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Bayesian modeling and Hamiltonian Monte Carlo (HMC) are utilized to formulate a robust algo-

rithm capable of simultaneously estimating anisotropic elastic properties and crystallographic ori-

entation of a specimen from a list of measured resonance frequencies collected via Resonance

Ultrasound Spectroscopy (RUS). Unlike typical optimization procedures which yield point esti-

mates of the unknown parameters, computing a Bayesian posterior yields probability distributions

for the unknown parameters, and HMC is an efficient way to compute this posterior. The algorithms

described are demonstrated on RUS data collected from two parallelepiped specimens of structural

metal alloys. First, the elastic constants for a specimen of fine-grain polycrystalline Ti-6Al-4 V

with random crystallographic texture and isotropic elastic symmetry are estimated. Second, the

elastic constants and crystallographic orientation for a single crystal Ni-based superalloy CMSX-4

specimen are accurately determined, using only measurements of the specimen geometry, mass,

and resonance frequencies. The unique contributions of this paper are as follows: the application of

HMC for sampling the Bayesian posterior of a probabilistic RUS model, and the procedure for

simultaneous estimation of elastic constants and lattice-specimen misorientation. Compared to pre-

vious approaches these algorithms demonstrate superior convergence behavior, particularly when

the initial parameterization is unknown, and enable substantially simplified experimental proce-

dures. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5017840

[VMK] Pages: 71–83

I. INTRODUCTION

Ultrasonic techniques such as Resonant Ultrasound

Spectroscopy (RUS) provide the most accurate characteriza-

tion of elastic properties,1,2 as well as superior precision and

repeatability compared to static methods.3 Pulse-echo ultra-

sonic methods assess characteristic elastic wave propagation

velocities of a material via time-of-flight measurements, and

with a plane-wave assumption provide simply-defined rela-

tionships for elastically isotropic media.1,4 However, when

the material is elastically anisotropic, pulse-echo experimen-

tal methods are complicated and often require multiple

specimens, with parallel faces coincident to planes of elastic

symmetry, and numerous independent velocity measure-

ments along particular crystallographic directions.1,4 RUS

methods do not require a plane-wave assumption,1 nor do

they require alternative experimental procedures when char-

acterizing elastically anisotropic materials.

Modern experimental procedures for RUS are discussed

in great detail by Migliori et al.,2,5,6 but generally involve

excitation of a specimen with vibrations from a piezoelectric

element that is in physical contact with the specimen. When

the drive frequency of the piezoelectric element approaches

a natural vibrational mode frequency of the specimen, a

resonance condition develops from constructive interference

of opposite-traveling elastic waves to generate a standing

wave throughout the specimen.2 This standing wave leads to

deflections of the specimen surface that are magnified in

amplitude, potentially thousands of times greater than the

drive amplitude, and are easily recorded by a second contact-

ing piezoelectric element.1,2 When collecting a broadband

RUS measurement the lowest-frequency mode is first identi-

fied, then the specimen is excited through a continuous range

of greater frequencies until a desired quantity of modes are

collected. These characteristic resonance frequencies are

then provided to an inversion algorithm for estimating elastic

properties. Today, the greatest impediments to broad appli-

cation of resonance methods for elastic property evaluation

are not empirical, but computational in nature.

Beyond inverting elastic properties with RUS data, crys-

tallographic orientation can also be determined, as briefly

detailed by Sarrao et al.7 The techniques developed here

incorporate the ability to simultaneously estimate elastic

properties and crystal orientations when the crystal reference

frame is misaligned with the specimen reference frame.

Simply machining a single crystal specimen along the crystal

growth direction is insufficient, as only a few degrees of mis-

alignment can lead to unacceptably large uncertainty in mod-

ulus estimates. X-ray diffraction (XRD) methods are most

often employed to measure the crystallographic orientation

of a RUS specimen,2,7 but this adds considerable complexitya)Electronic mail: bgoodlet@engineering.ucsb.edu
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and cost to experimental methods as well as an additional

source of measurement error. Sarrao et al.7 were first to

report inverting crystal orientation and elastic moduli simul-

taneously, and rightly note the added value provided by such

a capability. However, little guidance is offered toward

reproducing their results beyond instructing the reader to

proceed with “proper caution” by performing the inversion

with “slower convergence steps.” The present research

details an alternative and robust approach for simultaneously

estimating crystal orientation and elastic properties.

A. Computational considerations for inversion

While straightforward theoretically, there is consider-

able difficulty in the practical implementation of a RUS

inversion framework. First, no general analytical solution

exists for the computation of resonance frequencies for a

three-dimensional (3D) volume of material. Therefore,

approximate (numerical) methods must be employed.2

Meaningful contributions of numerous researchers over

many decades including Holland,8 Demarest,9 Ohno,10 and

Visscher et al.11 have culminated in a generalized numerical

approach for solving the forward problem based on varia-

tional methods. The xyz method of Visscher et al. is applica-

ble to most simple specimen geometries and requires

minimal computational resources,11 given that all of the req-

uisite information about the specimen geometry and material

properties are provided. Ultimately, the viability of any

inverse method for evaluating elastic properties from RUS

measurements depends on an efficient and accurate forward

calculation method.2

As the resonance frequencies of a specimen are depen-

dent on its shape, elastic constants, density, external forces,

and the orientation of the elastic body, the deconvolution of

unknown parameters from resonance frequencies is far from

a trivial task. In fact, no closed form solution to this problem

exists whereby unknown attributes of the specimen geometry

or material properties are computed directly from a mea-

sured list of resonance frequencies.2 Therefore, inverse

methods are employed to find values for the unknown

parameters that bring a forward calculation of resonance fre-

quencies into sufficient agreement with the resonance fre-

quencies measured via RUS. Historically, elastic property

inversion of RUS data has been accomplished via nonlinear

least square optimization algorithms.2,12,13 For this task, the

Levenberg-Marquardt (LM) algorithm popularized by

Migliori et al.2,5 combines a modified Newton method with

the steepest descent algorithm5,7,12 to perform the inversion.

The least squares approach for overdetermined systems

is popular due to its computational simplicity, but often suf-

fers from a lack of robustness to outliers in the data set.14

Another unfortunate characteristic of optimization-based

inversion methods is that different initial parameterizations

(i.e., “best guess” elastic moduli and optimizer-specific

parameters) can lead the optimization algorithm to alterna-

tive solutions, while “poor” initial guess values may pre-

clude convergence entirely.15,16 This problem is not unique

to the LM algorithm, as similar concerns exist for genetic

algorithms.15,17,18

An ideal inversion framework would be robust to uncer-

tainty in the initial parameterization, noise in the measured

data, misidentified modes, as well as missing or spurious

modes, and would consistently converge to the correct solu-

tion. Ogi et al.19 demonstrate an optimizer-based inversion

framework capable of reliable convergence without the ben-

efit of quality initial guess moduli. But their framework first

requires proper mode identification via laser Doppler inter-

ferometry mapping of resonance mode shapes.19 Indeed, col-

lecting additional data may simplify the inversion procedure,

as would preparing a specimen with its crystal axes aligned

with the specimen axes. But these methods only complicate

experimental procedures while adding considerable cost.

Ogi et al. go on to conclude that “correct mode identification

is essential for successful, optimum determination of mate-

rial coefficients.”19 However, as this research will demon-

strate, mode identification, quality initial guess moduli, and

x ray measurements of crystal orientation are by no means

essential elements of a robust RUS inversion framework.

B. Implications of a Bayesian approach to inversion

A considerable downside to Bayesian techniques is the

increased computation time, as the number of forward calcu-

lations necessary for Hamiltonian Monte Carlo (HMC) sam-

pling of the posterior distributions is significantly greater

than optimizer-based methods. However, thanks to advances

in computing, Bayesian estimates of elastic constants and

orientation parameters from measured resonance frequencies

is now possible.

Most classic RUS computations provide only point esti-

mates of elastic constants; that is, single number estimates

for each parameter in the RUS model regardless of the

amount or precision of data. Point estimates are unsatisfac-

tory in many inverse problems because they do not give

information about how well a fit worked or how well a

parameter is known. Bayesian techniques can be used to

avoid these problems by systematically estimating uncer-

tainty. It is very reasonable that a point estimate produces

answers that are “good enough” in controlled experiments,

but it is difficult to develop confidence in the methods for

experiments where prior knowledge is sparse.

In a manner similar to that of Bernard et al.,20 the

approach developed here improves upon classical RUS

inversion by reformulating the problem as a Bayesian infer-

ence and characterizing the unknown parameters through

sampling the resultant posterior distribution. The capability

to simultaneously estimate the orientation and elastic proper-

ties of elastically anisotropic bodies offers further improve-

ment to classical RUS inversion techniques, simplifying

specimen preparation procedures and eliminating a potential

source of measurement error. Key advantages and disadvan-

tages of a Bayesian formulation will be highlighted, along

with experimental and computational considerations helpful

for replication. Ultimately this work intends to demonstrate

robust convergence behavior irrespective of initial parame-

terization and easy-to-interpret uncertainties for all parame-

ter estimates.
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II. EXPERIMENTAL METHODS

A. Specimen preparation

Regular parallelepiped specimens of fine-grained poly-

crystalline Ti-6Al-4 V (Ti-64) and single crystal Ni-based

superalloy CMSX-4 were machined via wire EDM (electri-

cal discharge machining) and then carefully ground with

800-grit sandpaper to remove the superficial EDM damage

layer. The Ti-64 specimen measured 7.753� 9.057

� 13.199 mm, with a mass of 4.0795 g and a calculated den-

sity of 4402 kg/m3. The CMSX-4 parallelepiped dimensions

were 11.959� 13.953� 19.976 mm with a mass of

29.0041 g and a calculated density of 8701.4 kg/m3. With

randomly oriented grains, the Ti-64 specimen exhibits iso-

tropic elastic symmetry while the single crystal CMSX-4

material possesses cubic symmetry. Minimizing geometric

defects during specimen fabrication and precise measure-

ment of the geometry and mass are important for minimizing

the uncertainty in the HMC parameter estimates; with a

“good” parallelepiped geometry, according to Migliori et al.,
exhibiting dimensional errors less than 0.1%.5 The only

notable divergence between this work and the typical speci-

men fabrication procedures outlined by Migliori and Sarrao2

is that no attempt was made to align the axes of the parallele-

piped to the crystallographic axes of the CMSX-4 material.

As orientation and elastic constants will be determined

simultaneously through inversion, any arbitrary misorienta-

tion between the crystal and specimen axes is allowed.

B. RUS

1. RUS experimental setup

RUS data were collected using commercially-available

RUS equipment developed by the Vibrant Corporation

(Albuquerque, NM) consisting of three primary components:

a transceiver, a piezoelectric transducer (PT) cradle, and a

computer control unit. Figure 1 shows the configuration of

the PT cradle, comprised of three custom-built omnidirec-

tional PTs held in a tripod configuration with adjustable opti-

cal table fixtures affixed to a vibration-damped breadboard.

The PTs were custom built and consist of a cylindrical brass

housing encasing a piezoelectric element, electrical leads,

and a wear-resistant hemispherical silicon carbide tip. The

parallelepiped specimens freely rest upon the silicon

carbide-tipped transducers, with no couplant necessary to

facilitate the transmission of vibrations between the trans-

ducers and the specimen.1,2

The “drive PT” in Fig. 1 is driven with a swept sinusoi-

dal signal from the transceiver to excite the specimen to res-

onate, while two “receive PTs” convert vibrations from the

specimen back to an electrical signal that is returned to the

transceiver and computer control unit for analysis. As a prin-

ciple of mechanical resonance, a standing elastic wave

develops throughout the specimen when the drive frequency

approaches a resonance frequency of the specimen. This

results in sample deflections that are amplified by hundreds

to thousands of times that of the drive force amplitude,

depending on the ultrasonic attenuation (i.e., damping char-

acteristics) of the material.1,2 Plotting the signal registered

by the two receive PTs as a function of the drive frequency

yields a broadband RUS spectrum plot, with each peak indi-

cating the frequency of a unique resonance mode. Figure 2

shows a broadband resonance spectrum plot collected from

the CMSX-4 specimen, with 53 resonance modes across the

200 kHz broadband.

2. RUS measurement considerations

It is important to minimize the magnitude and the vari-

ability of any external forces on the specimen while collect-

ing RUS data because these external forces can interfere

with the free vibrations of the specimen and affect the fre-

quencies that are measured.5,21 Configuring the PTs into a

fixed cradle as detailed by Fig. 1 serves to minimize contact

force variability between the specimen and the transducers

across multiple measurements and specimen sizes. However,

as the specimen is free to deflect away from the PT cradle

during resonance the signal amplitude information is gener-

ally unreliable. For this reason the broadband RUS data plot-

ted in Fig. 2 are given with arbitrary units. When amplitude

information is necessary to measure acoustic attenuation, for

instance, parallelepiped specimens are often pinched

between two (often planar) PTs.21 Note that the corners of a

parallelepiped are the optimal location for excitation and

measurement of resonance frequencies,5 but for the purpose

of determining elastic constants the cradle configuration has

proven itself simple and effective.

FIG. 1. (Color online) PTs configured into a cradle supporting the CMSX-4

parallelepiped specimen.

FIG. 2. (Color online) RUS broadband spectrum plot collected from the

CMSX-4 specimen.
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3. RUS data collection

Broadband RUS spectra were collected at room tempera-

ture and at standard atmospheric pressure in accordance with

ASTM standard practice 2534-15.22 The broadband scans

ranged from 60–260 kHz for the CMSX-4 specimen and from

100–375 kHz for the Ti-64 specimen. Distillation of the broad-

band resonance spectrum into a list of resonance frequencies

was automated for consistency and verified through inspection

as the data were collected. Missing or spuriously identifying a

mode can greatly confound the process of determining elastic

constants,2 therefore considerable attention was directed

toward ensuring that measured lists of resonance frequencies

accurately reflect the specimen from which they were col-

lected. Occasionally a resonance peak will be obscured by a

higher-amplitude peak in close proximity, but rarely are

modes completely missed by both receive PTs of the cradle

configured as shown in Fig. 1. Nevertheless, each broadband

measurement was repeated 5 times, with the specimen

removed and replaced on the PT cradle after each measure-

ment to ensure that any unintentional specimen-transducer

interactions related to specimen placement would not be

repeated. From the multiple broadband measurements a single

average list of resonance frequencies was created, from which

all computations and property estimates were based.

C. Crystallographic orientation measurements

To measure the orientation of the CMSX-4 crystal refer-

ence frame, a series of XRD measurements were collected

using a Rigaku Smartlab High-Resolution Diffractometer

with motorized RX-RY stage. First, the broad face of the

specimen was prepared in accordance with standard metallo-

graphic techniques: wet grinding with 1200-grit paper,

mechanical polishing via diamond suspension to 0.25 lm, and

a final electrochemical etch. Then the specimen was affixed to

the RX-RY stage of the diffractometer, which tilted in two

orthogonal directions while Bragg peaks were recorded for

{100}, {110}, and {111} crystallographic planes. A least

squares fit of the stage position, corresponding to the crystal

plane normal vectors, determined the crystal orientation:

(0.987, �0.00526, �0.158, 0.0164) as a passive unit quaternion

(ordered as wxyz) and an uncertainty of approximately 1�.

III. COMPUTATIONS

Sections III A–III C discuss the development of a statis-

tical model for characterizing elastic constants via RUS.

Section III A reviews the basic mechanics of the system,

which are very similar to previous RUS works.5,11,20 Section

III B introduces the Bayesian RUS model, and Sec. III C

describes how the Bayesian computations are carried out.

A. Forward model

Data in this experiment are modeled as

X1;X2;…;XN ¼ f ðc11; c12; :::Þ þ n; (1)

where X1,X2,…,XN are the measured resonance modes, f is

the forward model which computes the resonance modes of

the specimen given the necessary elastic constants, and n is a

noise term that represents the combined uncertainty in fabri-

cation and measurement of the specimen. Following Refs.

11 and 20, the specimen in the forward model is approxi-

mated as an undamped linear harmonic oscillator with free

boundary conditions. This results in the generalized eigen-

value problem

Ku ¼ x2Mu; (2)

where K is the stiffness matrix, M is the mass matrix, and u
is a vector of displacements in three dimensions. K and M
are computed from either a Rayleigh-Ritz or finite element

method (FEM) approximation to the problem. The square

roots of the eigenvalues (x) of this generalized eigenvalue

problem being the measured resonance modes.

Herein, a Rayleigh-Ritz solver with polynomial basis is

used to compute these eigenvalues (again following the deri-

vations in Refs. 11 and 20). An FEM solver was tested as

well, though it was significantly slower than the Rayleigh-

Ritz method for the simple geometry (parallelepiped) used

here. The equations for the basis polynomials, stiffness

matrix (K) and mass matrix (M) from Ref. 20 are reproduced

in Eqs. (3)–(6) (using Einstein notation for tensors)

/kðx; y; zÞ ¼ xnymzl; (3)

fk ¼ ðn;m; lÞ j n;m; l 2N0; nþ mþ l6Ng; (4)

Kik;kk0 ¼
X3

j;i¼1

Cijkl

ð
V

�ijð/kÞ�klð/k0 ÞdV; (5)

Mik;kk0 ¼ qdik

ð
V

/k/k0 dV : (6)

In Eqs. (3)–(6) above, N is the maximum order of polyno-

mials used in the resonance approximation (usually 10–14),

where Cijkl is the stiffness tensor.

If the crystal lattice is not aligned with the specimen axes,

then Cijkl must be adjusted. If the rotation from the specimen

axes to the crystal axes is represented as a passive unit quater-

nion with elements wxyz, and C0pqrs are the elastic constants of

an aligned specimen, then the effective elastic constants of the

rotated specimen, Cijkl can be computed as follows:

q¼
w2þx2�y2�z2 2ðxy�wzÞ 2ðxzþwyÞ

2ðyxþwzÞ w2�x2þy2�z2 2ðyz�wxÞ
2ðzx�wyÞ 2ðzyþwxÞ w2�x2�y2þz2

2
4

3
5;

(7)

Cijkl ¼ qipqjqC0pqrsqkrqls: (8)

For more information, see Sec. 3.2.11 in Bower.23

B. Building a statistical RUS model

Since the noise (n) in Eq. (1) was modeled as a random

variable, the outputs (X1, X2,…, XN) are also random varia-

bles. Assuming the noise of each mode is normally distrib-

uted with mean zero and variance r2, the probability of
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measuring a set of resonance modes (X0, X1,…, XN) given

the elastic constants (c11, c12, etc.) can be written using the

forward model, f, as

PðX0;X1;…;XNjc11; c12;…Þ � N ðf ðc11; c12;…Þ; r2Þ :
(9)

This equation, usually written in shorthand as PðXjhÞ, is

known as the likelihood and is the probability of measuring

a set of data given some fixed parameters. For an inverse

problem, it is the opposite relation, PðhjXÞ, or the probability

that parameters take certain values given the measured data.

PðhjXÞ is known as the posterior distribution, and in a

Bayesian interpretation represents the uncertainty in a set of

parameters given the data. The posterior can be computed

from the likelihood and any prior knowledge about the

parameters by using Bayes’ rule

PðhjXÞ|fflfflffl{zfflfflffl}
Posterior

¼ PðXjhÞ
zfflfflffl}|fflfflffl{Likelihood

PðhÞ
zffl}|ffl{Prior

PðXÞ|ffl{zffl}
Prior Predictive

: (10)

The P(h) term is called the prior because it is specified to

contain the prior beliefs about the probabilities of certain

parameters (which could be as simple as requiring a parame-

ter to be positive, or something much more complicated).

P(X) is the prior predictive distribution. It can be computed

from the likelihood and the prior (PðXÞ ¼
Ð

PðXjhÞPðhÞdh),

but for the Monte Carlo computations here can be regarded

as a normalization constant and ignored.

If the model and data match well, the posterior distribu-

tions on the parameters will be tight, and it will be easy to

extract estimates for the parameters. However, from the out-

set, it is unclear how informative the posterior will actually

be. It is possible, for instance, to have higher confidence in

one parameter than another, or to have multiple values of a

parameter that give equally likely explanations for the data.

Because of this uncertainty, it is important to compute the

full posterior PðhjXÞ and work with confidence intervals

rather than just returning a single estimate.

Returning to Eq. (1), this paper assumes the noise (n) is

distributed normally about every resonance mode with a sin-

gle variance (i.e., the scale of the noise does not change for

each mode). The primary justification for picking this model

comes a posteriori by checking that the model explains the

data well with few outliers. Of course such a check is not

always so simple, as the standards for “explaining the data

well” and the definition of an outlier are very application

specific. In this work the RUS measurement noise (presum-

ably from inconsistent placement of the specimen on the

transducer cradle or specimen transducer interactions) was

much smaller than the noise inherent to the specimen itself

(presumably from specimen fabrication). Unfortunately,

specimen fabrication is not easily repeatable in a manner

that would allow for multiple independent samples, making

it difficult to ever fully justify these assumptions. A seem-

ingly unavoidable feature of RUS measurements is that a

few of the lowest-frequency resonance modes are more diffi-

cult to measure consistently2 which could also cause prob-

lems with the mode-invariant noise assumption.

Following the assumptions stated above, given that one

set of resonance modes is available, every measurement

goes toward estimating the lumped variance parameter. Thus

the complete likelihood can be stated as

P Xjhð Þ ¼
Y

i

1ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p e fi hð Þ�Xið Þ2=2r2
i ; (11)

where fi(h) is the ith computed resonance mode. By collect-

ing many independent resonance mode measurements, the

estimates for h can be tightened to suitable levels.

The prior term [P(h)] can be used to specify prior infor-

mation about a parameter. For instance, it makes sense to

assume that the c11 elastic constant is positive, somewhere

between zero and a few hundred gigapascals. This can be

expressed by a uniform prior distribution Pðc11Þ
¼ Uð0 GPa; 500 GPaÞ. Likewise, perhaps a parameter is

known to some precision, in which case a normal prior like

Pðc11Þ ¼ N ð200 GPa; 10 GPaÞ is reasonable. For this

work, the prior on the variance parameter was set to

r2 ¼ Uð0 kHz;1 kHzÞ.

C. Computing the posterior (HMC)

Given a likelihood and prior, it is trivial to use Bayes’

theorem to write out an expression for the posterior. However,

evaluating this expression is difficult because the dimension

of h can be large and the cost of evaluating the likelihood

high. It is possible, though, to approximate the posterior by

drawing samples from it using Monte Carlo techniques.

The Monte Carlo technique used in this paper is HMC.

To understand the results it will be useful to quickly review

the characteristics of HMC and Markov Chain Monte Carlo

(MCMC) methods in general. Perhaps the most common

MCMC method is Metropolis Monte Carlo (Metropolis

MC). In physics terms, Metropolis MC generates a sequence

of samples s0,s1,…,sN that represent states drawn from a

thermodynamic equilibrium. The Metropolis algorithm, like

all MCMC methods, proceeds sequentially. That is, state si–1

is used to generate si. The jump from si–1 to si is chosen ran-

domly, and the decision to keep or reject the new state si is

made based on the difference in an energy function

DU¼U(si) �U(si–1), representing the transition energy from

state si–1 to state si. If the Metropolis algorithm accepts and

rejects are handled properly in accordance with the energy

function U, then the sequence of states generated by the pro-

cess will have physical meaning with regards to the thermal

equilibrium of the simulated system.

In statistical applications, the sequence of states,

s0,s1,…,sN, is replaced with a sequence of parameterizations,

h0,h1,…,hN, and U is set equal to log PðXjhÞPðhÞ, the log of

the joint distribution. A common pitfall for newcomers is

wondering what role X plays in this. X is the measured data. It

is fixed and does not change. Sampling only happens over the

parameters (h) in the joint distribution. With this choice of U,

the Metropolis MC method will generate a sequence of
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parameterizations where each parameterization, h, is drawn

from a distribution proportional to the true posterior. These

samples can then be used to approximate the true posterior.

Application of Metropolis MC is mostly limited for com-

putational reasons. In practice, Metropolis MC does not effi-

ciently explore parameter space due to how it randomly

selects new parameterizations with very little regard to the

problem at hand. HMC addresses this issue where possible by

using the gradient of log PðXjhÞPðhÞ to select new states more

intelligently. Compared to Metropolis MC (and many other

MCMC methods), HMC generates posterior samples much

more efficiently. The need for the derivatives of

log PðXjhÞPðhÞ limits HMC’s applicability in general, but the

necessary derivatives are available in the forward model used

here. A key parameter for HMC is the time step, which will

determine how efficiently the chain can move around parame-

ter space. The time step cannot be too large though, or the

HMC chain will go unstable and always reject new states.

Without going into too much detail, the HMC algorithm

used in this paper was taken from Ref. 24 with adaptations

for orientations by Ref. 25. The technique in Ref. 24 for

using multiple steps sizes was critical for achieving efficient

sampling.

1. Necessary derivatives

The gradient of log PðXjhÞPðhÞ is derived here. All deriv-

atives are computed with the chain rule. P(h) is assumed equal

to one to simplify the math (the non-negativity constraint on

r2 is controlled with a parameter transformation26).

2. Elastic constants

With P(h) equal to one, the log PðXjhÞPðhÞ term is sim-

plified to log PðXjhÞ. Using the chain rule to write the partial

derivative of the log-likelihood with respect to the parameter

c11 gives the sum

@ log P Xjhð Þ
@c11

¼
X

i

@ log P Xjhð Þ
@xi

@xi

@c11

(12)

where xi is the ith resonance mode, or the ith index of f(h).

The partial derivative with respect to xi is easy to compute

[given the likelihood in Eq. (11)]

@ log P Xjhð Þ
@xi

¼ � xi � Xið Þ
r2

: (13)

The partial derivative of xi with respect to c11 (or any elastic

constant) requires derivatives of the eigenvalues (the x2
i ’s)

of Eq. (2). Given a number of distinct eigenvalues (x2
i ) and

orthonormal eigenvectors (�i), the derivative of the ith eigen-

value can be computed as in Ref. 27,

@x2
i

@c11

¼ �T
i

@K

@c11

�i; (14)

@xi

@c11

¼ 1

2xi

@x2
i

@c11

¼ 1

2xi
�T

i

@K

@c11

�i : (15)

The partial derivatives of the eigenvalues requires deriva-

tives of the stiffness matrix from Eq. (2). These can be

obtained from the construction in Eq. (5),

@Kik;kk0

@c11

¼
X3

j;i¼1

@Cijkl

@c11

ð
V

�ij /kð Þ�kl /k0ð ÞdV; (16)

while @Cijkl=@c11 arises from the specific symmetry of the

system. For a cubic crystal specimen, Cijkl and @Cijkl=@c11

are given by

Cijkl ¼

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
6666664

3
7777775

(17)

and

@Cijkl

@c11

¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
: (18)

Combining Eqs. (13), (15), (16), and (18) give the necessary

expression for log PðXjhÞ=@c11. This can be repeated for the

other elastic constants as well.

Finally, instead of estimating the three cubic stiffness

parameters, c11, c12, and c44 directly, a simple parameter

transformation was employed for improved mobility and

HMC sampling. The transformed parameter space, c11, A, and

c44 was used herein, with A being the cubic anisotropy ratio

A ¼ 2C44

C11 � C12

; (19)

as defined by Zener.28

3. Noise term (r)

The partial derivative of the log-likelihood with respect

to the noise term r is given by

@ log P Xjhð Þ
@r

¼ �N

r
þ
XN

i

xi � Xið Þ2

r3
: (20)

4. Lattice-specimen orientations

As stated in Sec. III A, the lattice-specimen orientation

is parameterized as a passive unit quaternion. Though this

complicates the calculations slightly as compared to Euler

angles, parameterizing the problem with Euler angles pro-

duced unsatisfying results. With Euler angles, due to the

degrees of freedom collapsing around the poles, it was diffi-

cult to determine whether the orientations were converging.

Quaternions, though expressed in four dimensions (w, x,

y, z), live on a 3D manifold characterized by
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w2 þ x2 þ y2 þ z2 ¼ 1 : (21)

In other words, not all combinations of four real numbers

make a valid quaternion. In order to sample correctly on this

manifold, the Geodesic HMC algorithm in Ref. 25 is used.

Without going into detail, Byrne and Girolami25 adjusts ran-

dom momentum generation and time stepping in HMC to

keep the quaternion parameters on the manifold [Eq. (21)].

Computing the partial derivatives of the log-likelihood

with respect to an orientation parameter, for instance w, is

the same as for an elastic constant up to the term @Cijkl=@w
[simply replace c11 with w in Eqs. (13), (15), and (16)].

These require partial derivatives of Eqs. (5) and (7),

@Cijkl

@w
¼ @qip

@w
qjqC0pqrsqkrqlsþ qip

@qjq

@w
C0pqrsqkrqls

þ qipqjqC0pqrs

@qkr

@w
qlsþ qipqjqC0pqrsqkr

@qls

@w
; (22)

@q

@w
¼ 2

w �z y
z w �x
�y x w

2
4

3
5 : (23)

IV. RESULTS

A. Polycrystalline Ti-64

Polycrystalline Ti-64 elastic constants were inverted

using the geometries given in Sec. II A along with the first

30 measured resonance modes. While the fine grain micro-

structure and random crystallographic texture of the Ti-64

material would lead one to guess the elastic symmetry to be

isotropic, an isotropy assumption was not enforced. The

standard deviation of the noise was constrained to be posi-

tive. The initial conditions for the sampler were chosen as

(c11¼ 2.0, A¼ 1.0, c44¼ 1.0, r¼ 5.0). The final inverted

parameters are given in Table I along with reference values

from Fisher and Renken.29 Note that Fisher and Renken29

provide single crystal stiffness values for pure titanium,

which are commonly accepted as sufficient for Ti-64. These

elastic constants were then converted to isotropic moduli

using a Voigt-Reuss-Hill average scheme.30 Clearly the

inverted value of A¼ 1.000 6 0.002 demonstrates the Ti-64

material is effectively isotropic.

The full estimated posterior distributions for the four

parameters (two elastic constants, the anisotropy ratio, and

the error term, r) are shown in Fig. 3. All the parameters

(c11, A, c44, and r) are well approximated by the superim-

posed normal distributions. This (visually estimated) quality

of the fits justifies the use of mean and standard deviation,

summarized in Table I.

In Bayesian modeling, the two basic tools for validating

an inversion are trace plots, which are plots of the sequence

of states sampled by the MCMC sampler, and posterior pre-

dictive distribution plots. The trace plots for the last 4000

posterior samples for the Ti-64 specimen are plotted in Fig.

4. Extracting information from a trace plot is fairly straight-

forward. If the distribution of samples in the trace plot is sta-

tionary for a long period of time, the chain is assumed (but

not guaranteed) to be sampling from the true posterior. Trace

plots are usually the easiest place to detect modeling prob-

lems. If, for instance, a parameter enters an invalid range or

TABLE I. Summary of estimated parameters (mean 6 standard deviation)

for Ti-64 specimen alongside reference values.

Parameter Ref. 29 Bayesian estimate

c11 1.651� 1011 Pa (1.703 6 0.015)� 1011 Pa

c44 4.330� 1010 Pa (4.492 6 0.001)� 1010 Pa

r — (0.414 6 0.058)� 103 Hz

A 1.000a 1.000b 6 0.002

aThe reference anisotropy ratio is equal to 1 as a result of the Voigt-Reuss-

Hill (Ref. 30) polycrystalline average.
bThe estimated anisotropy ratio was allowed to vary.

FIG. 3. (Color online) Approximate posterior distributions (normalized to a

PDF scale) for c11, A, c44, and r computed from 4000 HMC samples.

Normal PDF fits are superimposed to justify the use of mean and std to char-

acterize the posteriors.

FIG. 4. Traceplots (last 4000 samples) for the estimated parameters for the

polycrystalline Ti specimen.
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shows a bimodal tendency, it is usually easy to spot in the

trace plots. The trace plots in Fig. 4 show nothing unusual,

suggesting that the samples themselves come from the true

posterior of the model.

The second tool for validating a Bayesian modeling pro-

cess are the posterior predictive distributions. The posterior

predictive distributions are the distributions generated if

samples from the approximated posterior distribution are

used to generate new resonance modes. The quality of fit can

be evaluated by comparing the posterior predictive distribu-

tions to the measured resonance modes. In the context of

RUS measurements, evaluating the “quality of fit” means

making sure there are not many outliers in the data (for

instance, by making sure 95% of the data is within the 95%

posterior predictive intervals) and identifying any systematic

biases in the posterior predictive means. One example of this

would be if the first ten posterior predictive resonance modes

were all estimated with mean frequencies less than their

respective measured modes. Errors should appear random.

Any structure suggests a problem in the model or the data.

For RUS, this could include missing or spurious resonance

modes as part of the measured frequency list that will be

readily identifiable when compared to the posterior predic-

tive distributions. If a missing mode is identified, the term in

the likelihood in Eq. (11) corresponding to the missing mode

is removed (since that data are not available), and the infer-

ence rerun for improved results.

The posterior predictive distributions for the Ti speci-

men are shown in Table II, along with the first 30 measured

resonance modes for comparison. As can be seen, all but one

measured mode is in the 95% posterior interval and the esti-

mated noise level is on par with what could be expected by

measuring other specimens produced with the same specifi-

cations. The average quality factor (Q Ave.) and the standard

deviation of the measured modes is provided for context

about the repeatability and quality of the RUS measure-

ments. As the specimen was removed, rotated, and then

replaced on the transducer cradle between each broadband

measurement, the standard deviation of the measured fre-

quencies varied more significantly than they would have if

the specimen was not removed between measurements. But

having successfully identified each of the first 30 modes with

an average standard deviation of 0.05 kHz, the procedure is

deemed acceptable. While the measurement uncertainty is

approximately one-quarter of the noise estimate, itself repre-

senting a combination of (measured and modeled) sources.

Given the combined evidence from the trace plots, the

posterior predictive distributions, and the posterior distribu-

tions themselves, it is reasonable to conclude that the model

describes the data well and that statements based on the

computed posterior distributions should represent the physi-

cal system.

B. Single crystal CMSX-4

The single crystal CMSX-4 elastic constants and orien-

tation were inverted using the geometries given in Sec. II A

and the first 30 measured resonance modes. Instead of run-

ning a single, long HMC chain, the inference was broken

into warmup and post-warmup stages (as described in Ref.

31, Chap. 12). In the warmup stage, four chains are run from

a fixed initial condition (c11¼ 2.0, A¼ 1.0, c44¼ 1.0,

r¼ 5.0) to find reasonable parameter estimates. In the

warmup stage the sampler needs to move around very-low

probability areas of parameter space, and for stability the

HMC time step must be kept relatively small. After running

the chains long enough to reach the high probability region

of parameter space, new chains were initialized with larger

HMC time steps to more efficiently explore the posterior. In

both stages, multiple chains are run to verify that the HMC

is converging to the same solution, while only the samples

from the post-warmup stage are used for the inferences.

The warmup traceplots are shown in Fig. 5, while the

post-warmup traceplots are shown in Fig. 6. As can be seen

in these figures, all the chains in both warmup and post-

warmup stages are sampling the same region of parameter

space, while a key difference between the plots is that the

post-warmup chains more aggressively explore the c11 and r
parameter spaces (due to the larger HMC time step). Table

TABLE II. Ti-64 specimen measured and posterior predictive modes

(mean 6 standard deviation).

Mode Measured (kHz) Q Ave.a Posteriorb (kHz)

1 109.076 6 0.027 3832 108.86 6 0.43

2 136.503 6 0.083 3209 135.97 6 0.43

3 144.899 6 0.051 3157 144.42 6 0.41

4 184.926 6 0.046 6482 184.60 6 0.44

5 188.476 6 0.029 4781 187.99 6 0.43

6 195.562 6 0.032 6828 195.56 6 0.44

7 199.246 6 0.029 7016 199.19 6 0.44

8 208.460 6 0.078 6162 208.08 6 0.43

9 231.220 6 0.030 7241 231.63 6 0.44

10 232.630 6 0.042 6759 232.47 6 0.44

11 239.057 6 0.033 2874 239.09 6 0.45

12 241.684 6 0.077 7148 242.24 6 0.44

13 242.159 6 0.030 7367 242.53 6 0.44

14 249.891 6 0.079 7436 249.89 6 0.42

15 266.285 6 0.097 7771 267.20 6 0.46

16 272.672 6 0.069 8376 272.49 6 0.44

17 285.217 6 0.037 7984 285.04 6 0.45

18 285.670 6 0.095 8008 285.65 6 0.43

19 288.796 6 0.023 10 400 289.23 6 0.45

20 296.976 6 0.060 7651 296.77 6 0.42

21 301.101 6 0.030 8687 301.60 6 0.46

22 303.024 6 0.053 8854 303.03 6 0.43

23 305.115 6 0.058 9296 305.02 6 0.44

24 305.827 6 0.067 9509 305.26 6 0.47

25 306.939 6 0.034 10 706 306.39 6 0.45

26 310.428 6 0.024 6946 310.15 6 0.44

27 318.000 6 0.042 11 199 317.51 6 0.45

28 319.457 6 0.040 7600 319.88 6 0.47

29 322.249 6 0.053 10 011 322.17 6 0.42

30 323.464 6 0.027 9986 322.93 6 0.44

aThe average quality factor (Q Ave.) is provided along with the standard

deviation of the measured frequency as an indicator of the quality and

repeatability of the RUS measurements.
bEstimated means and standard deviation of the posterior predictive distribu-

tion were generated using the last 200 samples from the HMC trajectory

(Fig. 4). The only mode outside of the 95% posterior intervals is mode 15.
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III summarizes the material parameter estimates from each

of the four 1000-sample HMC chains, as well as the sum

total of the four chains presented in Fig. 6. The consistency

between the mean values of the four chains is a testament to

the reliability of the inference, while the standard deviation

associated with each mean demonstrates the precision of the

parameter estimate. For example, the standard deviation of

the c11 and c44 parameters are 4.0 and 0.26 GPa, respec-

tively. This demonstrates the superior precision of the c44

estimate as compared to the c11 estimate, and is consistent

with RUS-based elastic property inversions reported previ-

ously by Migliori et al.5

As stated in Sec. IV A, the posterior predictive distribu-

tions elucidate the quality of the fit and are provided for the

CMSX-4 specimen in Table IV. Alongside these data are the

measured frequencies and their standard deviation, as well

as the quality factor for the first 30 resonance modes. As

before, the one measured value outside the 95% posterior

predictive interval (mode 24) is indicated in bold, while the

average measured standard deviation of 0.03 kHz is approxi-

mately one-eighth the value of the noise estimate. Given the

relatively small standard deviation associated with each

mode, having one of 30 modes outside the 95% posterior

predictive interval is not an issue.

Estimated posterior distributions of the elastic constants

(c11, A, and c44) and the noise parameter (r) are shown in

Fig. 7. As each parameter exhibits a normal distribution, it

makes sense to summarize the parameter estimates by their

mean and standard deviation as provided in Table V.

Reference CMSX-4 elastic constants from Ref. 32 are pro-

vided for context, and agree well with the estimates of this

work.

Due to the symmetry inherent to crystals, in particular

cubic crystals, there are numerous symmetrical representa-

tions for a given crystal orientation. Therefore it is possible,

indeed common, for two orientation quaternions with sub-

stantially different component values to represent crystal ori-

entations that are physically very close to each other. In

order to visualize the posterior of the crystallographic orien-

tation and produce two-dimensional plots, orientation qua-

ternion were transformed into cubochoric coordinates33

before plotting in Fig. 8. These plots detail the location of

the measured orientation in orange with respect to each of

the 4000 HMC sample orientations plotted in black.

Although it is not particularly good that the measured crys-

tallographic orientation is away from the bulk of the poste-

rior, uncertainty in the XRD measurement of approximately

1� as noted in Sec. II C could easily place the measured

FIG. 5. Warmup traceplots (four different chains of 1000 samples each) for the estimated parameters in the single crystal CMSX-4 specimen. The rough means

of the parameters in these chains were used to initialize four chains with larger time steps to more efficiently explore the posterior.
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orientation within a higher-likelihood region of the posterior;

given that a rotation of 1� corresponds roughly to a distance

of 0.01 in cubochoric coordinates. Furthermore, the total

misorientation angle (in degrees) between the measured ori-

entation and each of the inverted orientations is detailed by

the histogram in the bottom right of Fig. 8. Given the over-

whelming majority of misorientation angles were calculated

as between 1.0� and 2.5�, our confidence in estimating crys-

tallographic orientation from RUS-measured resonance fre-

quencies is high, with results summarized in Table VI.

To demonstrate that inferring the crystallographic orien-

tation was necessary, an inversion was run without these

degrees of freedom. Figure 9 shows the results. As can be

seen, c11 is not converging to a steady state distribution and

the inversion fails. The scale of r indicates the fit is not good

compared to the inversion with the orientation parameters

included.

Given that all four warmup and post-warmup chains

converge to similar physically realistic solutions and that the

posterior predictive distributions align well with the mea-

sured data, it is reasonable to conclude that this model

describes the data well and that statements based on the

computed posterior distributions should represent the physi-

cal system. This is confirmed with the reference elastic con-

stants and measured crystallographic orientations.

C. Computation efficiency

The Ti-64 inversion ran for approximately 8 h on a quad

core Intel i7-2600k desktop computer, while the CMSX-4

inversion took a few days. Each HMC sample takes 50 for-

ward evaluations of the RUS model (so 100 000 total for the

examples presented here). Since the eigensolve in the for-

ward model evaluation constitutes a large majority of the

total evaluation time, it is simple to estimate how long an

inversion might take if the forward model is available. If the

forward model takes a second to evaluate, the sampler con-

verges to a steady posterior distribution within 1000 HMC

samples, and 2000 samples from the posterior are computed,

the calculation should take a little under 2 days.

D. Avenues for future work

It should be possible to parameterize certain aspects of

the specimen geometry in the same way as the elastic con-

stants and estimate them on the fly, though there are known

identifiability problems with the eigenvalue problem.5 It also

might make sense to replace the forward model with an

approximate model to decrease computation time, particu-

larly as the number of unknown parameters is increased.

Various techniques could be employed for this, such as

Gaussian processes (a frequently used technique in Statistics

FIG. 6. Sampling traceplots (four different chains of 1000 samples each) for the estimated parameters of the single crystal CMSX-4 specimen. The elastic con-

stants appear to be unimodal, but the orientation parameters are multimodal.
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for interpolation), or generalized polynomial chaos (a com-

mon method for uncertainty quantification in engineering).

While there is the issue that these methods require fairly

good priors to be usable, inference on approximate models is

much faster and could be used to quickly evaluate specimen

characteristics without running a full Bayesian inversion.

The noise models could be improved to account for outliers

or greater variability in certain modes—as is often reported

for the first few lowest-frequency modes.2 Finally, account-

ing for missing or spurious modes a la Ref. 20 may facilitate

inversions from RUS spectra that are complicated by a vari-

ety of factors including low stiffness or high damping.

V. CONCLUSION

A novel and robust RUS inversion framework for char-

acterizing elastic properties and crystal orientation of paral-

lelepiped specimens using a Bayesian modeling approach

TABLE III. Summary of CMSX-4 parameter estimates and 95% posterior

interval from each of the four HMC chains of 1000 samples each.

Parameter

Chain

Estimate
Posterior int.

(units) mean 6 st. dev. 2.5% 97.5%

c11 1 2.492 6 0.040 2.418 2.574

2 2.492 6 0.041 2.415 2.580

(1011 Pa) 3 2.493 6 0.041 2.418 2.578

4 2.489 6 0.040 2.417 2.569

1-4 2.492 6 0.040 2.417 2.576

c44 1 1.3145 6 0.0025 1.3099 1.3196

2 1.3144 6 0.0027 1.3089 1.3203

(1011 Pa) 3 1.3145 6 0.0026 1.3092 1.3198

4 1.3143 6 0.0026 1.3094 1.3194

1–4 1.3144 6 0.0026 1.3093 1.3197

A 1 2.8652 6 0.0075 2.8509 2.8801

2 2.8651 6 0.0089 2.8483 2.8831

3 2.8652 6 0.0079 2.8493 2.8804

4 2.8650 6 0.0078 2.8492 2.8805

1–4 2.8651 6 0.0081 2.8493 2.8811

w 1 0.9885 6 0.0003 0.9879 0.9891

2 0.9884 6 0.0003 0.9879 0.9891

3 0.9884 6 0.0003 0.9879 0.9891

4 0.9884 6 0.0003 0.9879 0.9891

1–4 0.9884 6 0.0003 0.9878 0.9891

x 1 0.0000 6 0.0062 �0.0117 0.0119

2 0.0002 6 0.0063 �0.0121 0.0130

3 �0.0002 6 0.0061 �0.0114 0.0116

4 0.0000 6 0.0063 �0.0124 0.0128

1–4 0.0000 6 0.0062 20.0118 0.0124

y 1 �0.1510 6 0.0025 �0.1549 �0.1461

2 �0.1512 6 0.0025 �0.1552 �0.1460

3 �0.1511 6 0.0024 �0.1550 �0.1464

4 �0.1514 6 0.0024 �0.1549 �0.1462

1–4 20.1512 6 0.0024 20.1550 20.1461

z 1 0.001 6 0.010 �0.018 0.019

2 0.000 6 0.010 �0.018 0.019

3 0.001 6 0.010 �0.018 0.019

4 0.001 6 0.010 �0.018 0.019

1–4 0.001 6 0.010 20.018 0.019

TABLE IV. CMSX-4 specimen measured and posterior predictive modes

(mean 6 standard deviation).

Mode Measured (kHz) Q Ave.a Posteriorb (kHz)

1 71.259 6 0.044 2279 71.22 6 0.24

2 75.759 6 0.025 2864 75.69 6 0.23

3 86.478 6 0.030 3524 86.46 6 0.26

4 89.947 6 0.048 3077 90.00 6 0.24

5 111.150 6 0.033 4155 111.06 6 0.26

6 112.164 6 0.027 4492 112.01 6 0.29

7 120.172 6 0.033 5048 120.32 6 0.26

8 127.810 6 0.042 4462 127.98 6 0.25

9 128.676 6 0.040 4747 128.64 6 0.24

10 130.740 6 0.034 5342 130.75 6 0.24

11 141.700 6 0.037 5299 141.79 6 0.25

12 144.504 6 0.065 5603 144.36 6 0.23

13 149.401 6 0.025 5918 149.52 6 0.26

14 154.351 6 0.026 5942 154.42 6 0.25

15 156.782 6 0.028 6761 156.97 6 0.25

16 157.555 6 0.041 6123 157.57 6 0.25

17 161.088 6 0.063 6284 160.97 6 0.24

18 165.103 6 0.022 6756 165.21 6 0.28

19 169.762 6 0.044 6995 169.77 6 0.27

20 173.449 6 0.050 712 173.28 6 0.26

21 174.117 6 0.024 6437 174.13 6 0.26

22 174.906 6 0.054 6916 174.68 6 0.26

23 181.120 6 0.042 6632 181.54 6 0.25

24 182.459 6 0.037 7475 181.87 6 0.25

25 183.986 6 0.042 7837 183.81 6 0.28

26 192.681 6 0.032 7197 192.83 6 0.24

27 193.436 6 0.021 7113 193.71 6 0.27

28 198.794 6 0.034 7249 198.95 6 0.25

29 201.902 6 0.032 8529 201.89 6 0.27

30 205.015 6 0.031 8808 204.85 6 0.33

aThe average quality factor (Q Ave.) is provided along with the standard

deviation of the measured frequency as an indicator of the quality and

repeatability of the RUS measurements.
bEstimated means and standard deviation of the posterior predictive distribu-

tion were generated using the last 200 samples from the HMC trajectory

(Fig. 6). Only mode 24 is outside the 95% posterior intervals.

FIG. 7. (Color online) Approximate CMSX-4 posterior distributions for c11,

A, c44, and noise (r) parameters, computed from four chains of 1000 HMC

samples each. Normal PDF fits are superimposed to justify the use of mean

and standard deviation to characterize the posteriors.
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and HMC sampling has been developed. The inversion

framework was tested with two experimental datasets for

validation: a fine-grained Ti-64 specimen and a single crystal

specimen of Ni-based superalloy CMSX-4 with misaligned

specimen-crystal reference frames. The Ti-64 specimen

exhibited elastic isotropy with c11 and c44 stiffness constants

in agreement with literature values for a Voigt-Reuss-Hill

average of randomly-oriented grains. Inversion of the

CMSX-4 data yielded accurate estimates of the three inde-

pendent elastic moduli in strong agreement with literature

values, while the crystallographic orientation was deter-

mined to within approximately 2� of XRD measured values.

While the current version of the code requires substantially

greater computation time as compared to conventional RUS

inversion schemes, it also provides the following

advantages:

(1) Built-in uncertainty estimates on all parameters.

(2) Simultaneous estimation of elastic constants and crystal

orientation.

(3) Simplified requirements for specimen preparation.

(4) Robustness to common RUS inversion problems like

misidentified resonance modes and initial parameteriza-

tion uncertainty.

TABLE V. Summary of estimated parameters (mean 6 standard deviation)

for the CMSX-4 specimen alongside reference values.

Parameter Ref. 32 Bayesian estimate

c11 2.52� 1011 Pa (2.492 6 0.040)� 1011 Pa

c44 1.31� 1011 Pa (1.314 6 0.003)� 1011 Pa

r — (0.229 6 0.037)� 103 Hz

A 2.88 2.865 6 0.008

FIG. 8. (Color online) Crystallographic orientation posterior plotted in

cubochoric coordinates. The distribution of minimum misorientation angle

(in degrees) between the measured and estimated orientations is at the bot-

tom. Note that a difference of one-hundredth on any cubochoric axis corre-

sponds roughly to 1� of rotation.

TABLE VI. Summary of CMSX-4 specimen crystal orientation from XRD

measurement and Bayesian estimate (mean 6 standard deviation).

Parameter XRD measurement Bayesian estimate

w 0.987 0.9884 6 0.0003

x �0.00526 0.000 6 0.0062

y �0.158 �0.1512 6 0.0024

z 0.0164 0.001 6 0.010

FIG. 9. Traceplots for the estimated parameters in the single crystal CMSX-

4 specimen without including misorientation estimation.
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