AI P The Journal of

Chemical Physics
A framework for discrete stochastic simulation on 3D moving boundary domains
Brian Drawert, Stefan Hellander, Michael Trogdon, Tau-Mu Yi, and Linda Petzold

Citation: The Journal of Chemical Physics 145, 184113 (2016); doi: 10.1063/1.4967338
View online: http://dx.doi.org/10.1063/1.4967338

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/145/18?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
AIP Advances 6, 035217 (2016); 10.1063/1.4944952

Stochastic operator-splitting method for reaction-diffusion systems
J. Chem. Phys. 137, 184102 (2012); 10.1063/1.4764108

An accelerated algorithm for discrete stochastic simulation of reaction—diffusion systems using gradient-based
diffusion and tau-leaping
J. Chem. Phys. 134, 154103 (2011); 10.1063/1.3572335

First passage time distribution in stochastic processes with moving and static absorbing boundaries with
application to biological rupture experiments
J. Chem. Phys. 133, 034105 (2010); 10.1063/1.3456556

Stochastic chemical reactions in microdomains
J. Chem. Phys. 122, 114710 (2005); 10.1063/1.1849155

2 Special Topic Sections

NOW ONLINE e e
Lithium Niobate Properties and Applications:
Reviews of Emerging Trends AlP Reviews



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2086508239/x01/AIP-PT/JCP_ArticleDL_110916/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Brian+Drawert&option1=author
http://scitation.aip.org/search?value1=Stefan+Hellander&option1=author
http://scitation.aip.org/search?value1=Michael+Trogdon&option1=author
http://scitation.aip.org/search?value1=Tau-Mu+Yi&option1=author
http://scitation.aip.org/search?value1=Linda+Petzold&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4967338
http://scitation.aip.org/content/aip/journal/jcp/145/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944952?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/18/10.1063/1.4764108?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/15/10.1063/1.3572335?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/15/10.1063/1.3572335?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/133/3/10.1063/1.3456556?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/133/3/10.1063/1.3456556?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/11/10.1063/1.1849155?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 145, 184113 (2016)

® CrossMark
¢

A framework for discrete stochastic simulation on 3D moving

boundary domains

Brian Drawert,'-@0) Stefan Hellander, Michael Trogdon,%? Tau-Mu Yi,3

and Linda Petzold'2

D Department of Computer Science, University of California-Santa Barbara, Santa Barbara,

California 93106, USA

2 Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara,

California 93106, USA

3 Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara,

Santa Barbara, California 93106, USA

(Received 24 August 2016; accepted 26 October 2016; published online 14 November 2016)

We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-
dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In
particular, we look to address the fully coupled problems that arise in systems biology where the shape
and mechanical properties of a cell are determined by the state of the biochemistry and vice versa.
To validate our method and characterize the error involved, we compare our results for a carefully
constructed test problem to those of a microscale implementation. We demonstrate the effectiveness
of our method by simulating a model of polarization and shmoo formation during the mating of
yeast. The method is generally applicable to problems in systems biology where biochemistry and
mechanics are coupled, and spatial stochastic effects are critical. © 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).[http://dx.doi.org/10.1063/1.4967338]

I.INTRODUCTION

Stochastic simulation of biochemical reactions has
become an essential part of systems biology. Many examples
exist where mean-field or deterministic analysis is insufficient
to capture the relevant dynamics of real biological systems. '~
In particular, systems in which the copy number of any rele-
vant species is small will often be more accurately modeled
with stochastic simulation. There exist several methods to
model biochemical reactions stochastically, the most popu-
lar of which is the Stochastic Simulation Algorithm (SSA) or
Gillespie algorithm.* This algorithm assumes that the system
is spatially homogeneous, or well-mixed, which is not the case
in many interesting biological problems.

Polarization in yeast®> and neutrophils,® Min oscillations
during cell division of E. coli,”® and development’ are a
few examples where the well-mixed assumption does not
apply. There are several different methods for modeling spa-
tial stochastic biochemical reactions, which can be broadly
grouped into two categories. First are the particle-tracking,
or free-space based on the Brownian dynamics formalism, '’
methods that resolve the system on a microscopic scale.!'~13
These methods are more accurate but can be quite difficult
to simulate in an efficient manner. The other group of methods
works on the mesoscopic scale and is based on the reaction-
diffusion master equation (RDME) formalism.”'4-1¢ These
methods discretize the domain into spatially homogeneous
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subvolumes (or voxels). Reactions within a voxel are modeled
with the SSA algorithm, while diffusion between voxels is
modeled as events occurring at intensities chosen to be con-
sistent with the diffusion equation. The RDME is significantly
faster to simulate than microscopic methods, with some sacri-
fice in accuracy. A more detailed background on these methods
will be given in Section II A. One assumption that underlies
all of the methods mentioned here is that the physical domain
is static in time. This is often not the case in biology.

Shmoo growth during the mating of yeast,'” tip growth
in fungal hyphae,'® chemotaxis in neutrophils,® cell migra-
tion,'? and cell division’® are some examples where the phys-
ical domain of the cell is changing in time. There has also
been recent work dealing with the critical role that geom-
etry can play in fundamental biological processes, such as
polarization.?’ In this paper, we present a method to effi-
ciently model stochastic reaction-diffusion systems in com-
plicated, three dimensional (3D), time-dependent geometries
using the RDME framework. Previous work to model stochas-
tic reaction-diffusion systems in time-dependent domains has
focused on particle-based approaches.?! While these meth-
ods are viable in some settings, it is generally accepted that
the accurate particle-tracking methods become prohibitively
expensive as the system size grows large. An efficient imple-
mentation of the RDME on time-dependent domains can effec-
tively handle complex geometries as well as large reaction net-
works, while still being practical in terms of simulation time.
There has also been previous work that has dealt with particle
migration on 1D growing domains using the RDME formal-
ism, where results have been compared to those of partial
differential equation (PDE) models.?>~>* Additionally, we note

© Author(s) 2016
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that the particle-based software Smoldyn'! has capabilities to
change the size of domain during simulation.

A key problem that our method addresses arises in sys-
tems where the biochemical reaction network is fully coupled
to the mechanical properties of the physical domain. Our moti-
vating example is the growth of the mating projection in yeast.
In this system, enzymes modify the material properties of the
cell wall, softening it, and as a result the force of the internal
turgor pressure deforms the cell. At the same time, cell wall
construction proteins strengthen the cell wall and slow the
movement. A diagram of this process is illustrated in Figure 1.
Our method does not propose to solve arbitrary mechanics of
the model system under consideration. Instead, we integrate an
external function or software that models and solves the equa-
tions governing the mechanics of the system, which will take
as input the state of our biochemical system and provide as out-
put the instantaneous velocity of the boundary of the domain.
It is important to note, however, that this is simply one possi-
ble problem that can be handled by our proposed algorithm. In
general, the function that moves the boundary does not need to
be defined by mechanics (e.g., a constantly expanding sphere).
The only requirement is that there is a velocity field provided to
move the boundary, which can be empirically or theoretically
derived.

It is important to note that in our method it is necessary
to have a separation of time scales between the diffusion of
the biochemical species and the movement of the boundary.
It is critical that diffusion is faster than the boundary velocity
to accurately simulate the system. In Sections IV A and IV B
we characterize the error our method incurs and how it relates
to the difference in time scales of diffusion and the velocity
of the boundary. Essentially, it is possible to find a time step
small enough to satisfy a user specified error tolerance if there
is in fact a separation of time scales.

In this paper, we present a method to efficiently sim-
ulate stochastic reaction-diffusion models coupled to time-
dependent domains using the RDME formalism. An outline for
the rest of this paper is as follows: in Section II, we give a brief
review of the RDME and how it can be simulated efficiently in
complex domains using the Next Subvolume Method (NSM) '3
on unstructured meshes.”> In Section III, we present our
method and discuss implementation and theoretical considera-
tions. Next, in Section I'V, we present three examples that serve
to show the convergence properties and accuracy of the method

N S
2hS b :

|@ Cell wall modifying enzyme|

FIG. 1. Diagram illustrating the how the yeast mating projection grows, our
motivating example. Cell wall modifying enzymes (yellow) are localized to
the polarized region of the cell membrane. These enzymes soften the cell wall.
The internal turgor pressure pushes on the cell wall, deforming it, and creating
the mating projection.
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along with demonstrating the applicability of the method to
biologically relevant problems. Specifically, in Section IV A,
we compare the results of our method to a microscale imple-
mentation of a single species diffusing within an expanding
1D line that can react with the boundary. This example serves
to demonstrate the accuracy and convergence (in the spatial
distribution of molecules) of our method compared with a
microscale implementation over a range of expansion veloc-
ities and time steps. To accurately compare these different
scales of simulation, we also derived the relationship between
mesoscale and microscale reaction rates (see Appendix C for
details). Next, in Section IV B, we present a more biologically
relevant, yet still theoretically tractable, model of polarization
in yeast, introduced in Ref. 26. This model contains a density
dependent switch for polarization which we explore through
an expanding and contracting sphere and compare to theoret-
ical steady state results from Ref. 26. Lastly, in Section IV C
we present a model in which the state of the biochemical sys-
tem dictates the movement of the boundary. In particular, we
present a new model for the polarization of Cdc42 in mating
yeast (see Appendix A for details) and qualitatively compare
to experimental data. Finally, we end the paper in Section V
with a discussion of the method and our results.

Il. BACKGROUND
A. The reaction-diffusion master equation

As mentioned above, the RDME?’ is a mesoscopic model
for spatial stochastic chemical reactions. It gives the time evo-
lution of the probability distribution for the state of the system.
First, the physical domain is partitioned into K nonoverlapping
subvolumes or voxels, similar to numerical methods for PDEs.
Molecules are taken to be point particles and the state of the
system is the discrete number of molecules of each species for
each of the voxels in the mesh. The computational mesh can
either be a structured Cartesian grid or an unstructured trian-
gular or tetrahedral mesh. Here, we focus on the unstructured
case which will be discussed further in Section II C. Modeling
the reaction-diffusion dynamics as a Markov process gives the
following forward Kolmogorov equation for the time evolu-
tion of p(x,f) = p(x,tlxg,to) (the probability that the system can
be found in state x at time ¢, conditioned on the initial condition
Xo at time tq)

op(x, 1)

Fram Rp(x,t) + Dp(x, 1), (1)

K M
Rp(x,1) = D D @ir(X = Vi )p(x = Vi, )

i=1 r=1

— air(X)p(X, 1), @)

N K K
Dp(x,1) = Y > " dyi(x = pr)p(X = prgi )

=1 i=1 j=1
— dgj(X)p(X, 1), 3
where x;. denotes the ith row and x; denotes the jth column

of the K X § state matrix x, where S is the number of chemical
species. The functions a;.(x;) define the propensity functions
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of the M chemical reactions, and v;, are stoichiometry vectors
associated with the reactions. The propensity functions are
defined such that a;(x)At gives the probability that reaction r
occurs in a small time interval of length At. The stoichiome-
try vector v;, defines the rules for how the state changes when
reaction r is executed. d;j (x;) are propensities for the diffusion
jump events, and p;j are stoichiometry vectors for diffusion
events. u;x has only two non-zero entries, corresponding to
the removal of one molecule of species x; in voxel i and the
addition of a molecule in voxel j. The propensity functions for
the diffusion jumps, d;j, are selected to provide a consistent
and local discretization of the diffusion equation, or equiva-
lently the Fokker-Planck equation for Brownian motion. It is
important to note, as mentioned in Section I, that this formal-
ism is defined for a physical domain that is static in time. We
will relax this assumption with our method to accommodate
time-dependent domains.

B. The next subvolume method

In most cases, the RDME is too high-dimensional to solve
directly. Thus, algorithms have been developed that gener-
ate exact realizations of the Markov process described by the
RDME, in a Monte Carlo fashion. One particularly efficient
algorithm that we focus on for our implementation is the Next
Subvolume Method (NSM).!3 In this algorithm, the time to
the next event in each voxel (either a chemical reaction or
diffusion event) calculated by the Direct Method formulation
of the SSA.?® To identify in which voxel the event occurs,
the algorithm uses the Next Reaction Method formulation of
the SSA.%° If it was a chemical reaction event that occurred,
then only the voxel in which the event occurred needs to be
updated, while if a diffusion event occurs both the voxel where
the molecule started and the voxel where the molecule ended
up need to be updated. The key to the efficiency of the NSM
is the use of an event priority queue which gives a scaling of
O(log,(K)), where K is the number of voxels in the mesh.

C. RDME on unstructured meshes

The use of unstructured meshes allows for complicated
geometries in 3D to be more easily accommodated, such as
the curved surfaces of cell membranes. PyYURDME?" (based
on URDME?) is a software framework for simulation of
the RDME on unstructured meshes that we extend to time-
dependent domains. For the theoretical details of how to obtain
mesoscopic diffusion constants on unstructured meshes, see
Ref. 31. Using the finite element package DOLFIN>? we obtain
the diffusion matrix for the system, from which we get the jump
coefficients for individual voxels. The flexibility of simulating
on unstructured meshes allows our method to handle complex
time-dependent domains in 3D.

lll. COMPUTATIONAL METHOD FOR SPATIAL
STOCHASTIC SIMULATION WITH A MOVING
BOUNDARY

In this section we develop a computational method for
simulation of spatial stochastic systems defined by the RDME
formalism on domains with moving boundaries. Our method
utilizes the time scale separation between the diffusion of the

J. Chem. Phys. 145, 184113 (2016)

biochemical species in the RDME system and the movement
of the boundary of the domain. The method is formulated for
systems where diffusion is faster than the boundary move-
ment. In this context we use operator splitting to decouple the
reaction-diffusion operator from the domain movement oper-
ator, solving each operator sequentially over the same time
step.

In the formulation of the RDME, the spatial domain is
discretized into volume units known as voxels. For exam-
ple, in our PyURDME software package®® the 3D domain is
discretized using tetrahedral elements. Since the RDME is for-
mulated to be solved on a static domain, we cannot directly
adapt it to a moving domain. Instead, we employ an operator
splitting style simulation, by first solving the RDME for a small
time 7 (the splitting time step) on a static mesh. Then we use
the state of the biochemistry to find the velocity of the bound-
ary of the domain through a function specified by the user, and
evolve the mesh over the same time step 7. Finally, the state
of the biochemical system is transformed to the newly evolved
mesh. A sequence of these steps are taken until the simulation
reaches the final time.

The algorithm for moving the mesh has four compo-
nents. Figure 2 illustrates these components and the process
flow between them. The first component is the simulation
of the biochemical system for a time 7 on a specific mesh
(denoted as Q) starting from an initial state x,(¢) to a final state
Xq(t + 1),

X,(t + 7) = RDME(x,(?), Q,4, 7). “)

The second component is the computation of the velocity
field v at the boundary of the domain, as a function the state
of the biochemical system. In our motivating example of the
growth of the yeast mating projection, the internal turgor pres-
sure pushes uniformly on the cell wall, but the wall expands
preferentially where it has been softened by the enzymes. Thus,
the instantaneous velocity field of the growing mating projec-
tion is a function of the spatial distribution of the cell wall
modifying enzymes within cell. See Section IV C for more
details, and Figure 7 for an illustration.

This is the component that couples the biochemical sim-
ulation with the moving domain. This function is a part of the

Start Solve Biochemistry

- P xa(tl) > xa(tz)

Calculate
—»| Velocity
Field

Evolve Geometry

Y Transfer
State to
New Mesh

Xp(t2)

FIG. 2. Diagram illustrating the process flow of the moving mesh algorithm.
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model being simulated, and is thus provided by the user as
input to the method. The function can be of only the final state
of the biochemical system, x,(¢ + 7), or of some aggregate of
all previous states, X,(0 : ¢ + 7),

)

V= . = faa(x(0 : 1 + 7). 5

The third component is the evolution of the mesh over the
simulation time step 7. Using the domain boundary velocity
calculated previously, a new mesh is created by evolving the
mesh linearly over the time step. This is done by moving each
mesh point according to the velocity field at that point, via the
forward Euler method. In our software implementation, this is
done via the FEniCS/Dolfin package,*?

Qp=Qq+71V. (6)

The final component of the algorithm is the method for
transferring the state of the biochemical system from the cur-
rent mesh, Q,, to the newly created mesh, €;,. On each step of
the moving mesh simulation the x, y, z position of each par-
ticle is sampled on Q,. An assumption of the RDME is that
particles are uniformly distributed within each voxel. Conse-
quently, the position of the particle is sampled uniformly from
its containing voxel’s volume. Since the boundaries of a voxel
are often difficult to compute on an unstructured mesh, we
make an approximation and sample the position from a sphere
with a volume equivalent to that of the containing voxel. It is
important to note that this assumption induces a spatial error
that is proportional to the mesh resolution and the quality of
the mesh. That is, the more elongated the tetrahedrons are, the
more error is induced in the sampled particle’s spatial posi-
tion. Implementations of this algorithm must ensure that the
mesh is of sufficient quality throughout the simulation. Next,
the particle is assigned to the closest voxel new mesh, Q
(minimizing Euclidian distance), to the sampled x, y, z posi-
tion. Often in systems biology models, biochemical species
are required to remain in specific subdomains of the system.
For example, membrane bound proteins must remain on the
membrane, which is modeled as the voxels on the boundary

Old Mesh Q,

J. Chem. Phys. 145, 184113 (2016)

of the mesh. If the species of a particle is restricted to a sub-
domain in this way, then it is moved to the closest voxel that
is within that subdomain. If the sampled position of a particle
falls outside the domain €, then itis placed at the closest voxel
(that is of an appropriate subdomain) within €. See Figure 3
for an illustration. This procedure is repeated for each particle
within the system, thus the biochemical state of the system is
transferred from Q, to €, which we denote as

X,(1) = ParticleRedistribution(x,(2), Q,, Qp). @)

The iterative algorithm is described in Algorithm 1.

A. Rejection-based step size selection

We extend the method presented in Algorithm 1 to include
an adaptive method for error control. We will see in Example
2 that the error our method incurs will depend on variables
of the velocity of the domain and the operator splitting time
step. To implement our adaptive error control time stepping
scheme, we define a new input d,,,, as the maximum distance
any given point on the boundary is allowed to move in any sin-
gle time step. In each step, if the magnitude of any component
of the velocity multiplied by the time step 7 is greater than
dmax, then that step is rejected, the time step is set to half its
previous value, and the state is recomputed over the new time
step. The accepted time step will then be used for the next
step of the algorithm. Finally, if the step is accepted on the
first pass (no rejection) and the time step had been previously
reduced (7 is less than 7y,;), then time step for the subsequent
step, Tuext, 1S increased to double the current time step size.
See Algorithm 2 for details. Note that, as the simulation of
the RDME by the NSM algorithm is a continuous operator,
we are able to sample at any specified time within the interval
[#,¢+7]. This allows us to avoid recomputing the biochemical
state when a step is rejected, leading to a more efficient imple-
mentation. In our simulations, for each invocation of the NSM

T

operator, we sample the state of the RDME at [t +¢, t+ 7,1+ 7,

t + 7). This allows us to half the time step three times without

New Mesh Qy

(O sampled volume

O Membrane bound species
@ Cytoplasmic species
/\Distance to voxel center

FIG. 3. Diagram illustrating the particle redistribution process. On each step of the moving mesh simulation, the state of the biochemical system is transferred
from the old mesh (left) to the new mesh (right). The x, y, z position of each particle is sampled on the old mesh (uniformly from within the volume of the
containing voxel); the particle is assigned to the voxel in the new mesh that is closest to that sampled position. If the species of a particle is restricted to a
subdomain (e.g., membrane-bound proteins), then it is moved to the closest voxel in that subdomain.
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ALGORITHM L. Spatial stochastic simulation for a domain with a moving
boundary.

Input: Qq, faq, Tspiit» X0(0), #finar> and the Biochemical Reaction Network
Output: [Qq - - - Q,], [X0 - - - Xn]

1:i=0, =0,
2: while t < tfinal do

T = Typlit

3: x;(t:t+71) = RDME(X;(?), Q;, T)

4 v =faakxi(t:t+1))

5: Qi1 =vT +Q;

6:  X;41(t + 7) = ParticleRedistribution(x; (¢ + 7), Q;, Q1)
70 i=i+l, t=t+7

8: end while

ALGORITHM 1I. Adaptive spatial stochastic simulation for a moving
boundary domain.

Input: Q, faq, dmax» Tsplit» X0(0), tfinal> and the Biochemical Reaction
Network

Output: [Qq - - - Q,], [X0 - - - Xn]

1:i=0, =0, 7=74;

2: while t < 14,4 do

x;(t : t + 7) = RDME(;(¢), Q;, 7)

4 v =faax(tt+1))
50 d=|vllet

6: If d > d,;;q, then
7:

8

9

w

repeat
T=1/2
: v =faoXi(t:t+7))
10: d=|vllet
11: Thext =T

12: Until d < dpax

13:  elseif 7 < 7y, then

14: Thext = 2T

15:  endif

160 Qi =v7t +Q;

17:  x;41(¢t + 7) = ParticleRedistribution(x;(¢ + 7), Q;, Qi 1)
18: i=i+l,
19: end while

t=t+7, T = Tnext

recomputation of the biochemical system. It should be noted
that to avoid biased simulations, the state of the random number
generator must be preserved when the step is rejected and the
step restarted with the same state.

IV. RESULTS

Here we present three examples to verify and show the
utility of our method.

A. Example 1

In our first example, we demonstrate numerically that our
method converges in distribution as the time step decreases. In
a general problem the error depends on multiple factors, such
as the time step, the mesh resolution, and the quality of the
mesh. To isolate the error induced by the time step selection,
we consider a 1D domain Q of width R — L, where R is the right
endpoint and L the left endpoint. A single species S diffuses
(with D = 1), associates with, and dissociates from the left
boundary. We let Q expand to the left; thus L is a function of
time ¢. Specifically we let

J. Chem. Phys. 145, 184113 (2016)

L(t) = —vt,

where v is the constant speed of the expansion.

The domain is discretized into Nox voxels, each of width
h. We denote the microscopic association rate by k, and the
microscopic dissociation rate by k;. The mesoscopic rates,
kg *® and k°*°, are then given by kg = k,/hand k7 = ky,
as shown in Appendix C. We let L =0 and R = 1 initially.

To show that our method is accurate we simulate the
system until the final time 7 = 1, and compare the spatial dis-
tribution of particles to the spatial distribution obtained with a
more detailed Brownian dynamics method.'? The error will be
a function of the speed of expansion v, the time step Atgpy;c, the
number of voxels Nyox, and the reaction rates k, and k;. We
expect the error to be larger for a large v, as the boundary moves
more during each time step. For small enough N the spatial
resolution will be insufficient, and the error will consequently
be large. To demonstrate these effects, we ran simulations with
Atgpyie varying from 0.01 to 0.2 with Nyox € {5, 20, 50}.

We simulated 10° molecules and computed the
Kolmogorov-Smirnov distance between the spatial distribu-
tions of unbound particles at the final time point 7 (with the
domain expanding at constant velocity, convergence at the final
time point implies convergence throughout). In Figure 4 we
show that, as expected, the error decreases with decreasing
time step Afgpiic.

B. Example 2: Density dependent switch for
polarization in an expanding and contracting
sphere

In our second example, we verify the accuracy of our
method by comparing against the analytical solution of a
biochemical model found in the literature. To demonstrate
the applicability of our method to biologically relevant prob-
lems, we have implemented a simple model of polarization
in yeast on a moving domain. In particular, we focus on a
model of polarization presented in Ref. 26 that relies on a
minimal positive feedback circuit. This model is particularly
interesting as it has been shown to polarize only when mod-
eled stochastically, opposed to deterministically. The yeast
cell is modeled as a sphere with a membrane on the sur-
face of the sphere. The model has three reactions between
two species: cytosolic Cdc42 spontaneously attaches to the
membrane with rate k,, (Eq. (8)), membrane-bound Cdc42
likewise spontaneously detaches with rate k.5 (Eq. (9)), and
finally membrane-bound Cdc42 recruits cytosolic Cdc42 to
the membrane at rate kg, to close the positive feedback loop

(Eq. (10)),

Cded2, X Cdedn,, (8)
k(,ﬁ
Cdc42,, — Cdc42,, )
ke
Cdcd2, + Cdcd2,, - 2Cdc42,,. (10)

The cytosolic and membrane-bound species can diffuse at rates
Dy, and D,yepy, Tespectively, (the diffusion of the membrane-
bound Cdc42 being restricted to the membrane). This model
was shown in Ref. 26 to have a density dependent switch. That
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FIG. 4. Error in distribution as a function of the size of the time step for a 1D moving domain with an absorbing/desorbing boundary for three different reactive
rates (columns) and three different spatial discretizations (rows). Our mesoscopic method was compared with a Brownian dynamics microscopic simulation of
10° molecules. We define the error as the Kolmogorov-Smirnov distance between the spatial distributions of unbound particles at the end time (1s). As we can
see by comparing the middle three panels to the bottom three panels, the error is similar to Ny, = 20 and N, = 50, meaning that the problem is spatially
well-resolved already with N, = 20, while for N,,x =5 we can see that the system is not fully resolved for the case of k, = 50 and k; = 1.0. As expected, the
larger the speed v of the expansion, the larger the error, but as the splitting time step Afgpli decreases, so does the error. For v = 0.05, the domain is expanding so
slowly that the stochastic error dominates, and no difference is seen as Aty varies between 0.01 and 0.2.

is, there is a critical range for polarization of molecules on the
membrane. This range is from a lower critical density neces-
sary to facilitate polarization to an upper density above which
molecules become essentially homogeneous on the membrane
(i.e., not polarized). From Ref. 26 it is also possible to calculate
theoretically the steady state ratio of molecules in the cyto-
plasm for any given density, which we will use as a comparison
for our simulations.

To test our moving mesh algorithm, we implemented
the model described above in an expanding and con-
tracting sphere for a fixed number of total molecules.
For the expanding sphere case, the initial radius was set
below the theoretical switch value calculated from Ref. 26.
Specifically, the critical radius can be calculated as
follows:

“ard . =N, (11)

where N is the total number of molecules (cytosolic and
membrane-bound) and r,; is the critical radius. Here we set
N = 1000 and % = 0.9, thus from Eq. 11 we have rg
= 6.425 um. From the initial radius (below the critical radius),
the radius of the sphere expands at a constant velocity to a
final value which is greater than the critical radius. The error
incurred by our operator split method is dependent on both

the speed at which the sphere expands and the operator split
time step that is chosen. Again, the error here is defined as
the relative error between the number of cytosolic molecules
in the simulation and the theoretical steady state value calcu-
lated from Ref. 26. We calculated this error over a range of
expansion velocities and operator split time steps to investi-
gate the convergence behavior for our method. A similar test
was performed for a contracting sphere which starts at a radius
just below the critical value and decreases at a constant veloc-
ity to some final radius.The results of these convergence stud-
ies are shown in Fig. 5. As expected, the larger the velocity
of radial expansion, the more error the method will generate
for both the expanding (Fig. 5(a)) and contracting (Fig. 5(b))
sphere cases. The same trend can be seen for large time steps
(Figs. 5(a) and 5(b)). Note that for each parameter value mul-
tiple realizations were run and averaged before being com-
pared to the theoretical value. The 95% confidence interval for
three realizations of the number of cytosolic molecules at each
parameter value is shown for the expanding sphere in Fig. 5(c)
and for the contracting sphere in Fig. 5(d). An example time
series of heatmaps showing the number of membrane bound
molecules on the surface of an expanding sphere can be seen in
Fig. 6(a), withred being a higher number of molecules and blue
alower value. Also, a sample trajectory of the expanding sphere
simulation can be seen in comparison to the theoretical steady
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state solution in Fig. 6(b) (here with parameter values of specifically to elucidate how this error depends on the velocity
% = 10 nm/s and g, = 20 s). Again, the purpose of this of the boundary and the time step. This example also demon-
example problem is to characterize the error incurred by our strates the utility of our method for studying problems of

method as compared to theoretical results in the literature and ~ biological relevance.
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FIG. 6. (a) Time series of heatmaps showing the number of membrane-bound molecules on the surface of an expanding sphere (note that the radii are not to
scale and by 740 s there are no molecules on the membrane). (b) An example of a single trajectory showing the number of cytoplasmic molecules versus time for
an expanding sphere along with the theoretical value as calculated from Ref. 26. Note that for each parameter value multiple realizations were run and averaged
before being compared to the theoretical value.
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(1) Find normal vector at point|
of maximum polarization

(2) Calculate amplitude of (8) Transfer
velocity based on Gaussian biochemical state
decay of distance from point by redistribution
of max polarization of proteins

(3) Deform mesh: Direcion
of normal, amplitude based
on distance from center

FIG. 7. Diagram describing the process where polarization of the yeast model (spatial psrofile of protein concentration) is used to calculate the deformation of
the domain. At each time step of the algorithm the following process is repeated. First the biochemical system is simulated using the spatial stochastic solvers
in PyURDME for a length of At. Next the point of maximum polarization is found and the normal vector is calculated at that point. Then, the velocity of the
surface is calculated using the normal vector as the direction, with the amplitude calculated from a Gaussian function centered at the maximum polarization
point (empirically parameterized). The mesh is then deformed by the application of the velocity field. Finally, the biochemical state of the system is transferred
to the new mesh.

C. Example 3: Formation of the yeast mating projection

In our third example, we show the use of our method on
a biologically relevant system that couples the biochemical
reactions with the moving boundary. Our motivating example
is the polarization of proteins during mating of Saccha-
romyces cerevisiae, and the resulting growth of the mating
projection.

Yeast cells sense mating pheromone in their extra-cellular
environment, and determine the direction of their mating

t=150 min

partner by sensing the chemical gradient. The chemical gra-
dient of pheromone induces polarization of the yeast cell,
localizing proteins, and actin cables to the region of the yeast
cell that is closest to a nearby mating partner. The mating pro-
jection starts to form when the polarisome organelle is formed
at the site of polarization. The polarisome acts to coordinate
the formation of the mating projection via the transport of cell
wall cutting enzymes as well as cell wall material and syn-
thase proteins. As these processes work together, the yeast
cell changes shape from a spheroid to grow a projection.

FIG. 8. Comparison between microscopy images of yeast cells during polarized growth and simulations of the growing yeast mating projection. (a) Fluorescent
microscopy time-lapse images of yeast cells during exposure to mating pheromone (a-factor). Cells are tagged with Mid2-GFP (see Appendix D for experimental
details). (b) Manual cell shape extraction overlaid on microscopy images for a single cell. (c) Enlarged cell shape without microscopy image. (d) Scatter plot of
the voxel centers of our simulation results projected onto a plane containing the origin and the point of greatest polarization. (e) 3D visualization of the simulated
growing yeast cell, where the color map shows the concentration of active Cdc42 on the membrane (red corresponds to the highest concentration, and blue to
the least).
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To simulate this process we present a new spatial stochas-
tic biochemical model of yeast polarization, centered around
the polarization of the protein Cdc42. This model is a novel
combination of reactions published in Refs. 33 and 34. As
these models were originally presented deterministically, for
use with this method we have converted the reactions to a
mechanistic and stochastic formulation (see Appendix A for
a complete description of the model). To present a simplified
model of polarization, we omit the dynamics of the receptor-
ligand binding (presented elsewhere®>3¢) and take as input to
the model a time-constant spatially varying concentration of
the activated G-protein (beta-gamma subunit). The biochem-
istry determines the moving boundary by expanding the sphere
at the point of greatest polarization, in the direction of the
normal at that location. The other points on the boundary of
the domain are moved in a parallel direction, with the magni-
tude attenuated by a Gaussian of the distance to the point of
maximum polarization. This is illustrated in Figure 7.

Figure 8 shows a comparison between our yeast polariza-
tion simulation results (columns (d) and (e)) and microscopy
images of a polarizing yeast cell (columns (a)-(c)). Column (b)
shows the outline of the yeast cells overlaid on the microscopy
images, and column (c) shows just the outline of these cells.
Column (d) shows a scatter plot of the voxel centers of our
simulation results, projected onto a plane containing the ori-
gin and the point of greatest polarization. Column (e) shows
the 3D visualization of the simulated growing yeast cell, where
the color map shows the concentration of active Cdc42 on the
membrane (red corresponds to the highest concentration, and
blue to the least). The frames (rows) in column (a)-(c) are sep-
arated by 50 min intervals. In this simulation, the state of the
biochemical system and the movement of the boundary are
fully coupled. This figure shows a qualitative match between a
real cell phenotype and our biochemical model simulated via
our method.

V. CONCLUSIONS

We have developed a method for simulating stochastic
biochemical reactions on time-dependent domains using the
RDME formalism. This method involves the following steps:
simulating the RDME on a fixed geometry for a given time
step, using the state of the biochemical system as input to a
function that moves the boundary in a user-specified man-
ner, over that same time step, redistributing the molecules
in the system to the new geometry, and then repeating until
a specified end time. Our method simulates the RDME on
unstructured meshes, which allow it to easily handle the com-
plex geometries that often show up in biological applications.
We have shown, through various example problems, that the
error our method will incur depends on a few key factors,
including the specified time step, the speed of the moving
domain, the diffusion constants of the species, and the reaction
rates of the system. We have also demonstrated the potential
usefulness of such a method by simulating the biologically rel-
evant problem of shmoo formation during the mating of yeast,
a problem where spatial stochastic effects are important and
the geometry is changing in time as a result of the state of the
biochemical system.

J. Chem. Phys. 145, 184113 (2016)

We have implemented this method in our spatial stochas-
tic modeling and simulation software package PyURDME:*"
the Python package for simulation of Unstructured mesh
Reaction-Diffusion Master Equation models. The reaction-
diffusion biochemical model system has been extended to
allow the inclusion of a movement of the mesh, and the
inspection of the resulting mesh quality and adaptive mesh
refinement are accomplished via integration of the open source
finite element package FEniCS/Dolfin.>> The software pack-
age, along with instructive examples, is available from our
code repositories on Github.

This method is generally applicable to problems arising in
systems biology where spatial and stochastic effects are critical
and the physical geometry is changing in time. In particu-
lar, this method is applicable to the common case in systems
biology where the movement of the boundary of a cell is
directly determined by the state of certain biochemical species.
The error will be more manageable for systems where there is
some separation of time scales between the movement of the
boundary and the diffusion rate of the biochemical system.
In the future, we hope to extend our analysis of biologi-
cally relevant problems with coupled biochemistry and domain
movement, such as in shmoo formation in yeast mating. Other
specific systems where this method could be useful include the
following: tip growth in fungal hyphae,'® chemotaxis in neu-
trophils,6 cell Inigration,19 and cell division.”3 Another future
direction is to develop a method that more closely couples the
dynamics of the moving boundary and the biochemistry, thus
avoiding the error involved in splitting the two, but this is a
considerably more involved problem.

ACKNOWLEDGMENTS

We would like to thank Professor Otger Campds for
his helpful discussions. This work has been funded by
National Institutes of Health (NIH) NIGMS Award No. RO1-
GM113241 and NIBIB Award No. RO1-EB014877, Depart-
ment of Energy (DOE) Award No. DE-SC0008975, Institute
for Collaborative Biotechnologies (ICB) Award No. W91 1NF-
09-0001 from the U.S. Army Research Office, and National
Science Foundation (NSF) Award No. DMS-1001012. The
content of this paper is solely the responsibility of the authors
and does not necessarily represent the official views of these
agencies.

APPENDIX A: MODEL OF Cdc42 POLARIZATION
IN YEAST

The model for the of Cdc42 used in Section IV C is a
combination of reactions published in Refs. 33 and 34. The key
component from Ref. 33 is what is known as a GDI reaction
which preferentially moves the inactive form of Cdc42 from
the membrane to the cytosol. Diffusion is much faster in the
cytosol than on the membrane and this difference in diffusion is
what leads to a Turing-type mechanism for pattern formation,
as originally discussed in Ref. 37. The essential components
from Ref. 34 are a negative feedback mechanism through the
protein Cla4 and recruitment of Cdc24 to the membrane by
Gbg (the By subunit of the heterotrimeric G-protein which is
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activated in response to pheremone during yeast mating). Both
Refs. 33 and 34 originally modeled their respective reactions
using deterministic PDE models. Here we take certain key
reactions from both models and model them mechanistically
using the RDME formalism, which results in the following
reactions:
kﬂﬂ
Cdc?4. + Gbg,, — Cdc24,, + Gbg,,,
Cdc24,, + Cdc42GDP,, =5 Cdc24,, + Cdcd2GTP,,

Cdc42GTP,, =5 Cdc42GDP,,

Cdc24,, + Cde42GDP, £ Cdc4,, + Cde42GTP,,
cde426pP, 2 caca26pp,,,
Cde42GDP,, 5 caca26DP,,

Beml. + Cdc42GTP,y, > Beml,, + Cdc42GTP,,

Beml,, 2, Beml,
Beml,, + Cdc24. 2 Beml,, + Cdc24n,
Cdc24, > Cdc24,,

kClada

Cdc42GTP,, + Clad,, — Cdc42GTP,, + Clad ,,

ko4a

Cdc24,, + Cla4,,, — Cdc24. + Cla4 .,

kClasa
—_

Cla4 Cla4,,

TABLE I. Parameters for the Cdc42 yeast polarization model.

Parameter Value Description Reference

Dy, 0.0053 /sz s Diffusion constant on 38
membrane

D, 50 um? s~ Diffusion constant in 39
cytoplasm

R 2.00 um Reference radius of cell 34 and 40

Ny 3000 Total number of Cdc42 34 and 40
molecules

Ng 3000 Total number of Bem1 34 and 40
molecules

Noy 1000 Total number of Cdc24 34 and 40
molecules

Ncias 5000 Total number of Cla4 34 and 40
molecules

NGpg 5000 Total number of Gbg 34 and 40
molecules

ai 0.2 um? 571 Cdc24 activating Cdc42,, 33

@3 157! Deactivation of Cdc42 33

Bi 0.266 um> s™!  Cdc24 activating Cdc42, 33

B> 0.28 um s~ Attachment of Cdc42, 33

B3 157! Detachment of Cdc42,, 33

v 0.2667 um® s™!  Active Cdc4?2 recruit Beml,. 33

b%) 0.35s7! Detachment of Beml,, 33

5 0.00297 um? s=!  Bem1,, recruit Cdc24, 33

8 0.3557! Detachment of Cdc24,, 33

kon 0.00297 um? s™!  Gbg recruit Cdc24, 33

kciada 0.006 57! Active Cdc42 recruit Cla4 34 and 40

kclasa 0.01 57! Negative feedback via Cla4 34 and 40

koqa 1.0/30 000 s~! Deactivation of Cla4 34 and 40

J. Chem. Phys. 145, 184113 (2016)

where the subscripts ¢ and m denote cytoplasm and membrane-
bound species, respectively. Cdc42GTP and Cdc42GDP are
the active and inactive forms of Cdc42 on the membrane
respectively. Cla4,, and Cla4,, are the active and inactive
forms of Cla4 on the membrane respectively. The physical
domain starts as a sphere with a radius of 2.0 ym with a mem-
brane on the surface of the sphere and evolves according to the
state of the biochemical system. Diffusion of membrane bound
species is restricted to the membrane. Gbg is taken to be a con-
stant input function with a uniform concentration throughout
the domain (i.e., it is not an explicit species and thus does not
diffuse). The parameter values, descriptions, and references
used in Section IV C are given in Table 1.

APPENDIX B: MICROSCALE SIMULATIONS

On the microscopic scale we track the continuous position
of individual particles, in contrast to the mesoscopic scale on
which we track only the copy number of particles in each voxel.
Molecules move by normal diffusion and are modeled by hard
spheres with reaction radius . The reaction dynamics as two
molecules collide is governed by the Smoluchowski equation*!
with a Robin boundary condition.

Consider two molecules, S1 and S,, with diffusion rates
D and D, and reaction radii o-; and 0. Let D = Dy + D, and
o = 01 + 0. Attime 1,, the positions are given by x| and x7.
We let p(xy, x2, tlx1,, x2,, t,) be the probability distribution
function representing the probability that the positions of the
molecules are given by x; and x;, at time ¢. The diffusion of
the molecules is governed by the Smoluchowski equation

0:p = D1 Ay, p(X1,X2, 1) + DaAg, p(X1, X2, 1), BD

where Ay, is the A-operator applied to x;, and where p(x1, x2,
1) :=p(x1, x2, tlx1,, X2n, tp).

Via a change of variables, ¥ = X; — X; and Y
= v/D,/D1x1 + VD1 /D>X,, we obtain two independent equa-
tions

(Y, 1) = DAyp(Y, 1), (B2)

atP(Y7 t) = DAyp(y’ t)~ (B3)

The reaction dynamics are now governed by the boundary
conditions, given by

dpy
K== = k.py(iyn = o, 1), (B4)
on nyn=o
where
_|2mroD, (2D),
- {47r0'2D, (3D), ()

and where k, is the microscopic reaction rate.

The initial condition is given by p(y, 0|y, 0) = 6(y — yo),
and we enforce p(nyn — oo) = 0. New positions for two
interacting molecules can be sampled by solving the above
equations. An efficient algorithm for simulating systems of
molecules is the GFRD algorithm.!® Another approach, aimed
at simplifying the sampling process by solving the above equa-
tion by performing operator splitting, is described in Ref. 42.
For microscopic simulations on moving meshes, we follow the
approach described in Ref. 21.
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APPENDIX C: MESOSCOPIC REACTION RATES IN 1D

In Section IV A we compare mesoscopic simulations in
1D with microscopic Smoluchowski simulations in 1D. To do
an accurate comparison, we first need to determine how the
mesoscopic reaction rates relate to the microscopic rates. To
obtain this relationship we follow an approach similar to that
in Refs. 43-45.

We consider a particle of species A diffusing with rate D
in a 1D domain, and reacting with the left boundary according
to

kon
A 2 Apem, (CH

Koft
where A, 1s a molecule of species A bound to the membrane.
The rate k,, is the effective rate, by which we mean that, given
a uniformly distributed A molecule, the molecule will react
with the boundary after an average of V/k,, s, where V is the
volume of the domain (in this case the length of the interval).

Let k™es° (s~1)be the intensity with which an A molecule
reacts with the membrane, given that it is occupying the voxel
adjacent to the membrane. First we find k"**° as a function of
ko, and the width /4 of the voxel, and then proceed to determine
kon as a function of the microscopic reaction rate k..

We first note that a problem equivalent to the above is that
of a molecule A starting uniformly on a 1D domain of width
2V reacting with a molecule B fixed at the origin (at rate k).
This can be seen by considering the symmetry of the problem.
We therefore let L = 2V, and derive k["**°(k on, /1) to match the
average binding time of an A molecule to a molecule fixed at
the origin on a 1D interval of width L.

We denote the mean effective binding time of the two
molecules by Tegr. Thus Tegr = L/kop, and

meso rebind /7, meso
kr - OO) * Theso (kr )’

(C2)
where Tmeso(k"°*°) is, given a uniform inital distribution, the
average time until the A molecule reacts with the B molecule on
the mesoscopic (RDME) scale, and 704 (xmes0) js the average
time until the A molecule rebinds to the B molecule, given that
the molecules have just dissociated. Note that the rebinding
time is the same as the time until the A molecule reacts with
the B molecule, given that they start in the same voxel. For
simplicity we will henceforth denote Tpeso(k"*° — ©0) by
Tmeso(00). Let dior denote the mesoscopic jump rate out of a
voxel (so that dio = h*/(2D)). Then

meso
kr

0= ———

k0 + dyoy

is the probability that the next event, given that the A molecule

occupies the origin voxel, is a reaction event rather than a

diffusion event. Let 7, = (k[**%° + diot)”" be the average time
until this event fires. We obtain

Teff = Tmeso(

(C3)

meso

Trebind(k;nem) — é {0, +(1 —6)(t, +11)}, (€4

where ¢; is the average time until the A molecule binds to the
B molecule, given that the molecule occupied the origin voxel
and then diffused instead of reacted. Some straightforward
algebra yields

) 1
Trebmd(k;neSO) — (1 + diort1)- ©5)

meso kmeso
r

J. Chem. Phys. 145, 184113 (2016)

We now use (C5) in (C2) and solve for k"**° to obtain

kmeso — 1+ dmttl (C6)

' Teff — Tmeso(0) ’

In the expression above we have two unknowns: #; and
Tmeso(00). The effective binding time is a constant that we
choose (Tefr = V /kon).

From Refs. 46 and 47 we have analytical expressions for
t1 and Tieso(00),

1 +diott1 =N, (e0))
s Teso(o0) = . ()
where N is the number of voxels. We obtain
o (o0) = 2%2 N(N6+ D _ 2L26;; Lh’ ©9)
ke = %m. (C10)

Note that 7.¢r is often considered a constant that we choose
arbitrarily or obtain from experiments. However, in this case
we want to compare mesoscopic simulations with microscopic
simulations, and we derive 7. as a function of the microscopic
rate k,.

The effective binding time 7. can be written in terms
of microscale quantities as the sum of the time until the A
molecule reaches the boundary for the first time, L2/(3D), and
the time until it reacts with the boundary given that the A
molecule starts in contact with the boundary, L/k,. We thus
obtain

L2 L
Teff = 3_D + k_r,
in agreement with Ref. 48. Inserting (C11) into (C10), and
assuming L > h (so that 2L2 > Lh), we now obtain
ky
N

Thus, when comparing a mesoscale simulation to a
microscale (Smoluchowski) simulation in 1D, the mesoscopic
reaction rate constant should be related to the microscopic
rate according to (C12). Note that from (C12) follows that the
mesoscopic dissociation rate will be given by k7'**° = k4 to
ensure that the steady states agree.

(C11)

fmeso
r

(C12)

APPENDIX D: EXPERIMENTAL DETAILS

Time-lapse imaging was performed on Mid2-GFP cells
adhered to glass slides using concanavalin A in standard yeast-
peptone-dextrose (YPD) media with the stage heated to 30
°C. Both fluorescent and bright-field images were taken at
10 min intervals over a 3 h period using a Nikon TE-2000
inverted microscope with an ORCA-2 CCD camera controlled
by MetaMorph software. The yeast strain was constructed by
fusing GFP onto the C-terminal end of MID2 using genomic
integration of a W303-1A strain that is 1A (RJD863).
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