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The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simula-
tion of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations
with Brownian dynamics or Green’s function reaction dynamics, the RDME can be orders of magni-
tude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled
reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in
the same model differ in their degree of diffusion control and therefore require different degrees of
mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale proper-
ties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging
reactions with a microscale, off-lattice simulation. However, all methods to date require manual par-
titioning of a system, effectively limiting their usefulness as “black-box” simulation codes. In this
paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indi-
rect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of
diffusion-controlled networks in 3D. Published by AIP Publishing. https://doi.org/10.1063/1.5002773

I. INTRODUCTION

Cellular control systems are inherently spatial, as reac-
tions in a network involve macromolecules confined to certain
locations or sub-compartments. For example, MAPK path-
ways involve sensing a stimulus by receptors localized to
the cell membrane, propagating the signal in the cytoplasm
via a phosphorylation cascade that modifies transcription fac-
tors, which are eventually imported into the nucleus where
they bind to promoter sites on DNA and affect the expres-
sion of downstream genes. On an even finer level, spatial
correlations on very short length scales impact the dynam-
ics of various biochemical systems.1 The low copy num-
bers of key molecules introduce stochasticity in gene reg-
ulatory networks (GRNs). This is an important factor to
account for when studying the regulatory properties of GRNs.
Examples where both spatial and stochastic effects are pre-
dicted to be important1 include spatial gene regulation of
Hes1,2 polarization in budding yeast,3 and the MinD-system in
E. Coli.4

As a consequence, spatio-temporal simulation of reaction-
diffusion systems is an important tool to analyze GRNs. In
particular, two modeling frameworks have attracted consider-
able attention in the systems’ biology community: the meso-
scopic, discrete stochastic reaction-diffusion master equation
(RDME) in which point-like molecules are tracked on a grid
and Brownian Dynamics (BD) in which hard-sphere parti-
cles are tracked in continuous space. Many capable software
packages have been created to support such spatial model-
ing, including MCell,5 Smoldyn,6 E-Cell,7 MesoRD,8 VCell,9

STEPS,10 NeuroRD,11 ReaDDy,12 URDME,13 PyURDME,14

and StochSS,15 the latter integrates spatial capabilities via
PyURDME.

Mesoscopic simulators are efficient if a reasonably coarse
mesh can be used. However, for some diffusion-limited sys-
tems, it is critical to capture short-range, short-time scale
interactions between the molecules.1,16,17 In this case a micro-
scopic, particle-scale resolution is needed for accurate simu-
lation. This raises the question of how well the mesoscopic
model can capture the microscale dynamics as the mesh size
approaches the molecule size. Unless measures are taken,
the RDME approximation quality degrades as the mesh size
becomes increasingly fine.18–20

The point-particle mesoscopic model can be made to
approximate a microscopic model by deriving scale-dependent
reaction rates17,19,21,22 down to a critical mesh size after which
no one-neighbor stencil can provide increased accuracy.21

After this critical limit, it is possible to improve the approxi-
mation even further by considering a wider stencil.17,20 This
approach results in a lattice method with a lattice spacing
on the order of the size of the molecules. By considering
the Doi model23 rather than the Smoluchowski model on
the microscopic scale, it is also possible to arrive at a non-
local, convergent mesoscopic model by directly discretizing
the microscopic model.24 But even if these solutions allow
for accurate simulation of diffusion-limited systems down to
a mesh size close to individual particles, the simulation cost
increases dramatically as the mesh becomes finer: the num-
ber of diffusion events (and so the simulation time) grows
proportionally to h�2, where h is a measure of the mesh size.

A promising approach to efficiently simulate systems with
multiscale properties is hybrid methods in which the reaction
network is partitioned and parts of it are simulated on dif-
ferent modeling levels and with different solvers. Examples
include mesoscopic-macroscopic methods,25–28 macroscopic-
mesoscopic methods,29 macroscopic-microscopic methods,30
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and mesoscopic-microscopic methods, in which parts of a sys-
tem are simulated with the RDME and parts of it are simulated
with a particle-tracking algorithm.31–33 If a good partitioning
can be found, the cost savings of hybridization can be sub-
stantial by keeping the number of particles handled on the
microscale small, yet maintaining a reasonable mesh size for
the RDME simulator. However, one key problem with hybrid
methods is that prior knowledge about the system is needed in
order to partition it correctly. Also, the system dynamics may
change over the course of the simulation or in different regions
in the spatial domain, making the initial system partitioning
invalid or suboptimal. These issues make hybrid solvers hard
to use without expert knowledge, which limits their usefulness
as black-box simulation tools. Another problem is that they are
complex and challenging to implement, thus there is a lack of
software capable of hybrid simulation.

In this paper, we develop theory and a practical method
that, given a user-supplied error tolerance, is capable of auto-
matic selection of the appropriate modeling level for each
species in a spatial stochastic model. We show that the hybrid
method converges with decreasing time step and demonstrate
numerically that it accurately reproduces the fine-grained reac-
tion dynamics of microscopic methods. Finally, we show that
the hybrid method can simulate systems that are intractable
with pure mesoscopic methods, without having to simulate
the whole system microscopically.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce the mesoscopic and microscopic models
and review how they are related. In Sec. III, we describe the
proposed hybrid algorithm, we show how to split a general
system, and we develop the condition to be used for adap-
tive system partitioning. In Sec. IV, we discuss the practical
implementation of the method and demonstrate the accuracy
and efficiency of the developed method on two challenging
test problems in Sec. V. Section VI concludes the paper.

II. BACKGROUND

Two modeling frameworks that are popular for simulating
reaction-diffusion kinetics in systems biology are the micro-
scopic Smoluchowski model and the mesoscopic reaction-
diffusion master equation (RDME). In the former, particles
are modeled as hard spheres and their positions are tracked
continuously in space, whereas in the latter, particles are point-
particles and their positions are tracked up to the resolution of
a structured or unstructured grid approximating the domain.

A. Mesoscopic model

On the mesoscopic scale, we model molecules as point
particles and treat diffusion as jumps between adjacent voxels
on a mesh. The state of the system is the discrete number si of
each chemical species Si, i = 1. . . M, in the voxels of the grid,
where the voxels are denoted by Vj, j = 1 . . .N .

A diffusive jump is a linear event

S1i
D1
−−→ S1j, (1)

taking a molecule of species S1 from voxel Vi to an adja-
cent voxel Vj, where D1 is a rate constant that depends on the

diffusion constant of species S1 and the shape and size of the
voxels.34

Chemical reactions occur between molecules residing in
the same voxel. For example, a bimolecular reaction between
species S1 and S2 producing S3 in voxel Vj can be written as

S1j + S2j
ka
−→ S3j, (2)

where ka is a mesoscopic reaction rate. The mathematical for-
malism is the continuous-time discrete-space Markov process.
In this framework, the propensity for the reaction, a(s1j, s2j)
= kas1js2j/V j, is the probability of the reaction occurring in
an infinitesimal interval (t, t + δt), where V j is the volume
of voxel Vj. With this assumption, realizations of the process
can be efficiently simulated using versions of the stochastic
simulation algorithm (SSA) optimized for reaction-diffusion
systems such as the Next Subvolume Method (NSM).35

B. Microscopic model

Consider two molecules M1 and M2, of species S1 and S2,
respectively. The molecules can react irreversibly according
to S1 + S2 → S3. In the microscopic Smoluchowski model,
molecules are modeled as hard spheres with a finite reaction
radius, diffusing according to Brownian motion. We denote
the molecules’ reaction radii by σ1 and σ2 and their diffusion
constants by D1 and D2. Their positions in R3 at time t0 are
denoted by r10 and r20. The probability that the molecules are
at positions r1 and r2 at time t is described by the probability
density function (pdf) p(r1, r2, t|r10, r20, t0). Let r = r1 � r2

and R =
√

D2
D1

r1 +
√

D1
D2

r2. We can now rewrite the pdf as

p(r1, r2, t |r10, r20, t0) = pR(R, t |r0, t0)pr(r, t |r0, t0), (3)

and it can be shown that the dynamics of the two molecules in
R3 is governed by the following system of equations:36

∂pR

∂t
= D∆RpR, (4)

∂pr

∂t
= D∆rpr, (5)

where D = D1 + D2. The initial and boundary conditions are
given by

4πσ2D
∂pr

∂n

����‖r ‖=σ
= kapr(‖r‖ = σ, t |r0, t0), (6)

pr(‖r‖ → ∞, t |r0, t0) = 0, (7)

pr(r, t0 |r0, t0) = δ(r − r0). (8)

This system of equations can be solved exactly36,37 or using an
operator split approach.38 We will call ka the microscopic reac-
tion rate. The probability that the two molecules react between
times t0 and t is given by

pr(∗, t |r0, t0) = 1 −
∫ t

t0

pr(r, t |r0, t0) dr. (9)

The time td until a molecule undergoes a unimolecular
reaction event with reaction rate kd is given by sampling td

from an exponential distribution with mean kd . If the dissoci-
ation event produces two molecules, then they are placed at a
distance of σ apart. We will outline in Sec. IV B how to use
pr(∗, t|r0, t0) and p(r1, r2, t|r10, r20, t0) to simulate a more
complex system within a bounded domain.
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C. Mesoscopic parameters

We now ask how the mesoscopic and microscopic mod-
els are related. Specifically we need to relate the mesoscopic
parameters to the microscopic parameters. The diffusion jump
rates on the mesoscopic scale are obtained by discretizing the
diffusion equation. On a structured mesh, this is straightfor-
ward; for details on how to do it on an unstructured mesh,
see Ref. 13. Below we outline an approach to relating the
mesoscopic reaction rates to the microscopic reaction rates.

It is well known that if the reaction volume V in 3D is much
larger than the molecules, i.e., V � σ, then the mesoscopic
reaction rate, kCK, relates to the microscopic reaction rate as

kCK =
1
V

4πσDka

4πσD + ka
, (10)

where D is the sum of the molecules’ diffusion constants
and σ is the sum of the reaction radii. This expression was
first derived by Collins and Kimball39 and later re-derived by
Gillespie.40 It is easy to see that for a spatially discretized
well-mixed system, or if the voxels are large enough (h � σ,
where h3 is the volume of a voxel), the mesoscopic reaction
rate, kmeso

a , will be given by

kmeso
a =

1

h3

4πσDka

4πσD + ka
. (11)

In models with multiscale properties, we often need to resolve
part of the system to very high accuracy, which requires a
highly resolved mesh. This implies that the condition h � σ
might not be satisfied. We thus need to derive reaction rates
for this case.

Following the analysis in Refs. 19 and 21, we start by
considering a single irreversible reaction

S1 + S2
ka
−→ S3 (12)

in a cube discretized by a Cartesian mesh. Additionally, we
will assume that the S1 molecule is fixed inside a voxel close
to the center of the domain, while the S2 molecule diffuses
freely with diffusion rate D.

To study the relationship between the RDME and Smolu-
chowski models for small h, we compare the expected time
until the molecules first react on the microscopic scale to the
time on the mesoscopic scale.

First, consider the microscopic scale. Let the S2 molecule
have an initial position sampled from a uniform distribution
and denote the mean binding time, or the average time until
the molecules react given that the S1 molecule is uniformly
distributed, by τmicro. Following the approach in Ref. 21, we
split τmicro into two parts,

τmicro = τ
micro
diff + τmicro

react , (13)

where τmicro
diff is the average time until the S1 molecule is in

contact with the S2 molecule for the first time and τmicro
react is the

average time until the molecules react given that they are in
contact.

We know that17,19

τmicro
diff ≈




V
4πσD

(3D)

V
{
log

(
π−1 V1/2

σ

)}

2πD
(2D)

(14)

and that

τmicro
react =

V
ka

(1D, 2D, 3D). (15)

We now consider system (12) on the mesoscopic scale.
The S2 molecule is fixed in a voxel close to the origin so that it is
far from the boundaries. The S1 molecule is sampled uniformly
on the mesh, and τmeso denotes the average time until the two
molecules react for the first time. Let τmeso

diff be the average time
until the molecules are in the same voxel for the first time, and
let τmeso

react denote the average time until they react given that the
molecules start in the same voxel.

Again we split the average binding time into two parts

τmeso = τ
meso
diff + τmeso

react , (16)

where (with C2 = 0.1951 and C3 = 1.5164)19,21,41,42

τmeso
diff =




C3V
6Dh

+ O
(
N

1
2

)
(3D)

V
4πD

log(N) +
C2V
4D

+ O
(
N−1

)
(2D)

(17)

and

τmeso
react =

N
kmeso

a
. (18)

We make the ansatz that the mean reaction times on the
mesoscopic and microscopic scales are equal, to obtain

τmeso = τmicro (19)

⇐⇒ τmeso
diff + τmeso

react = τmicro (20)

⇐⇒ kmeso
a =

N
τmicro − τ

meso
diff

, (21)

where the last equality follows from (18). Note that τmicro and
τmeso

diff are both known so that we can compute kmeso
a using (21).

We showed in Ref. 19 that kmeso
a can be rewritten as

kmeso
a =

ka

h3

(
1 +

ka

D
G(h,σ)

)−1

, (22)

where G in 3D is given by

G(h,σ) =
1

4πσ
−

C3

6h
. (23)

From the analysis follows the existence of an (for accu-
racy) optimal mesh size. To see this, consider that

τmeso
diff < τmicro

diff =⇒ τmeso
react > τmicro

react , (24)

τmeso
diff = τ

micro
diff =⇒ τmeso

react = τ
micro
react , (25)

τmeso
diff > τmicro

diff =⇒ τmeso
react < τmicro

react . (26)

The reaction dynamics is better resolved on the microscopic
scale than on the mesoscopic scale, and so we expect the meso-
scopic accuracy to increase as τmeso

react approaches τmicro
react from

above. This was shown to be true in Ref. 19. However, as
τmeso

react decreases further, the accuracy also worsens. This was
also shown in Ref. 19.

Thus, since τmeso
diff increases with decreasing h, we note that

in general we expect the most accurate mesoscopic simulations
by selecting h such that (25) holds. Solving τmeso

diff = τ
micro
diff for

h yields the optimal mesh size h∗,19

h∗ =




2C3

3
πσ ≈ 3.2σ (3D)

√
πe

3+2C2π
4 σ ≈ 5.1σ (2D)

, (27)



234101-4 Hellander, Hellander, and Petzold J. Chem. Phys. 147, 234101 (2017)

where

C3 ≈ 1.5164, (28)

C2 ≈ 0.1951. (29)

D. Hybrid methods

We previously developed a hybrid method31 that allowed
a given system to be split into two parts: a mesoscopic part
and a microscopic part. Species are divided into one subsys-
tem simulated on the microscopic scale and one subsystem
simulated on the mesoscopic scale. The division could depend
on spatial constraints so that a species would be simulated as
part of the microscopic subset only in certain parts of space,
but not in others. With the system split into two subsets, we
would proceed to simulate the system in sequence:

1. Initialize and set t = 0. Let the final time be T. Select a
splitting time step ∆t.

2. Simulate the mesoscopic subset for ∆t seconds, while
keeping the microscopic subset fixed.

3. Simulate the microscopic subset for ∆t seconds, while
keeping the mesoscopic subset fixed. However, we allow
microscopic molecules to react bimolecularly with meso-
scopic molecules.

4. Synchronize and assign all newly created molecules to
their respective scale.

5. Add ∆t to t. Repeat 2-4 until t = T.

A crucial and counter-intuitive aspect of this algorithm is
that it is necessary to select a time step ∆t that is neither too
small nor too large. The method does not, in general, converge
with∆t→ 0. A rule of thumb is that∆t should be selected such
that molecules diffuse on the length scale of individual voxels
in between synchronization. However, it is straightforward to
design a system that would require a smaller ∆t for accurate
simulation and for which the above hybrid method does not
work.

To see why the simple scheme outlined above leads to the
existence of an optimal time step ∆t, consider the following
model system:

S1
k1
−→ S11 + S12

k2
−→ S2, (30)

with S1 microscopic and S11, S12, and S2 mesoscopic. When
S1 dissociates, S11 and S12 are placed at contact and they
might therefore rebind quickly to form S2. If ∆t is large, then
it is likely that this fast interaction will be captured on the
microscopic scale during that time step, and the accuracy will
consequently be high. If∆t is small on the other hand, then S11

and S12 will become mesoscopic quickly after S1 dissociates,
and information about the spatial correlation of S11 and S12

will be lost.
Below we propose a way to improve the algorithm to

address this problem.

III. A CONVERGENT HYBRID METHOD

Here we propose a hybrid method which builds on the
algorithm31 outlined in Sec. II D but improves it in two critical
ways: First, we propose a new scheme to make the simulation
convergent as the splitting time step ∆t → 0 and second, we

use the theory in Sec. III C below to enable automatic system
partitioning.

A. Algorithm

To make the method converge monotonically as its time
step decreases, we here generalize the splitting over species to
allow for dynamic splitting, in which a time-dependent func-
tion maps molecules to either scale. Let tj denote the time
elapsed since the molecule with index j was created, and let
F(Sj, tj) denote the function mapping a molecule of species
S of age tj to either the mesoscopic subset or the microscopic
subset. Then, for system (30), we let

F(S1, t) = microscale, for all t, (31)

F(S11, t) = F(S12, t) =

{
microscale, t ≤ tm,

mesoscale, t > tm,
(32)

F(S2, t) = mesoscale, for all t, (33)

where tm is chosen sufficiently large (see Sec. III D for how
to choose tm) and where t is the time since the molecule was
created.

The algorithm in Ref. 31 now becomes a special case
(tm = 0) of the algorithm proposed here:

B. How to split a system

For a given system, we will need to determine a suitable
splitting in order to achieve high accuracy as well as efficient
simulations. Again, consider the system in Eq. (30). Taking
symmetry into account and by observing that for this particular
system the species S2 can be safely simulated on the meso-
scopic scale as it only diffuses, we can split the system in five
different ways,

X1 : S1 micro; S11, S12, S2 meso, (34)

X2 : S1, S11 micro; S12, S2 meso, (35)

X3 : S1, S11, S12 micro; S2 meso, (36)

X4 : S11, S12 micro; S1, S2 meso, (37)

X5 : S11 micro; S1, S12, S2 meso. (38)

We will now consider the accuracy and convergence of each
of the splittings X1–X5.

X1: In Algorithm 1, the S11 and S12 molecules will be
simulated on the mesoscale for tm seconds, and therefore, if tm

is chosen large enough such that the molecules either rebind
or can be considered well-mixed inside their respective vox-
els at the end of tm, the system will be accurately simulated.
Importantly, this is also true for ∆t → 0.

X2: The accuracy is the same as for the splitting in
X1, since S12 is mesoscopic. Association events between
microscale and mesoscale molecules have the same spatial
resolution as a pure mesoscopic association event.

X3: All molecules of interest are simulated on the micro-
scopic scale; the accuracy is therefore the same as for a pure
microscale simulation, but with no efficiency gained.

X4: The S1 molecule dissociates on the mesoscopic scale,
so all spatial correlation is lost (up to the size of the voxel)
upon dissociation. Even though we proceed to simulate the
S11 and S12 molecules on the microscopic scale, we still get
the accuracy of a mesoscopic simulation.
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Algorithm 1. Hybrid method.

1. Initialize the system. Set the time t = 0. Let T be the length of the simulation.
2. Assign molecules to the mesoscopic and microscopic subsets according to F(S, t).
3. Simulate the mesoscopic molecules for ∆t seconds. Mesoscopic molecules cannot interact with microscopic

molecules during the time step. Any molecules produced will, for the remainder of the time step, be simulated
on the mesoscopic scale.

4. Simulate the microscopic molecules for ∆t seconds, while freezing the mesoscopic molecules. Microscopic
molecules can react mesoscopically with mesoscopic molecules. Any molecules produced will, for the
remainder of the time step, be simulated on the microscopic scale.

5. Add ∆t to t.
6. Repeat 2-5 until t = T.

X5: The argument from X4 holds here as well. The
accuracy will be the same as for a mesoscopic simulation.

In conclusion, for this model problem, the only viable
splitting of system (30) (apart from the trivial pure microscopic
simulation) is X1, assuming that we want to simulate as few
species as possible on the microscopic scale.

Note that we may, in some cases, be able to simulate the
system described by Eq. (30) accurately with the method in
Ref. 31. However, with that algorithm, we cannot take the split-
ting time step arbitrarily small. The reason for this is described
in detail in Ref. 31. While this is acceptable for some systems,
it will lead to inaccuracies for many others.

As an example, consider the following system:

S1
k1

1
−−→ S11 + S12

k1
2
−−→ S2, (39)

S2
k2

1
−−→ S21 + S22

k2
2
−−→ S3, (40)

where k1
2 and k2

2 are large so that both association reactions are
diffusion limited.

First consider the case of t1
m = 0 and t2

m = 0. The method
now reduces to the method in Ref. 31. We know that ∆t has
to be large enough. S1 dissociates on the microscale, so both
S11 and S12 will be microscale until the end of the time step.
However, if they are created near the end of the time step,
they are likely to survive until the end of the time step and
then turn mesoscopic. If they react on the mesoscale, then the
product S2 will be mesoscopic until the end of the time step.
If 1/k2

1 � ∆t, the S2 molecule is likely to dissociate before
the end of the time step, in which case S21 and S22 are initially
mesoscopic. Information about the spatial correlation between
S21 and S22 is lost, up to the size of the voxel, and the rest of
the simulation may therefore be inaccurate.

With Algorithm 1, we can guarantee high accuracy, by
fixing t1

m and t2
m large enough and choosing ∆t small enough.

We then ensure that S11 and S12 exist on the microscale long
enough to either react quickly or become well-mixed insider
their respective voxels, while also ensuring that S2 is meso-
scopic only on a time scale much shorter than k2

1 (by selecting
∆t � 1/k2

1 ).

C. Criteria for selecting the modeling scale
of different species

Based on the work outlined in Sec. II C, it is clear that
choosing a mesh size h = h∗ in general leads to the most accu-
rate mesoscopic simulations. In fact, it is possible to push h∗

almost to the size of the molecules if the model is extended to
allow for reactions between molecules in adjacent voxels.17,20

The problem is that h∗ is small and this makes the mesoscopic
simulations expensive, sometimes significantly more expen-
sive than microscopic simulations.20 Another problem is that
h∗ is a function of the reaction radius, and thus different reac-
tions may require different mesh resolutions to be resolved.
This can make it impossible to simulate a system accurately
with the RDME.20 We therefore want to perform mesoscopic
simulations for the majority of the system with h� h∗ and han-
dle reactions that require a very fine mesh with a microscopic
solver.

For any given h ≥ h∗, the RDME solver will match the
mean binding time of the microscopic model if the mesoscale
propensity functions from Ref. 19 are used, but if h > h∗, it
will not perfectly match the fine-grained reaction dynamics.
Here, we use the relative error in τmeso

react to estimate this error.
We let

W (h) =

���τ
meso
react − τ

micro
react

���
τmicro

react

(41)

=

N
kmeso

a
− V

ka

V
ka

(42)

=
ka

hdkmeso
a

− 1, (43)

where we have used that τmeso
react > τmicro

react for h > h∗. Now using
(22) in place of kmeso

a , we obtain

W =
ka

hd ka

hd

(
1 + ka

D G(h,σ)
)−1
− 1 (44)

=
ka

D
G(h,σ). (45)

We assume that for W (h) < ε , for some small enough ε , a
reaction is sufficiently resolved on the mesoscopic scale. We
can hence use W (h) to decide which species need to be han-
dled on the microscopic scale in order to resolve the reaction
dynamics to high enough accuracy. The assumption W < ε
with (22) and (45) holds if and only if

ka

h3
(1 + ε)−1 < kmeso

a ≤
ka

h3
. (46)

In other words, a reaction is well resolved mesoscopically
when the mesoscopic reaction rate is sufficiently close to the
microscopic reaction rate (scaled by the volume of the voxel).
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In Sec. V A, we suggest a reasonable default value for ε
based on numerical experiments.

D. How to select tm

We need to select tm in Eq. (32) so that the hybrid method
accurately simulates the system in Eq. (30). In particular we
want the relative error

Ehybrid =
|τ

hybrid
react − τ

micro
react |

τmicro
react

(47)

to be small for tm large enough. Following a dissociation of
S1, the average time until the molecules react is given by

τ
hybrid
react = τ

micro
react |t≤tm + τmeso

react |t>tm , (48)

where τmicro
react |t≤tm is the average time until the molecules react

on the microscopic scale, given that they react before tm, and
τmeso

react |t>tm is the average time until the molecules react on the
mesoscopic scale, given that they react after tm.

Let S(t) denote the probability that the molecules do not
react before time t. Then

τmeso
react |t>tm = S(tm)(τmeso

diff |t>tm + τmeso
react ), (49)

where τmeso
diff |t>tm is the average time that it takes for the

molecule to diffuse back to the origin voxel, given that the
molecules did not react before time tm. By a similar argument,
we can write

τmicro
react = τ

micro
react |t≤tm + τmicro

react |t>tm (50)

= τmicro
react |t≤tm + S(tm)(τmicro

diff |t>tm + τmicro
react ). (51)

Now, by (48)–(51)

Ehybrid =
τ

hybrid
react − τ

micro
react

τmicro
react

(52)

= S(tm)
τmeso

diff |t>tm − τ
micro
diff |t>tm + τmeso

react − τ
micro
react

τmicro
react

(53)

= S(tm)

(
Q +

ka

D
G(h,σ)

)
(54)

≤ S(tm)(Q + ε), (55)

with

Q =
τmeso

diff |t>tm − τ
micro
diff |t>tm

τmicro
react

. (56)

It is now easy to see that since we are considering a bounded
domain, where τmeso

diff |t>tm → τmeso
diff , τmicro

diff |t>tm → τmicro
diff , then

as tm →∞

S(tm)→ 0, Q→ 0, as tm → ∞. (57)

The method thus converges as tm→∞, which is also easy
to see intuitively, as the simulation in practice becomes purely
microscopic for tm large enough.

We have seen numerically that the mesoscopic method
incurs an error in average rebind time that is on the order of the
time that it takes for a molecule to become well-mixed inside a
voxel.19 We therefore propose to select tm = K2V2/3

vox /(6D), that
is, a time proportional to the time that it takes for a molecule to
diffuse a distance proportional to the length scale of a voxel.
Here K is a constant, and we have found K = 6 to be sufficiently
large.

We note that S(t) is not known in general since we are
considering a bounded domain. However, assuming that tm

will be small enough, and the molecules are some distance
from the boundary, we can approximate S(t) by the survival
probability for an unbounded domain. This quantity is known
analytically and in 3D is given by43

S(t) = 1 −
ka

4πσD + ka

(
1 − exp(α2t)erfc(α

√
t
)

, (58)

where

α =

(
1 +

ka

4πσD

) √
D
σ

. (59)

We thus know all terms of Ehybrid except for Q. By selecting
tm large enough, we are ensuring that either Q ≈ �ka/DG(h, σ)
or S(tm) ≈ 0, and hence Ehybrid ≈ 0. We show numerically in
Fig. 1 that our choice of tm is sufficiently large to accurately
reproduce the microscopic distribution of rebind times for two
different diffusion-limited reaction rates.

E. Splitting a more complex system

To further illuminate how to practically implement the
automatic splitting of a system, we will consider some more

FIG. 1. We consider two molecules, one fixed and one diffusing at diffusion rate 1.0, in a cube of volume 1.0. The molecules react irreversibly with reaction rate
ka. Let τ denote the time until the molecules react, given that they start in contact (or in the same voxel on the mesoscopic scale), with a total reaction radius of
0.005. Above we plot the distribution of the logarithm of the rebind time τ. In (a), ka = 1.0, and in (b), ka = 0.1. We can see that the hybrid method reproduces
the microscopic distribution closely (note that green and red overlap in the figures above), while the mesoscopic RDME does not reproduce the same distribution
for diffusion-limited reactions. In particular, the RDME is unable to accurately resolve reaction events occurring on a spatial scale of one voxel or less.
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FIG. 2. Schematic illustration of system (64)–(67).

complex cases. The simple sequence

S1 −→ S11 + S12 −→ S2 (60)

serves as the base case. A single molecule produces two new
molecules, spatially correlated, that can then react to form
a new molecule. However, we can consider more complex
variants of this simple case.

For example, consider the following system:

S1 −→ S11 + S12, (61)

S11 −→ S∗11, (62)

S∗11 + S12 −→ S2. (63)

In this case S1 produces two molecules, S11 and S12, that
do not directly react. However, if the reaction S11 −→ S∗11 is
fast enough, the above system behaves similarly to the simple
system in (60). We might therefore need to simulate S1 on the
microscopic scale.

Another example is the system

S1 −→ P + S12, (64)

P −→ D + S11, (65)

S12 −→ S∗12, (66)

S11 + S∗12 −→ S2. (67)

We first find that the only bimolecular reaction is S11 + S12

→ S2. Assume that we have W > ε . We find no dissociation
reaction producing S11 and S12. We now look for reactions pro-
ducing either of the molecules or both. No reactions produce
both, but we find that S12 produces S∗12 and that P produces
S11 and D. We proceed to look for any reactions producing
either S12 or P or both. We now find only one such reaction,
S1 → P + S12. Since this is a dissociation reaction, S1 will be
simulated on the microscopic scale.

This is schematically illustrated in Fig. 2.
The production of S2 originates from a dissociation, with

an intermediate association reaction that is unresolved at
fine length scales on the mesoscopic scale. The dissociating
molecule is therefore a candidate for the microscopic scale.

We employ the following general strategy to identify
molecules that should be simulated on the microscopic scale:

For system (64)–(67), the algorithm would thus first com-
pute W for the association reaction S11 + S∗12 → S2. If W > ε ,
then the algorithm proceeds to find the sequence of reactions
S1 → P + S12, P→ D + S11 producing S11, and the sequence
of reactions S1→ P + S12, S12 → S∗12 producing S∗12. Since the
two sequences both start with S1 dissociating, we will simulate
S1 on the microscopic scale.

IV. IMPLEMENTATION

We have implemented the hybrid method as an exten-
sion to the high-level PyURDME14 Python API. This allows
for specification of microscopic/hybrid systems and execution
via a simple, object-oriented Python modeling interface. In
Secs. IV A–IV C, we describe the different components of the
solver and discuss computational complexity and performance
aspects of hybrid simulation.

A. Mesoscopic solver: Next-particle method (NPM)

In the NSM, reaction and diffusion events in each voxel
are grouped, and the heap is organized so that each leaf cor-
responds to a voxel. In each iteration, the next reaction or
diffusion event is executed and the next event time is updated
along with the heap for each affected voxel. For a fine mesh,
the vast majority of events are diffusion events and the simula-
tion cost is dominated by the time to execute diffusion events.
Ignoring reactions, the simulation cost, CNSM , on a uniform
grid with N voxels and M molecules of a single diffusing
species can be written as

CNSM (N , M) = C1N2M log N , (68)

where C1 is an implementation- and architecture-dependent
constant. Here we instead propose a particle-centric meso-
scopic algorithm, the Next-Particle Method (NPM), that tracks
individual particles on the grid. We simulate a mesoscopic
system as follows:

The main advantage of the NPM in the context of the
hybrid method is that it minimizes the overhead of switching
between the mesoscopic and the microscopic solvers, since the
two solvers can share one data structure for the particle list.
The microscopic solver needs to know the position of individ-
ual molecules, so maintaining one particle list simplifies the
mapping between discrete positions on a grid and continuous

Algorithm 2. Identifying microscale particles.

1. Identify all bimolecular reactions for which W > ε , for some sufficiently small ε , where W is the relative
error in the mesoscopic mean binding time, as defined in (41).

2. For each such reaction, determine if the product originates from a dissociation reaction. If it does, the
dissociating molecule should be simulated on the microscopic scale.

(a) If the two reactants are produced by a dissociating molecule we are done. The product of the association
reaction then originates from a dissociation [an example of this is (60)].

(b) If they are not, find all sequences of reactions producing reactant 1 of the association reaction and all
sequences of reactions producing reactant 2.

(c) For each sequence producing reactant 1, and starting with a dissociation, search for a sequence produc-
ing reactant 2 that starts with the same dissociation. If we find two such sequences, then the initially
dissociating molecule will be simulated on the microscopic scale.
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Algorithm 3. Next-particle method.

1. Particles are stored in a list, with information about species type and which voxel they currently occupy.
2. For each particle, we generate the time to and the destination voxel of its next diffusion event. Add each

diffusion event to the heap. For N particles, the size of the heap will be N.
3. For two reactive particles occupying the same voxel, we generate the time until the next tentative event and

add that event to the heap.
4. Execute the next event.
5. Update all dependent events. If a molecule diffused, add its next diffusion and reaction events to the heap. If

molecules reacted, add new diffusion and reaction events to the heap for all molecules that were affected.
6. Repeat 4-5 until the end of the simulation.

positions in space. The cost for the NPM for the example above
can be written as

CNPM (N , M) = C2N2M log M, (69)

where C2 is a constant. This highlights another potential
advantage of the NPM in the context of hybrid simulation:
it can be more efficient than NSM for highly resolved meshes
if the number of voxels is larger than the number of particles.
This will often be the case for highly resolved geometries.

Note, however, that the hybrid framework proposed here
does not depend on the particular implementation of the meso-
scopic method and that it would be possible to alternate
algorithms depending on the particular values of N and M.

B. Microscopic solver: Green’s function
reaction dynamics (GFRD)

On the microscopic scale, the system is simulated with the
Smoluchowski model, as described in Sec. II B. For a system
of more than one or two molecules, we have an intractable
many-body problem. To deal with this, we employ a strategy
conceptually similar to the GFRD algorithm.36

The first step of the algorithm is to divide the system into
subsets of one or two molecules and to select a time step ∆t,
such that to high accuracy we can update the subsets inde-
pendently during ∆t. Molecules that are each others’ nearest
neighbors are updated in pairs, while all other molecules are
updated as single molecules. The time step ∆t is chosen as
large as possible, with the constraint that the probability of
interactions between the separate subsets is small. We then
simulate each subset for ∆t seconds.

For each subset, we look for the next reaction: if two
molecules react bimolecularly, we can sample the time until
they react from pr(∗, t|r0, t0) [defined in (9)], if either or both
molecules can react unimolecularly, we can sample the next
reaction time from exponential distributions, and finally we
will look for possible interactions with the boundary. The reac-
tion that occurs first is executed. We then repeat the procedure
until the subsystem has been advanced to time t0 + ∆t.

Instead of solving Eq. (4) with boundary conditions given
by Eqs. (6)–(8) exactly, we solve it using the operator split
approach described in Ref. 38. Furthermore, we only sample
from pr(∗, t|r0, t0) and pr(r, t|r0, t0) if the distance between
the molecules is small and the probability of a reaction is fairly
large. If the probability of reaction during the time step is small,
it can be more efficient to simulate the pair using small, purely
diffusive, steps of Brownian dynamics until the molecules are

close. The cutoff is typically at a distance of around a few
reaction radii.

C. Hybrid solver

We can now couple the mesoscopic NPM with the micro-
scopic solver in a simple loop. Since the NPM keeps track
of individual molecules, it is straightforward to map each
molecule to either scale according to the splitting function
F. Both solvers can keep track of how long a molecule
has existed, thus making it easy to determine whether a
microscopic molecule can be mapped to the mesoscopic
scale.

When a molecule switches from the mesoscopic scale to
the microscopic scale, we need to know its position in continu-
ous space. We sample its position from a uniform distribution
on its voxel. Similarly, when a molecule switches from the
microscopic scale to the mesoscopic scale, we need to know
which voxel the molecule occupies. This is straightforward,
since we track which voxel a molecule occupies to accurately
simulate its interaction with the boundary. This process is
described in detail in Ref. 31. We summarize some of the
practical details of the hybrid method in Algorithm 4.

The overhead from switching between the scales is
inversely proportional to the splitting time step, Ccoupling

= C3(∆ts)−1, where we have assumed that the number of par-
ticles that switch in each time step is small, compared to the
total number of particles on both scales.

With M1 the average number of mesoscopic particles and
M2 the average number of microscopic particles during the
course of a simulation, the complexity of the overall hybrid
method can be described by

Chybrid(N , M1, M2) =
C2M1 log M1

N−2
+ Cgfrd(M2) + C3(∆ts)

−1.

(70)

Since the number of particles handled on the different scales
depends on the mesh resolution, i.e., M1 and M2 are functions
of N, the cost of the solver is complicated to estimate a priori,
and it implies the existence of an optimal choice of N for
performance. This will be illustrated in Sec. V B.

Note that each solver could be optimized depending on the
system. If we were mainly interested in simulating systems in a
cube, the microscopic solver could be significantly optimized
by simplifying the process of keeping track of the boundary.
For a system with many more particles than voxels, we could
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Algorithm 4. Hybrid method.

1. Initialize the system. Assign molecules to the mesoscopic and microscopic subsets according to F(S, t). Set
the time t = 0. Let T be the length of the simulation.

2. Mesoscopic molecules are simulated with the NPM for ∆t seconds. Microscopic molecules are frozen.
3. Simulate the microscopic molecules for∆t seconds with GFRD as implemented in Sec. IV B. The mesoscopic

molecules do not diffuse. Microscopic molecules can react with mesoscopic molecules that occupy the
voxel that the microscopic molecule currently resides in. The microscopic and mesoscopic molecules thus
react mesoscopically by sampling a next reaction time from an exponential distribution with the correct
mesoscopic reaction rate.

4. Determine the simulation scale of each molecule by evaluating F(S, t).
5. For each mesoscopic molecule that transitioned to the microscopic scale:

(a) Set its scale to microscopic.
(b) Set the continuous position by sampling uniformly on the voxel that it currently occupies. For details

on how to sample the position, see Ref. 31.
6. For each microscopic molecule that transitioned to the mesoscopic scale:

(a) Set its scale to mesoscopic.
(b)Determine which voxel contains its current continuous position. This will be the molecule’s new

mesoscopic voxel.
7. Add ∆t to t.
8. Repeat 2-7 until t = T.

choose to simulate the mesoscopic part of the system with the
NSM rather than with the NPM.

In Sec. V B, we show how the contribution to the total exe-
cution time of each solver depends on the mesh size and the
system. The total cost of a simulation depends non-linearly on
the mesh size, since we need to balance the trade-off between
a coarse mesh and fast mesoscopic simulations but expen-
sive microscopic simulations, with a fine mesh on which the
mesoscopic simulations are more expensive while the micro-
scopic simulations will be faster (due to the fact that we will
simulate fewer molecules on the microscopic scale on a fine
mesh).

V. NUMERICAL EXAMPLES

While the theory above is derived under the assumption
of a Cartesian mesh, we have shown that in most cases it can
be applied also to the case of unstructured meshes,44 by sub-
stituting the voxel width h for V1/3

vox , where Vvox is the volume
of a voxel in a mesh. In particular, we show in Sec. V A that we
can accurately split and simulate a system on an unstructured
mesh.

Furthermore, we demonstrate that we can accurately sim-
ulate a problem previously shown to be intractable with the
standard RDME model,44 and finally we show the existence
of an optimal mesh size, from an efficiency perspective, in
between the coarsest and finest possible mesh sizes.

A. Splitting species: Accuracy and efficiency

In this example, we demonstrate that for a given sys-
tem, we can split the species into a microscopic subset and
a mesoscopic subset using W (h) defined in Eq. (41). The
resulting splitting of species should yield accurate and efficient
simulations on a given unstructured mesh.

First we want to determine a suitable ε such that W < ε
indicates that the reaction is sufficiently resolved on the

mesoscopic scale. We again consider the simple system

S1
k1
−→ S11 + S12

k2
−→ S2. (71)

In Sec. III C, we found that

W =
k2

D
G

(
V

1
3

vox,σ
)

(72)

is a measure of how well the rebinding time of a pair of
molecules is resolved [where kmeso

2 is given by (22)]. Note

that we substituted h for V
1
3

vox in (72), where, on a Cartesian
mesh, we would have h3 = Vvox.

While we have no theory relating W directly to the error
in the mesoscopic simulation of the system, we can use it as
an indirect measure of the error. Via numerical simulations we
can find an ε such that W < ε implies that the simulations will
be accurate.

For simplicity we consider system (71) in a cube. We let
the microscopic parameters be given by




σ1 = σ11 = σ12 = σ2 = 0.0025,

D1 = D11 = D12 = D2 = 1.0,

k1 = 10.0,

V = (50h∗σ)3,

(73)

and we sample k2 from [0.001, 1.0]. By design we expect the
best agreement between mesoscale and microscale simulations
for a mesh of 503 voxels. Note that these parameters are chosen
arbitrarily, but we will proceed to show that the results can
be applied successfully to a numerical example with different
parameters.

First we compare pure mesoscopic and microscopic sim-
ulations. Let yme = (y1

me, . . . , yN
me) be the average number of S2

molecules, computed from Mme mesoscale trajectories sam-
pled at the time points t1, . . . , tL, and let ymi = (y1

mi, . . . , yL
mi)

be the average number of S2 molecules computed as the aver-
age of Mmi microscale trajectories sampled at the time points
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t1, . . . , tL. We consider the max-norm error E, defined as

E = max
1≤i≤L

���y
i
me − yi

mi
��� . (74)

For small values of k2, we expect the mesoscopic simu-
lations to be accurate also for coarse meshes, while for large
k2, we expect the error to be large unless the spatial resolution
is near the maximum resolution of 503 voxels. In Fig. 3, we
show how W correlates with the error E for different k2 and that
ε = 0.025, although arbitrary, is a reasonable choice yielding
an error of the order of 1.

We now apply the choice of ε = 0.025 to an expanded
system of three bimolecular reactions,

S1
k1

1
−−→ S11 + S12

k1
2
−−→ S2, (75)

S2
k2

1
−−→ S21 + S22

k2
2
−−→ S3, (76)

S3
k3

1
−−→ S31 + S32

k3
2
−−→ S4, (77)

with parameters different from the simple system above. The
system is simulated inside a sphere of radius 0.5, discretized
with an unstructured mesh consisting of 6395 voxels.

Depending on the values of ki
2, i = 1, 2, 3, we will simulate

some combination of S1, S2, and S3 on the microscopic scale.
For W i > ε , Si is simulated on the microscopic scale. The
minimum time that a molecule has to exist on the microscopic

scale before it becomes mesoscopic is given by tm =
K2V2/3

vox
6Di

,
with K = 6, cf. Sec. III D.

We consider six different combinations of reaction rates;
see Table I. In each case, we will have a different combina-
tion of S1, S2, and S3 on the microscopic scale. For k∗2 > 0.1,
W > ε , while for k∗2 = 0.001, we have W < ε . Thus, for
case 6 the hybrid method will simulate all molecules on the
mesoscopic scale, and we therefore expect the mesoscopic
simulation to agree well with the microscopic simulation.

In Fig. 4, we show that the hybrid method agrees well
with the microscopic simulations. In case 6, the RDME agrees
well with the microscopic model, as expected. In addition,
we show that the accuracy increases with a decreasing split-
ting time step. For a relatively large splitting time step of 0.1,
the method produces results with a fairly large error, but as
we refine the splitting time step, the results approach that of
a pure microscopic simulation. We have tabulated the errors
of the hybrid method errors in Table II with the errors of

TABLE I. Association rates for the six different cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

k1
2 0.1 0.001 0.1 0.1 0.001 0.001

k2
2 0.1 0.3 0.3 0.001 0.001 0.001

k3
2 0.1 0.001 0.001 0.2 0.2 0.001

pure mesoscopic simulations. Even with a fairly large split-
ting time step, the error in the hybrid method is smaller. For
case 6, in which the reactions are slow compared to diffu-
sion, both the hybrid method and the RDME produce accurate
results.

While one reason to use a hybrid method is to gain effi-
ciency over a very fine-grained RDME simulation, another is
that some systems cannot be simulated accurately with a stan-
dard RDME model. In Ref. 44, we considered the following
system:

S1
kd
−−→ S11 + S12

kr
−→ S2, (78)

S2
kd
−−→ S21 + S22

kr
−→ S3, (79)

where kd = 10.0 and kr = 0.1. If σi is the reaction radius
of species Si and σij the reaction radius of species Sij, then
σ1 = 10�3,σ11 = 0.8× 10�3,σ12 = 0.8× 10�3,σ2 = 2.0× 10�3,
σ21 = 1.8 × 10�3, σ22 = 1.8 × 10�3, and σ3 = 2.5 × 10�3. For
simplicity, all molecules diffuse with diffusion rate 1.0. The
domain is a cube of volume 1.0.

To resolve the first association, we need a mesh size
of around h∗1 =

2
3 C3π(σ11 + σ12) ≈ 5.0 × 10−3, and to

resolve the second association, we need a mesh size of around
h∗1 =

2
3 C3π(σ21 +σ22) ≈ 1.14× 10−2. We showed in Ref. 44

that we cannot resolve both reactions simultaneously with the
standard local RDME; we could simulate the system by allow-
ing reactions between neighboring voxels. However, these
simulations become expensive as the mesh needs to be highly
refined, and they cannot be trivially extended to unstructured
meshes.

We show here that another viable approach is to simulate
the system with a hybrid method. The system is simulated for
2 s, with 201 uniform time samples including t = 0. In Fig. 5,
we plot the error E as a function of the mesh size, where E
is defined as in Ref. 44. Let S = {S1, S11, S12, S2, S21, S22, S3}.

FIG. 3. In (a) we plot W as a function of

N
1
3 and ka. For points above the white

solid line, we have W < 0.025. In (b)

we plot the error E as a function of N
1
3

and ka. Again, for points above the white
solid line, W < 0.025. For small ka, the
error is small for all mesh sizes, while
as ka increases, we need a large N to
keep the error small. We can see that for
W < 0.025, the error is roughly on the
order of 1.
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FIG. 4. (a) We plot the error E, as defined in Eq. (74) as a function of the splitting time step ∆tsplit. For the smallest time step, ∆tsplit = 0.001, the error remains
small for case 6 but is larger for cases 1 and 4, in which some or all of the reactions are diffusion limited. (b) The average number of S4 molecules over time
in case 1. We see that the hybrid method with ∆tsplit = 0.1 underestimates the average number of S4 molecules but still produces better results than with a pure
mesoscopic simulation. The hybrid method matches the microscopic results closely for ∆tsplit ≤ 0.01.

TABLE II. Max-norm error. We see that the hybrid method, even for a large
splitting time step, produces results that are more accurate than pure meso-
scopic simulations. In the case where all reactions are slow compared to
diffusion, the RDME produces accurate results, as does the hybrid method.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

RDME 27.08 3.78 7.19 9.87 4.597 0.81
Hybrid, ∆tsplit = 0.1 4.82 2.79 2.26 4.52 2.437 0.75
Hybrid, ∆tsplit = 0.01 0.36 1.90 2.25 0.97 1.157 0.85
Hybrid, ∆tsplit = 0.001 0.38 1.22 1.15 0.77 0.937 1.09

Then

E(h) =
1

201

201∑
i=1

∑
S∈S
|S∗h,i − Smicro

i |, (80)

where Smicro
i is the average population of species S at time ti,

obtained with the microscopic algorithm and where S∗h,i is the
average population of species S at time ti obtained with either
the hybrid algorithm or with the NPM, simulated on a mesh
with a voxel width of h.

B. Efficiency: Non-linear dependence on the mesh size

As already discussed in Sec. IV C, the total execution time
is the sum of the time spent on the mesoscopic scale, Tmeso,
the microscopic scale, Tmicro, and the overhead incurred from
the coupling of the scales. The time spent on the microscopic
scale depends on how many of the species are microscopic,
which in turn depends on the resolution of the mesh. On a fine

mesh, we will simulate fewer molecules on the microscopic
scale, and for a shorter time, but we pay the price of a more
costly mesoscopic simulation.

In this numerical example, we show that the total execu-
tion time T is a non-linear function of Tmicro and Tmeso and
that to optimize T we need to balance Tmicro and Tmeso in a
non-trivial way.

We consider the system

S1
k1

1
−−→ S11 + S12

k1
2
−−→ S2,

S2
k2

1
−−→ S21 + S22

k2
2
−−→ S3,

S3
k3

1
−−→ S31 + S32

k3
2
−−→ S4,

where k1
i = 20.0, i = 1, 2, 3, k1

2 = 0.0016, k2
2 = 0.001 45, and

k3
2 = 0.0014. We initialize the system with 200 S1 molecules

and 200 S2 molecules, all with uniformly sampled positions
on the domain. The domain is a sphere with radius 0.5, and
we consider a sequence of meshes, ranging from coarse to
fine. In Fig. 6, we show that there exists an optimum, with
respect to total execution time, between the coarsest and the
most resolved mesh. Note that this particular system can be
accurately simulated on any mesh resolution with the hybrid
method, and therefore the error remains small for all mesh
sizes, with the only thing changing being the number of
molecules simulated on either scale, and for how long the
microscopic molecules remain microscopic.

FIG. 5. (a) The error E, as defined by
Eq. (80). The RDME does not match
the microscopic dynamics for any mesh
size. The hybrid method is able to cap-
ture the dynamics of the system by sim-
ulating the S1 and S2 species on the
microscopic scale and all other species
on the mesoscopic scale. (b) Exam-
ple trajectory of the average population
of S3 molecules. The hybrid method
agrees well with the microscopic results,
while the NPM on a mesh of 803 vox-
els does not agree with the microscopic
simulations.
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FIG. 6. (a) The total execution time is a nonlinear function of the mesh size. For a coarse mesh, most of the simulation time will be spent on the microscopic
scale. As the mesh is successively refined, the time spent on the mesoscopic scale starts to dominate. The shortest total simulation time is obtained for a mesh of
around 30 000 voxels. (b) Number of particles on the microscopic scale as a function of the mesh resolution. Red dots indicate the sample points used to generate
the plot in (a). As we can see, for the two left-most points, we simulate S1, S2, and S3 on the microscopic scale. As we move to the right, we will simulate two,
one, and finally, for the right-most point, no species on the microscopic scale. We can see in (a) that a pure mesoscopic simulation is slower than a simulation
with one microscopic particle, but with a much coarser mesh.

In general there is no way to a priori determine the opti-
mal mesh size, as it will depend on the system under study as
well as the initial condition. It will also depend on the size of
the simulation; if we are planning on running many or very
long trajectories, making the total simulation time substan-
tial, we can afford an expensive preprocessing step. On the
other hand, if the total simulation time is short to moderate,
an expensive preprocessing step will not be worthwhile. We
therefore propose a heuristic approach to selecting the mesh
size.

If we can afford an expensive preprocessing step, we can
simulate either full trajectories or shortened trajectories on
a sequence of mesh resolutions to find a mesh resolution that
appears to minimize the total execution time (there is of course
no guarantee that we have found an actual minima). To speed-
up this process we could, if the system allows it, perform the
simulations on a structured Cartesian grid on a regular domain.
That way we avoid the costly process of generating a sequence
of unstructured meshes. While there is no guarantee that the
system behaves the same way on a structured Cartesian mesh
as on the actual domain of interest, we can still expect to get an
approximation of the relative cost of simulations on different
mesh sizes.

Also note that in many cases the mesh size will be con-
strained by the geometry of the problem. Internal structures
could require a certain minimum mesh resolution, meaning
that we cannot select the mesh size that optimizes the execu-
tion time but that we instead are constrained to a certain mesh
and have to choose the best splitting given the mesh resolution.

VI. CONCLUSIONS

We have developed a hybrid method coupling simula-
tion of the mesoscopic and microscopic modeling scales. The
method can, for a certain class of systems, automatically pro-
pose a splitting of species based on how diffusion-limited the
reactions are. Furthermore, we show that the new method con-
verges with decreasing splitting time step for a larger class of
systems than a previously developed method.31

We apply the method to a numerical example, showing
that it accurately, and with increased efficiency compared to

microscopic simulations, splits the system. We also show how
the optimal splitting can be found for a mesh between the coars-
est and the finest possible resolutions. It is therefore necessary
to find a balance between how many molecules to simulate on
the microscopic scale and how fine the mesh should be.

The approach described in this paper can, in general,
be applied to systems where molecules are created in spa-
tial proximity through some sequence of unimolecular and
bimolecular reactions. Another possibility is that molecules
are created in spatial proximity due to more complex interac-
tions with internal membranes or fibers, processes not nec-
essarily captured by the scheme outlined above. It is also
plausible that microscale resolution could be needed for other
reasons, such as for processes where molecules in 3D react
with complex membranes or move due to active transport.
Automatic splitting of such systems would require a different
analysis.
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APPENDIX: SOFTWARE AND DATA AVAILABILITY

The source code used to generate the data and
figures in this article is available for download at
http://shellander.bitbucket.io/rdsim.
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12J. Schöneberg and F. Noé, PLoS One 8, e74261 (2013).
13B. Drawert, S. Engblom, and A. Hellander, BMC Syst. Biol. 6, 76 (2012).
14B. Drawert, M. Trogdon, S. Toor, L. Petzold, and A. Hellander, SIAM J.

Sci. Comput. 38, C179 (2016).
15B. Drawert, A. Hellander, B. Bales, D. Banerjee, G. Bellesia, B. J. Daigle, Jr.,

G. Douglas, M. Gu, A. Gupta, S. Hellander, C. Horuk, D. Nath, A. Takkar,
S. Wu, P. Lötstedt, C. Krintz, and L. R. Petzold, PLoS Comput. Biol. 12, 1
(2016).
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