the crystal and
specimen axes are perfectly aligned. However, no
attempt was made to measure the crystal axes of the
parent single crystal before the parallelepiped specimen
was fabricated, so it is extremely unlikely that the axes
are indeed aligned. This is a perfect example of an
ill-defined model, because there should be no combina-
tion of c11; A, and c44 that will lead to a forward model

evaluation that remotely agrees with the RUS measured
data.
First see the traceplots in Figure 9, which provide the

first 100 warm-up samples of the CoNi-A1 inversion
with fixed orientation parameters. Given that the initial
conditions are randomly generated, there is an initial
period of exploration where the parameter estimates are
improved. But unlike the rapid convergence of all four
chains to a single stationary region of the posterior as
Figure 4 shows, the four chains do not agree after the
first 100 samples. In fact, the chains never agree on a
single set of elastic parameters to explain the measured
data, as Figure 10 shows by plotting the last 100 samples
from the sampling regime, just as Figure 5 previously
plotted the last 100 samples from a successful inversion
of CoNi-C1. Multimodal tenancies are demonstrated by
the elastic parameter estimates of chains 2–4, while the

Table VII. Summary of Parameter Estimates for Two Inversions of CoNi-D1, With and Without Accounting for Missing

Mode 32

Modes
Used

Missing
Mode 32

Poly.
Order

Noise r (kHz)
Mean ± SD

c11 (GPa)
Mean ± SD

c12 (GPa)
Mean ± SD

c44 (GPa)
Mean ± SD

A (Unitless)
Mean ± SD

1–40 yes 12 2.70 ± 0.28 283 ± 25 186 ± 26 147.0 ± 3.3 3.04 ± 0.11
1–40 no 12 0.170 ± 0.022 256.4 ± 0.60 157.4 ± 0.62 141.3 ± 0.11 2.856 ± 0.0034

Fig. 9—Traceplots of the first 100 warm-up samples of four
independent HMC chains for the CoNi-A1 specimen, without
estimating orientation simultaneously.

Fig. 10—Traceplots of the last 100 sampling samples of four
independent HMC chains for the CoNi-A1 specimen inverted with
fixed orientation parameters.
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estimate of r around 7 kHz is over an order of
magnitude larger than the successful inversions.
Table VIII provides a comparison of the two CoNi-A1
inversion results as a summary.

V. CONCLUSION

CmdStan-RUS is described and demonstrated here
for the first time as a versatile and efficient tool for RUS
Bayesian inference of elastic properties. This open-
source tool offers significant improvements over tradi-
tional RUS inversion schemes, from a simplified imple-
mentation to more robust convergence behavior.
Notable attributes and advantages are provided below
as a summary of the technique:

� No guess values of elastic constants are necessary to
initialize an inversion.

� Identifying measured modes and pairing of mea-
sured and modeled lists of modes is completely
unnecessary.

� Missing or spurious modes are readily identified
from posterior predictive plots and easily corrected.

� Random initial parameterization of HMC chains
safeguards against biasing results with user-specified
values.

� Estimating crystal orientation eliminates the need
for costly measurements and simplifies specimen
fabrication.

� Statistical modeling tools used by CmdStan-RUS
are automatically tuned and work reliably without
user input.

� Estimating a noise parameter models a real feature
of repeated RUS measurements and reduces the
chance of biased parameter estimates.

� Multiple HMC chains from markedly different
initial conditions converging to a single stationary
region of the posterior provide great confidence in
results.

� Consistent results have been demonstrated using a
range of user-specified polynomial order and mode
count.

� A failed HMC chain is rare, trivial to identify, and
may be discarded (or rerun) without biasing results.

� Quantification of parameter uncertainty is intrinsic
to a Bayesian approach and comes directly from the
posterior distributions.

� While only cubic elastic symmetry was considered
here, trivial modifications of input files allow for
inversions of lower-symmetry materials as well.

Valuable insights have been gained through the
application of CmdStan-RUS to estimate the elastic
constants of a variety of single crystal Ni-, Co-, and

CoNi-based c0 containing alloys. Excellent agreement is
observed, both among independent chains of a single
inference and between the estimated parameters of the
two parallelepiped specimens of each alloy. This has led
to the following conclusions with regard to the elastic
constants of the investigated single crystal materials:

� Co-based alloys exhibited elastic anisotropy (A) 11
pct greater than the CoNi-based alloys and 13 pct
greater than the Ni-based alloy CMSX-4.

� The c44 elastic constant was observed to increase
monotonically as Ni was replaced by Co for a total
average increase of 12 pct between CMSX-4 and the
Co-based alloys.

� The c12 elastic constant was only marginally higher
for the CoNi-based alloys as compared to CMSX-4,
while a 3 pct increase between the CoNi- and the
Co-based alloys contributes to the larger A of the
Co-based alloys.

� The CoNi alloys exhibited similar elastic properties
while Co-based alloys were more sensitive to
alloying.

� Heat treatments designed to modify the c� c0

microstructure did not appreciably affect the elastic
constants of the alloys investigated.
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