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Multiple time scales in cellular chemical reaction systems often render the tau-leaping algorithm
inefficient. Various model reductions have been proposed to accelerate tau-leaping simulations.
However, these are often identified and deployed manually, requiring expert knowledge. This is
time-consuming and prone to error. In previous work, we proposed a methodology for automatic
identification and validation of model reduction opportunities for tau-leaping simulation. Here, we
show how the model reductions can be automatically and adaptively deployed during the time course
of a simulation. For multiscale systems, this can result in substantial speedups. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4921638]

I. INTRODUCTION

In the study of cellular biological systems, discreteness
and stochasticity are often observed in the dynamics of the
system due to small populations of key reactant species.1–3 The
Stochastic Simulation Algorithm (SSA)4 and the explicit tau-
leaping algorithm5,6 are often used to simulate the dynamics
of such systems.

The SSA is an exact kinect Monte-Carlo method. The
explicit tau-leaping algorithm is an approximate method for
chemically reacting systems that can often substantially out-
perform the SSA. However, neither of the two algorithms
is efficient for stiff systems, where vastly different time
scales are involved.7,8 Thus, numerous model reductions have
been proposed to accelerate both algorithms, including the
slow-scale SSA (ssSSA),7 the nested SSA,9,10 the stochastic
quasi-steady-state approximation (sQSSA),11–13 the stochastic
Michaelis-Menten model reduction (M-M),11,12,14,15 and the
time-dependent solution method.16

Among these methods, the ssSSA7 eliminates the need
to simulate many fast reactions by approximating the fast
subsystems that reach stochastic partial equilibrium very
quickly between two consecutive slow reactions by their
partial equilibrium states. The nested SSA applies a similar
idea, but instead of directly calculating the partial equilibrium,
it uses short SSA simulations of the fast subsystems to
approximate partial equilibrium. Both methods are effective in
accelerating SSA simulations because the SSA simulates every
reaction event. In contrast, the sQSSA11–13 eliminates certain
fast-changing species from the simulation by approximating
the fast-changing species by a near-stationary distribution
with their quasi-steady state. It is effective in accelerating
tau-leaping simulations because the step size of tau-leaping
simulations is limited by how fast the populations of species
change.6,13,17 Alternatively, the stochastic M-M approximation
is designed for enzyme-substrate systems and can be derived
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from the sQSSA approach11,12 or the ssSSA approach14,15 un-
der appropriate conditions. Recent research has shown18,19 that
the conditions under which stochastic M-M approximation is
valid are more restrictive than those for the classical deter-
ministic M-M conditions.20 Additionally, the time-dependent
solution method16 is an extension of the sQSSA. It gives
more accurate results for fast changing species, regardless
of whether they are in quasi-steady state or not.

With all of these model reduction techniques, one of the
major practical challenges is to efficiently identify the opportu-
nities for model reductions and to automatically deploy them.
To meet this challenge, we have proposed an automatic model
analysis algorithm that can identify situations where specific
model reductions may be deployed safely and efficiently for
both SSA and tau-leaping simulations.21 In related work,
an automatic ssSSA algorithm was proposed to adaptively
identify and apply the slow-scale SSA approximation for SSA
simulations.22 However, due to the different dynamic features
between the SSA and tau-leaping algorithms,17 there is no
significant benefit in applying the automatic ssSSA algorithm
to tau-leaping simulations. On the other hand, the sQSSA and
stochastic M-M are two of the most efficient model reduction
techniques for accelerating tau-leaping simulations because
they eliminate the need to directly simulate the reactions that
result in the fastest-changing species in a system. Reference
13 proposed a sQSSA algorithm to automatically identify and
apply sQSSA for tau-leaping. But the algorithm cannot be
generalized to detect model reduction opportunities other than
the application of sQSSA to single fast-changing species in
tau-leaping (for example, stochastic M-M).

In this paper, we propose a unified framework to
automatically and adaptively identify, apply, and deactivate
model reductions in tau-leaping simulations. The framework
works for both the sQSSA and the stochastic M-M, and can be
extended to other model reductions focusing on eliminating
reactions that result in elimination of fast-changing species
from a simulation.

The outline of this paper is as follows. In Sec. II A, we re-
view the tau-leaping algorithm, especially the implementation

0021-9606/2015/142(20)/204108/9/$30.00 142, 204108-1 © 2015 AIP Publishing LLC
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details of the explicit tau-leaping algorithm with adaptive
step size selection.6 In Sec. II B, we review the sQSSA and
stochastic M-M model reductions. In Sec. III, we describe our
new adaptive framework. In Sec. IV we show how sQSSA and
stochastic M-M can be applied in the framework. In Sec. V,
we apply the tau-leaping algorithm with automatic sQSSA and
stochastic M-M model reductions to three realistic models and
demonstrate the efficiency and effectiveness of the algorithm.

II. BACKGROUND

A. Explicit tau-leaping method

The explicit tau-leaping algorithm is a widely used
approximate method to accelerate the SSA.5,23 Suppose we
have a well-stirred chemical reaction system with n molecular
species S1, . . . ,Sn and m reaction channels R1, . . . ,Rm, and
the volume Ω and temperature of the system are constant.
Let xi(t) denote the population of species Si at time t. Then,
the state of the system at time t is given by the state vector
x(t) = (x1(t), . . . , xn(t))T . Each reaction Rj is characterized by
two quantities: the probability a j(x) dt that one Rj reaction
will occur in the next infinitesimal time interval [t, t + dt),
given x(t) = x, where a j(x) is called the reaction’s propensity
function; and ν j, the change to the system’s state vector if one
Rj reaction occurs. ν j is called the stoichiometry vector of Rj.
Because the system is well-stirred with constant volume and
temperature, the reactions’ propensity functions depend only
on the system state vector. For example, for a bimolecular
mass action reaction S1 + S2 → P, a j(x) has the form cjx1x2
(or cj

1
2 x1(x1 − 1) if S1 = S2), where cj is a constant.

While the SSA simulates every reaction event, the explicit
tau-leaping method selects a time interval τ and fires multiple
reactions during the time interval. The basic idea of the tau-
leaping method is to approximate the number of firings of
each reaction during a time interval [t, t + τ) by a Poisson
random number P(a j(x)τ). The approximation is valid only if
the propensity functions of all the reactions are nearly constant
during the time interval. Then, the state of the system can be
advanced by the formula

x(t + τ) ≈ x(t) +
m
j=1

P(a j(x)τ) ν j . (1)

The requirement that the propensities are nearly constant
during the time interval is called the leap condition: for some
ε ≪ 1,

|∆τa j(x)/a j(x)| ≤ ε, for all j = 1, . . . ,m, (2)

where ∆τa j is the change of a j during the time interval
[t, t + τ). The step size τ must be chosen carefully to satisfy
the leap condition. The most widely used strategy for step
size selection of mass action systems is due to Cao et al.6 In
that strategy, the leap condition is expressed in terms of the
changes in species’ populations,

τ = min
i




max {εxi/gi,1}�
j νi ja j(x)� ,

max {εxi/gi,1}2

�
j ν

2
i ja j(x)�



, (3)

where ε ≪ 1 is the preset accuracy control parameter, νi j are
the stoichiometric coefficients, and gi is the highest order of
reaction in which species Si appears as a reactant. In this way,
the changes of all the propensities are constrained in a uniform
manner.

The explicit tau-leaping algorithm with adaptive step size
selection is given as follows.6

0. Initialization. Initialize t and x, and calculate the propen-
sities a(x).

1. Identify currently critical reactions. A reaction Rj is critical
if a j > 0 and the maximum number of times L j that Rj can
fire before one of its reactants is exhausted is less than a
threshold nc. (We set nc = 10.)

2. Select step size τ.
2.1 Divide all the reactions into two sets based on the

result of step 1: critical reaction set and non-critical
reaction set.

2.2 Calculate non-critical step size τ′ by using the leap
condition (3) with only the non-critical reaction set.

2.3 Calculate critical step size τ′′ by generating a SSA
step size with only the critical reaction set.

2.4 The actual step size τ is the smallest of τ′, τ′′, or
tend − t.

3. Calculate the number of firings of each reaction in the step.
3.1 For a non-critical reaction Rj′, set the number of firings

k j′ of Rj′ to be a sample of the Poisson random variable
with mean a j′(x)τ.

3.2 For critical reactions, at most one of them will fire at
most one time. If τ , τ′′, set the number of firings of all
of them to 0. Otherwise (τ = τ′′), choose one critical
reaction Rj′′ by applying a SSA reaction selection step
with only the critical reaction set, set the firing number
k j′′ of Rj′′ to 1 and the firing number of all other critical
reactions to 0.

4. Check for negative populations. If there is a negative
component in x +


j k jν j, reduce τ′ by half and go to

Step 2.4. Otherwise, execute the step by setting t ← t + τ
and x ← x +


j k jν j, and update a(x) accordingly.

5. Check for efficiency. If the total number of reaction firings
in the step is less than a threshold (we set it to be 10),
execute a modest number of SSA steps (we set it to be
100).

6. Stop if t = tend. Otherwise return to step 1.

Note that critical reactions are introduced to resolve the
negativity problem, which is due to the fact that unbounded
Poisson random variables can easily result in critical reactions
to fire so many times that the low populations of some reactants
are driven negative.24 Alternative methods have also been
proposed to solve the negativity problem.25–27 Both Refs. 25
and 26 proposed to use bounded binomial random variables to
approximate unbounded Poisson random variables. But they
did not solve the problem that multiple reaction channels could
contribute to the depletion of low population species, which
is usually the cause for negative population. Reference 27
used a similar critical threshold idea but suggested to use a
“confidence level” to adaptively adjust the critical threshold of
population of species. For the problems we tested, the adaptive
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threshold method performs at the same level with the afore-
mentioned fixed threshold method. The performance of both
methods is similarly restricted by fast-changing critical species
that could be reduced by model reduction techniques. Thus,
we opted for the fixed threshold method for its simplicity.

B. Model reductions for tau-leaping

Although the tau-leaping algorithm is able to speed up sto-
chastic simulation in many cases, sometimes it is not efficient
for models with vastly different time scales, especially the
ones with rapidly changing low-population species. Various
model reductions have been proposed to accelerate stochastic
simulation of systems with different dynamic features. Some
of the model reduction methods are more effective for tau-
leaping simulation because they focus on separating the time
scales of the rates of change of species populations.17,21 For
our purposes, we will review the sQSSA11–13 and the stochastic
M-M approximation.11,12,14,15

The sQSSA accelerates stochastic simulation by approx-
imating fast-changing species with their stochastic quasi-
steady-state distribution.11–13 A species Si is in stochastic
quasi-steady-state if

dP(xi |xs)
dt

≈ 0, (4)

where xs are the species that are not in quasi-steady-state.
Assuming that xi |xs with fixed xs is Markovian, then by
applying quasi-steady-state approximation (4), the steady-
state distribution of P(xi |xs) with fixed xs can be used to
approximate the distribution of xi.

The stochastic M-M approximation11,12,14,15 replaces the
set of three reactions,

E + S
c1−−⇀↽−−
c2

C
c3−−→ E + P, (5)

with the single M-M reaction,

S
c−→ P. (6)

It has been shown that the stochastic M-M approximation
may introduce large errors in the variance of substrate S under
some conditions where the deterministic M-M approximation
is valid,18,19 thus, it is important to include c2 ≫ c3 as a validity
condition for the stochastic M-M approximation.18 It has also
been shown that the total Quasi-Steady-State (tQSSA) rate
of the stochastic M-M approximation can give more accurate
results than the QSSA rate.28,29 Another interesting note is that
the M-M reduction speeds up SSA and tau-leaping simulation
differently under different conditions.17

III. AUTOMATIC MODEL REDUCTION FRAMEWORK
FOR TAU-LEAPING

The main components of the original tau-leaping algo-
rithm include step size selection and reaction firing. Model
reductions accelerate simulations by enlarging step sizes and
computing the number of firings of reactions accordingly. We
propose an automatic model reduction framework that consists

of three main function modules: step size selection, reaction
firing, and model reduction update.

A. Framework structure

To fulfill these functions and keep the framework unified
and extensible for different model reductions, the structure of
the framework consists of a master controller and individual
model reductions. The master controller keeps and updates
a list of active model reductions, and serves as an interface
between the tau-leaping algorithm and individual model
reductions. During each time step, step size and reaction firing
information of all active model reductions are combined in
the master controller and passed to the tau-leaping algorithm.
System state and time information from the tau-leaping
algorithm are analyzed in the master controller to update
the active model reduction list, as well as to be passed to
individual model reductions for the calculation of step size
adjustments and the numbers of reaction firings. The diagram
of the framework is shown in Fig. 1. In the figure, t, x(t), and
a(x(t)) are system state and time information, τ is the step size
of the original model, and τr is the step size of the reduced
model. {∆τri }l is a list of step size adjustments for all the
species due to the lth model reduction, while {k j}l is a list of
the number of firings of all the reactions eliminated by the lth
model reduction in each step.

Each individual model reduction shares the same interface
that can be called by the master controller, including motif
detection (to activate model reduction), step size adjustment,
reaction firing calculation, and validity criteria (to deactivate
the model reduction). To incorporate a new model reduction,
one needs only to instantiate these interfaces for the new model
reduction.

B. Step size selection

The step size selection module of the framework is a
modification of the step size selection of the original tau-
leaping algorithm. The original tau-leaping algorithm divides
all of the reactions into two sets based on whether a reaction is
critical, and calculates two step sizes: a critical step size that
is a SSA step size of all critical reactions, and a non-critical
step size for each species by using the leap condition (3).

FIG. 1. Structure diagram of the automatic model reduction framework.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.111.41.122 On: Mon, 24 Aug 2015 23:50:42



204108-4 Wu, Fu, and Petzold J. Chem. Phys. 142, 204108 (2015)

When a model reduction is applied to some of the
reactions, we can no longer calculate these step sizes based
on the original model. Instead, we must consider the reduced
model. First, we categorize the reactions in both the original
model and the reduced model.

Definition 1. Given a chemically reacting system consist-
ing of reactions Rori = {R1, . . . ,Rm1} and a set of model
reductions {M R1, . . . ,M Rp}. Let Rred = {R′1, . . . ,R

′
m2} be

the list of reactions in the reduced model when the model
reductions are applied to the system.

• A reaction R is an unreduced reaction if R ∈ Rori and
R ∈ Rred.

• A reaction R is an eliminated reaction if R ∈ Rori and
R < Rred.

• A reaction R is a reduced reaction if R < Rori and
R ∈ Rred.

In other words, the original model is the union of the
unreduced reaction set and the eliminated reaction set, while
the reduced model is the union of the unreduced reaction set
and the reduced reaction set. Note that while the stochastic
M-M is a simple conversion from the eliminated reaction set
to the reduced reaction set, not all model reductions are simple
conversions. Some model reductions, such as the sQSSA,
eliminate corresponding reactions and create rules to calculate
the numbers of firings of the eliminated reactions, as opposed
to creating a list of reduced reactions.

For example, for enzyme-substrate system (5) with the
stochastic M-M reduction applied, none of the reactions is an
unreduced reaction, all three reactions in the original model are
eliminated reactions, and the only reaction in reduced model
(6) is a reduced reaction. However, for the same model (5) but
with the sQSSA applied to species C, none of the reactions
is an unreduced reaction, all 3 reactions in the original model
are eliminated reactions, and there is no reduced reaction in
the reduced model. The reduced model in sQSSA in this case
is only a set of rules to calculate the number of firings of the
eliminated reactions.

Next, we add the notation of critical/non-critical reactions
to resolve the possible negativity problem. A critical reaction
is defined in the same way as in the original tau-leaping
algorithm: a reaction Rj is critical if a j > 0 and the maximum
number of times L j that Rj can fire before one of its reactants
is exhausted is less than a threshold nc. (We set nc = 10.) A
reaction that is not a critical reaction is a non-critical reaction.
This results in 6 sets of reactions: critical unreduced, non-
critical unreduced, critical eliminated, non-critical eliminated,
critical reduced, and non-critical reduced.

The tau-leaping algorithm will generate a non-critical
step size for each species using the leap condition on the
original model. The master controller gets the step size
information from the tau-leaping algorithm and sends that
information along with the system state information to all
active model reductions. Each active model reduction adjusts
the non-critical step sizes and marks the eliminated reactions
or reduced reactions that need to be included in the critical
step size calculation. The master controller then combines
the results from all individual model reductions and sends

them to the tau-leaping algorithm. The tau-leaping algorithm
calculates the non-critical step size τr ′ and critical step size
τr ′′ with adjustments from the model reduction module.

Different types of model reductions have different adjust-
ment rules. The general rule is to remove the non-critical
eliminated reaction terms from the non-critical step size
calculation in (3), and/or to remove the critical eliminated
reaction terms from the critical step size calculation, and/or to
add the reduced reaction terms to the non-critical or critical
step size calculation. There can be exceptions to conform with
the calculation of the numbers of reaction firings. We will give
an example in Sec. IV A.

Finally, the step size τr for the reduced model is set to be
the minimum of the adjusted critical step size τr ′′, the adjusted
non-critical step size τr ′, and tend − t.

The category information for the unreduced reactions
is updated by the tau-leaping algorithm, while the category
information for the eliminated or reduced reactions is updated
by the corresponding individual model reduction as a result
of model reduction activation, deactivation, or system state
change. A copy of the category information for all of the
reactions is kept in the master controller for step size selection.

C. Reaction firing

The reaction firing module of the framework is a
modification to the reaction firing module of the original tau-
leaping algorithm. In the original tau-leaping algorithm, the
numbers of firings of non-critical reactions are samples of
Poisson random variables, while at most one of the critical
reactions can fire at most one time in a SSA fashion. To be
exact, if τ = τ′′, exactly one of the critical reactions will fire
once. Otherwise (τ , τ′′), none of the critical reactions will
fire.

When a model reduction is applied to some of the reac-
tions, we need to consider the roles of the eliminated reactions
and/or the reduced reactions. We calculate the number of
firings of the unreduced reactions and the eliminated reactions.
There are two reasons for this. First, the rules of some model
reductions, such as sQSSA, do not produce reduced reactions
but rather are directly applied to the eliminated reactions.13

The second reason is that some model reductions, such as
stochastic M-M, may eliminate species in the reduced model.
By calculating the numbers of reaction firings in the original
model, we are able to update the populations of all species,
including the eliminated ones.

For the unreduced non-critical reactions, the calculation
of the numbers of reaction firings is handled in the same
way (Poisson random samples) as in the original tau-leaping
algorithm with the updated step size τr . The unreduced critical
reactions need to be grouped together with the reduced
critical reactions, and sometimes even with the eliminated
critical reactions, depending on the rules of the corresponding
model reduction. An example of including an eliminated
critical reaction in critical reaction selection will be given
in Sec. IV A. If τr = τr ′′, exactly one of the critical reactions
will fire once, including unreduced, reduced, and possibly
eliminated reactions. Otherwise (τr , τr ′′), none of the critical
reactions will fire. For all of the eliminated reactions that
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are not involved in the critical reaction selection, including
eliminated non-critical reactions and sometimes eliminated
critical reactions, the numbers of reaction firings are calculated
in each individual model reduction module.

The numbers of firings of unreduced non-critical reactions
are calculated in the original tau-leaping algorithm. The
numbers of firings of critical reactions are calculated in the
master controller. And the numbers of firings of all other
eliminated reactions are calculated in each individual model
reduction module.

D. Model reduction update

The model reduction update module is a collection of
functions that the master controller executes to keep the active
model reduction list up to date. It includes an initialization
module and an in-step update module.

The initialization module consists of all the processes
that need to be executed only once, in the initialization stage
of the simulation. We also include some static analysis in this
stage to reduce the overhead of the in-step update module. The
processes include the initialization of the static Petri net and
the species connection graph (without weights). This module
also detects sub Petri net motifs that some model reductions
require. For example, the stochastic M-M model reduction
requires a 4-species 3-reaction subnetwork as shown in (5).

The in-step update module includes 3 main components.

1. Update the fastness function of species, i.e., the moving
time average of τ−1

i ’s, as defined in Ref. 21.
2. Check to see if all active model reductions are still valid

and deactivate any invalid model reductions.
3. If the number of consecutive steps for which the detection

algorithm has not been executed is above a given threshold,
execute the detection algorithm in Ref. 21 to look for new
active model reductions. (We set the threshold to 100 in
our experiments.)

E. Algorithm

The tau-leaping algorithm with automatic model reduc-
tion is specified as follows.

0. Initialization. Initialize t and x, and calculate the propen-
sities a(x). Initialize the automatic model reduction frame-
work.

1. In-step update of the automatic model reduction module.
Update active model reduction list. Identify currently
unreduced, reduced, and eliminated reactions. Identify
currently critical reactions.

2. Select step size τr .

2.1 Calculate non-critical step sizes {τ′i } for all the species
with the original model.

2.2 For each active model reduction MRl, collect step size
information.
2.2.1 Collect adjustments to the non-critical step sizes

{∆τr ′i }l by removing the eliminated reaction
terms and adding the reduced reaction terms
into the leap condition (3).

2.2.2 Collect critical reduced or eliminated reactions
that need to be included in the critical reaction
set.

2.3 Calculate non-critical step sizes for all the species
τr ′i = τ′i +


l{∆τr ′i,l}. Then, set τr ′ = mini{τr ′i }.

2.4 Calculate the critical step size τr ′′ by generating a SSA
step size with the critical reaction set.

2.5 The actual step size τr is the smallest of τr ′, τr ′′, or
tend − t.

3. Calculate the number of firings of each reaction in the step.
3.1 For an unreduced non-critical reaction Rj′, set the

number of firings k j′ of Rj′ to be a sample of the
Poisson random variable with mean a j′(x)τr .

3.2 For all the critical reactions in the critical reaction set
collected in step 2, at most one of them will fire at most
one time. If τr , τr ′′, set the number of firings of all
of them to 0. Otherwise (τr = τr ′′), choose one critical
reaction Rj′′ by applying a SSA reaction selection step
with only the critical reaction set, setting the firing
number k j′′ of Rj′′ to 1 and all others in the critical
reaction set to 0.

3.3 For eliminated reactions that are not in the critical
reaction set, calculate the numbers of firings according
to individual model reduction rules.

4. Check for negative populations. If there is a negative
component in x +


j k jν j, reduce τr ′ by half and go to

step 2.5. Otherwise, execute the step by setting t ← t + τr

and x ← x +


j k jν j, and update a accordingly.
5. Check for efficiency. If the total number of reaction firings

in the step is less than a threshold (we set it to 10), execute
a modest number of SSA steps (we set it to 100). Keep the
fastness function of the species updated while executing
SSA steps.

6. Stop if t = tend. Otherwise, return to step 1.

IV. MODEL REDUCTION EXAMPLES

In this section, we illustrate the application of two of the
model reductions, sQSSA and stochastic M-M, in the adaptive
framework.

A. sQSSA

The sQSSA11–13 removes certain fast-changing species in
stochastic quasi-steady-state from the step size calculation,
and calculates the numbers of firings of the reactions linked
to the stochastic quasi-steady-state species, based on the
assumption that the influx to the stochastic quasi-steady-state
species equals the outflux from the same species. The influx is
measured by the sum of the numbers of firings of all the reac-
tions that produce this species, while the outflux is measured
by the sum of the numbers of firings of all the reactions that
consume this species. Reference 21 derived the identification
criteria to determine whether a fast-changing species is in
stochastic quasi-steady-state, and if sQSSA can be applied
and is beneficial. The same criteria can also be used in each
step to determine whether sQSSA is still valid. In this section,
we focus on how the sQSSA is applied in the framework. Note
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that the calculation of the numbers of reaction firings is very
similar to that of the algorithm in Ref. 13.

Suppose that species Sl is in stochastic quasi-steady-
state. The reactions generating species Sl are Ri1,Ri2, . . . ,Rim1
(stoichiometry coefficients νi,l > 0, i = i1, i2, . . . , im1). The
reactions consuming species Sl are Rj1,Rj2, . . . ,Rjm2 (stoi-
chiometry coefficients νj,l < 0, j = j1, j2, . . . , jm2). Then for
the sQSSA that is applied to species Sl, the eliminated
reactions consist of all of the reactions generating or consum-
ing species Sl: {Ri} ∪ {Rj}, where i = i1, i2, . . . , im1 and j
= j1, j2, . . . , jm2. There are no reduced reactions.

For the step size calculation, the sQSSA removes the
non-critical step size corresponding to species Sl from the
leap condition. It also removes any critical reactions that
consume species Sl from the critical reaction set. However,
it must keep the critical reactions that generate species Sl in
the critical reaction set due to negativity concerns. (As we will
show below, the numbers of firings of reactions that generate
species Sl will be sampled in the same way as in the original
tau-leaping algorithm.)

In the module that calculates the numbers of reaction
firings, the sQSSA first calculates the numbers of firings of
reactions generating species Sl in the same fashion as in the
original tau-leaping algorithm. For a non-critical reaction Rj′

∈ {Ri}, where i = i1, i2, . . . , im1, the number of firings k j′ of Rj′

is a sample of the Poisson random variable with mean a j′(x)τr .
The critical reactions are included in the critical reaction firing
calculation along with unreduced critical reactions. The total
number of firings of reactions generating species Sl is recorded
as Ntotal.

The sQSSA calculates the numbers of firings of reactions
consuming species Sl by sampling the multinomial random
variable. The total number is set to be Ntotal. The probability
for each reaction Rj′′ ∈ {Rj}, where j = j1, j2, . . . , jm2 to fire
is set to be proportional to its propensity a j′′. Note that it is
possible that species Sl has a zero population, which results
in a j′′ = 0 for all the reactions consuming species Sl. In that
case, we use a dummy propensity with xl = 1 to calculate the
probabilities.

B. Stochastic M-M

The stochastic M-M11,12,14,15,18,29 substitutes all the reac-
tions from an enzyme-substrate subsystem (5) with reduced
reaction (6) in the step size calculation, and calculates the
numbers of firings of eliminated reactions based on the
number of firings of the reduced reaction. We have included
c2 ≫ c3 along with the identification criteria given in Ref. 21
as the criteria under which to apply the stochastic M-M
approximation to ensure accuracy.18,19 The same criteria are
used at each step to determine whether stochastic M-M
remains valid.

For the step size calculation, the stochastic M-M removes
the terms corresponding to the original reactions R1, R2, and
R3 in (5) from both the non-critical and critical step size
calculations. It then includes reduced reaction (6) in the step
size calculation for both species S and P.

In the module that calculates the numbers of reaction
firings, the stochastic M-M first calculates the number of

firings jred of reduced reaction (6) in the same way as an
unreduced reaction, most likely a Poisson random sample
as a non-critical reaction, because it is highly unlikely that
species S is critical and stochastic M-M can still be applied.
To improve accuracy, the reaction rate we use to calculate
the number of firings of the reduced reaction is the tQSSA
rate,28,29

cred =
2c3ETS

ETKmS +
(ET + Km + S)2 − 4ETS

, (7)

where ET = E + C, Km = (c2 + c3)/c1. Then, the population of
E at the end of the step is calculated using a random sample of
a binomial random variable with parameters n = xE + xC and
p = c1xS/(c1xS + c2 + c3). The number of firings of reaction
R2 will be calculated by sampling a Poisson random variable
with mean a2(x)τr . The number of firings of reaction R3 equal
the number of firings of the reduced reaction: k3 = kred. The
number of firings of reaction R1 can then be calculated from
the change ∆xE of the population of E and the number of
firings of reactions R2 and R3: k1 = k2 + k3 − ∆xE.

V. NUMERICAL RESULTS

In this section, we present several examples that demon-
strate the efficiency and accuracy of automatic model
reduction for tau-leaping. The tau-leaping algorithm with
automatic model reduction is available in StochKit2.030

(http://sourceforge.net/projects/stochkit/). The simulations
were performed on an Intel i7-2600 Linux workstation with
8 GB RAM.

A. Stiff decaying dimerization model

We first simulated a decaying dimerization model with
the adaptive algorithm. This model was proposed in Ref. 5
and used in Ref. 13. The model consists of three species, S1,
S2, and S3, and four reactions,

S1
c1−−→ ∅,

S1 + S1
c2−−⇀↽−−
c3

S2, (8)

S2
c4−−→ S3.

In our experiment, the reaction rate constants were set to
c1 = 0.1, c2 = 10.0, c3 = 5.0, c4 = 0.01. The initial populations
were given by x1(0) = 100, x2(0) = 10 000, x3(0) = 0.

In the numerical experiment, species S1 reached stochastic
quasi-steady-state very rapidly and the sQSSA module was
automatically deployed to apply sQSSA to species S1. We
simulated from t = 0 to t = 100 for a total of 1000 trajectories.
The accuracy control parameter ε was set to 0.03 in both tau-
leaping simulations. The original tau-leaping simulation of
the model took about 198 s and the tau-leaping simulation
with automatic model reduction took only about 0.65 s.
The automatic model reduction module resulted in a ∼300
times speed-up. We compared the histograms of x3(100) from
both simulations to the result of a SSA simulation under the
same conditions using the Euclidean distance and Manhattan
distance, which are, respectively, the L2 norm and L1 norm of
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FIG. 2. Comparison of histograms (1000 samples) from tau-leaping simulation and SSA simulation of species S3 of model (8) at t = 100. (a) shows the result
using the original tau-leaping algorithm. (b) shows the result using the tau-leaping algorithm with automatic model reduction.

the histogram distance:31 suppose X and Y are two groups of
samples with N samples in X and M samples in Y , and all
the sample values are bounded in the interval I = [xmin, xmax).
Let L = xmax − xmin. Divide the interval I into K subintervals
Ii = [xmin +

(i−1)L
K

, xmin +
iL
K
). Then, the histogram distance is

given by

DK(X,Y ) =
K
i=1

������

N
j=1 χ(x j, Ii)

N
−
M

j=1 χ(y j, Ii)
M

������
, (9)

where the characteristic function χ(x, Ii) is defined as

χ(x, Ii) =



1, if x ∈ Ii,
0, otherwise.

(10)

The comparison results are shown in Fig. 2. The histogram
distance results show that the automatic model reduction is
accurate for this model.

B. Heat-shock response model

We then simulated a Heat Shock Response (HSR)
model.32 Initially, most of the heat shock factor 1 (HSF1)
binds to the heat shock protein 90 (Hsp90) to synthesize and
fold protein to its native state NatP. Some of the NatP may
misfold into protein MisP with the help of the reactive oxygen
species (ROS). MisP may further degrade or form aggregates
AggP. When the cell is exposed to high temperature or other
stress, more and more NatP will misfold into MisP. MisP also

FIG. 3. Comparison of histograms (1000 samples) from tau-leaping simulation and SSA simulation of species adenosine diphosphate (ADP) and Hsp90 of the
heat-shock response model at t = 500. (a) and (c) show the results using the original tau-leaping algorithm. (b) and (d) show the results using the tau-leaping
algorithm with automatic model reduction.
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FIG. 4. Comparison of histograms (1000 samples) from tau-leaping simulation and SSA simulation of thrombin (IIa) of the blood coagulation model at t = 500.
(a) shows the result using the original tau-leaping algorithm. (b) shows the result using the tau-leaping algorithm with automatic model reduction.

binds to Hsp90. An increase in the number of MisP will result
in more Hsp90 bound by MisP and not by HSF1. MisP can
be refolded with the help of adenosine triphosphate (ATP).
In the meantime, HSF1 is free to form dimer DiH and trimer
TriH. In addition, TriH can bind to the heat shock element
(HSE) to activate the transcription of Hsp90, which results in
an increase in the level of Hsp90. More Hsp90 will increase
the chance of MisP being correctly refolded. The details of
the model for the HSR system can be found in Ref. 32. We
use the same stochastic model including initial conditions and
rate constants as in Ref. 13, with 14 species participating in
21 chemical reactions.

In the numerical experiment, species MisP and HSF1
were in stochastic quasi-steady-state most of the time. The
automatic model reduction module was able to apply sQSSA
when necessary. We simulated from t = 0 to t = 500 for a
total of 1000 trajectories. The accuracy control parameter ε
was set to 0.03 in both tau-leaping simulations. The original
tau-leaping simulation of the model took about 1438 s. The
tau-leaping simulation with automatic model reduction took
about 274 s. The automatic model reduction module resulted
in a ∼5 times speed-up. We compared the histograms of two
species at t = 500 to the results of a SSA simulation under the
same conditions. The comparison results are shown in Fig. 3.
The histogram distance results show that the automatic model
reduction is also accurate for this model.

C. Blood coagulation model

Finally, we tested the automatic model reduction frame-
work on a blood coagulation model.33 The coagulation model
describes the extrinsic blood coagulation system including
pro- and anti-coagulants. In this model, one of the most
important coagulation factors, thrombin (factor IIa), is formed
through a cascade of reactions that are initiated when tissue
factor (TF) in the endothelium cells is exposed to blood due
to vessel injury. TF activates factor VII. Then, the complex
TF_VIIa activates factor X and factor IX. Activated factor
Xa in turn activates factor V, factor VIII, and factor IX.
The complex factor Xa_Va and the activated Xa activate
prothrombin II to thrombin IIa. There are also anti-coagulants
such as antithrombin-III (ATIII) and tissue factor pathway
inhibitor (TFPI) in the blood that are down-regulating activated

pro-coagulants, maintaining the fluidity of the blood. The
detailed model can be found in Ref. 33, and involves 34 species
and 43 reactions.

As shown in the numerical experiment in Ref. 21, several
enzyme-substrate sub-models fit the criteria of stochastic
M-M model reduction in different time periods. There were
also some species in stochastic quasi-steady-state intermit-
tently. The automatic model reduction module was able to
activate stochastic M-M and sQSSA when they were valid and
beneficial, and deactivate model reductions when they were no
longer valid. We simulated from t = 0 to t = 500 for a total of
1000 trajectories. The accuracy control parameter ε was set to
0.03 in both tau-leaping simulations. The original tau-leaping
simulation took about 1521 s and the tau-leaping simulation
with automatic model reduction took about 266 s, resulting in a
∼6 times speed-up. We compared the histograms of thrombin
(IIa) at t = 500 to the result of a SSA simulation under the
same conditions to show the accuracy of the automatic model
reduction in Fig. 4.

VI. CONCLUSIONS

In this paper, we have developed an adaptive model
reduction framework for the explicit tau-leaping algorithm
with adaptive step size selection. The framework unifies
various model reductions, automatically identifies and acti-
vates appropriate model reductions when they are valid and
beneficial, and deactivates model reductions when they are
no longer valid. It requires no input on the model reduction
from users. We showed how to apply sQSSA and stochastic
M-M in the framework. We demonstrated in numerical
examples the efficiency and accuracy of the automatic model
reduction framework. Future work includes implementation
of additional model reduction techniques, such as time-
dependent solution reduction.16
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