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a b s t r a c t 

This paper analyzes the competition between kink nucleation and interface fracture for an 

interface crack (without a putative kink flaw) subject to mixed-mode loading. The simula- 

tions utilize a distributed cohesive zone approach that embeds cohesive elements through- 

out the entire mesh; dynamic crack path evolution occurs through a loss of cohesive trac- 

tion associated with a critical separation between elements. The simulations identify mesh 

densities that lead to mesh-independent results for randomly oriented triangular meshes, 

and provide clear guidelines regarding parameters that recover toughness-controlled crack- 

ing (i.e. linear elastic fracture mechanics). The results demonstrate that, when the when 

the normalized bulk toughness is far from the transition between kinking and delamina- 

tion, crack direction and critical loads are identical to those predicted by He and Hutchin- 

son, who analyzed cracking from a putative flaw associated with the maximum energy re- 

lease rate. Near the transition between fracture modes, kink nucleation depends on the rel- 

ative size of the interface and bulk process zones, such that additional criteria are needed 

(beyond those postulated by He and Hutchinson). Regime maps are presented which indi- 

cate regions of kink nucleation versus delamination as a function of controlling cohesive 

parameters. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

1. Introduction 

Kinking from an interface has been studied extensively assuming that a putative flaw exists at the interface to initiate

kinking ( Azhdari and Nemat-Nasser, 1996; Bilby and Cardew, 1975; Bilby et al., 1978; Hayashi and Nemat-Nasser, 1981; He

et al., 1991; He and Hutchinson, 1989b; 1989c; Hutchinson and Suo, 1992; Karihaloo et al., 1980; Lo, 1978; Nuismer, 1975;

Wu, 1978a; 1978b; 1978c; 1979 ). A schematic of a putative kink crack is shown in Fig. 1 ; a small flaw intersects with a

‘parent’ interface crack with a much larger crack length. The presence of the putative flaw greatly simplifies the analysis,
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Fig. 1. Schematic of a putative flaw that triggers kinking off of the interface of a bimaterial crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

essentially by separating the fracture process zones that occur at the tip of the putative kink crack and the parent interface

crack. In order for this to be valid, the putative flaw has to be large enough such that its tip is not influenced by any damage

at the interface at the base of the kink. This is reasonable for highly brittle solids with rupture zones on the order of 1 − 10

nanometers and flaws on the order of 10–100 nm. The stability of the kink crack is then solely determined by its energy

release rate and the bulk material toughness. Put another way, the a priori presence of a putative kink flaw avoids the issue

of kink nucleation by assuming that kink ‘sources’ (i.e. angled putative flaws that intersect the interface) exist wherever they

are needed. 

In this framework, one must only examine the stability of kink cracks relative to that of the parent crack to determine

whether kinking occurs, or remains on the interface. This assumes that the critical driving force for the interface crack is

unaffected by the presence of the small kink flaw. This would be the case if the putative kink flaw is present along a small

fraction of the interface crack front, as shown in Fig. 1 . In such cases, the regions between putative kink flaws are identical

to the parent crack and the interface crack’s stability is not influenced by the presence of kink ‘sources’. To apply a two-

dimensional, plane strain analysis, one must further assume that that the width of the putative kink flaw (measured along

the crack front) is much larger than its depth (into the bulk). Put another way, if a substantial portion of the interface crack

front is not influenced by putative kink flaws, one does not need to re-nucleate the interface crack ahead of (or beneath)

the kink flaw; the region of the crack front between the kink flaws governs continued interface propagation. 1 

This reasoning leads to the approach outlined by He and Hutchinson (1989b,c) ; if the critical condition for interface

cracking (absent the putative kink flaw) is reached prior to that for a kink source, interface delamination occurs. Conversely,

if the critical condition for advance of the kink flaw occurs prior to that of the interface, the putative kink flaw grows (both

in the flaw direction and presumably along the interface). Thus, kinking occurs when: 

G k (ψ) 

�b 

> 

G i 

�i (ψ) 
or 

G k (ψ)�i (ψ) 

G i �b 

> 1 (1)

where G k is the maximum driving force associated with a putative kink crack (over all possible kink angles, ˜ �) growing

into the bulk material with toughness �b , and G i is the driving force for cracking along an interface with toughness �i .

The phase angle ψ defines the mode-mix for the parent crack, and the above reflects that the driving force for the kink

angle that maximizes energy release rate depends on the far-field mode-mix. The interface toughness, �i ( ψ), may depend

on mode-mix as well. Solutions for G k ( ψ)/ G i are tabulated by He and Hutchinson (1989b,c) for two-dimensional geometries

(i.e. plane strain and plane stress). This criteria has been validated for some material systems with mixed-mode fracture

experiments, involving digital image correlation ( Abanto-Bueno and Lambros, 20 05; 20 06; Kimberley and Lambros, 2004 ),

special purpose interface fracture specimens (e.g., Brazil nut Kang, 1994 ), and detailed combinations of experiments and

finite element simulations ( Prasad and Carlsson, 1994a; 1994b ). 

In the subsequent work of He and Hutchinson (1989a) , a similar approach was applied using LEFM to analyze the prob-

lem of deflection vs. penetration of an impinging interface crack. It is important to emphasize that, while these two works

implement a similar method of putative kink crack analysis, they analyze two fundamentally different cracking scenarios. In

the first work ( He and Hutchinson, 1989b; 1989c ), the crack path selection is part of the problem: the crack can kink out
1 An alternative explanation for the continued propagation of the interface crack in the presence of kink flaws relates to dynamic instability: if the 

interface crack grows unstably prior to encountering a kink, dynamic effects could carry the interface flaw past the kink. 
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of the interface and therefore the kink angle is part of the solution. In their subsequent work ( He and Hutchinson, 1989a ),

the possible crack paths are determined a priori: the crack can only penetrate into the substrate or deflect at a pre-defined

angle into the interface. The latter problem is not analyzed here, but has been analyzed by Strom and Parmigiani (2014) ,

and Parmigiani and Thouless (2006) using an intrinsic cohesive zone framework 

The later work of He et al. (1991) also implemented the putative kink crack methodology to analyze the role of non-zero

T-stress. Here, the authors introduce the dimensionless in-plane stress Î·and directly illustrate its effect on the relative max-

imum ERR as a function of the phase angle for both compressive ( η < 0) and tensile ( η > 0) regions. In the compressive

region, the in-plane stress tends to suppress kinking via crack closure, and conversely in the tensile region the in-plane

stress tends to promote kinking over interface delamination. The effect of non-zero T-stress is beyond the scope of this

paper but is left as future work. 

The framework by He and Hutchinson (1989b,c) makes three key assumptions: ( i ) putative kink flaws, or kink sources,

exist wherever they are needed, ( ii ) kink sources along the interface crack front are distributed such that they do not alter

the criteria for interface advance, and ( iii ) damage at the interface near a kink does not alter the driving force for kinking.

This last assumption relates to the process zone associated with the interface; it must be much smaller than the size of

the putative kink, such that it does not alter the elastic fields at the tip of the interface crack. In the glass-epoxy interface

studied by Liechti and Chai (1991) , kinking was presumably suppressed because the damage zone in the epoxy was larger

than kink flaws in the glass, effectively shielding their tips. For the exceedingly small damage zones in completely brittle

systems, this presumably is not a concern, supporting the notion that Eq. (1) is sufficient to decipher crack path selection. 

In this work, we relax these assumptions by examining the conditions for kink crack nucleation , i.e. the possibility that

a kink crack emerges from a sharp interface crack in the absence of a putative flaw. By using different cohesive laws for

the bulk and for the interface, we naturally introduce interactions between process zones at the interface and in the bulk,

capturing the influence of partial interface decohesion on kinking. In the simulations, the direction of kinking emerges

naturally as a consequence of cohesive elements distributed throughout the bulk material as well as the interface. 

In general, the cohesive zone model acts as an approximation to the nonlinear processes ahead of the crack tip

( Dugdale, 1960 ). Unfortunately, an explicit atomistic study of kink nucleation would not be tractable, as the size of the

fracture process zone in an ordinary brittle material is on the order of tens of nanometers. Assuming an alumina film

with E = 300 GPa, bond rupture strength σ 0 = 10 GPa, and �i = 10 J/m 

2 , one computes the fracture process zone size to

be ∼ 30 nm. In contrast, the length scale of the macroscopic elastic field that drives deformation (i.e. that establishes the

surrounding K field) on this scale is orders of magnitude larger; for example, the controlling length-scale for the K field in

coating problems scales with the square root of the coating thickness. Thus, the problem is inherently multiscale. To accu-

rately capture the physics of fracture, the minimum required numerical discretization would have to be on a length scale

smaller than the fracture process zone, and span several orders of magnitude to capture deformation at the scale of the film

thickness. 

As will be shown, many of the calculations in this paper involved a cohesive strength that is about five times lower than

an atomistic bond rupture strength in a brittle material, which effectively enlarges the fracture process zone and makes the

calculation manageable. While this is not truly representative of brittle fracture processes, it is indeed quite reasonable for

quasi-brittle systems with larger process zones occurring on the order of hundreds of nanometers to microns. In these types

of systems, the process zones would interact during the transition between kinking and delamination. Near the transition,

it would be expected that a small to moderate amount of damage occurs in the bulk prior to delamination which would

contribute to the interface toughness and vice versa. 

2. Review of related simulations 

A number of alternative numerical methods have been developed to simulate non-planar crack growth at coarser length

scales without the assumption/inclusion of an initial putative flaw (e.g. Augmented FEM, Extended FEM). These methods have

proven useful when carefully combined and calibrated with results of mixed-mode fracture experiments ( Bayesteh and Mo-

hammadi, 2013; Kumar et al., 2015; Liu et al., 2014; 2013; Motamedi and Mohammadi, 2012; Pathak et al., 2013; Rabczuk

et al., 2008 ), with applications ranging from interfacial fracture in polymer-matrix composites, deformation in welded joints

( Cavalli et al., 20 04; 20 05 ), and cracking in advanced multilayer systems ( Białas et al., 2005; Nekkanty et al., 2007 ). These

approaches require external kinking and growth criteria to be supplied in advance. On the contrary, methods such as cohe-

sive zone models ( Xie and Waas, 2006; Xu and Needleman, 1994 ), peridynamics ( De Meo et al., 2016; Gerstle et al., 2007;

Han et al., 2016; Madenci and Oterkus, 2014; Silling, 1998; Silling and Lehoucq, 2008; Zhu and Zhao, 2016 ), and phase field

models ( Borden et al., 2012; Miehe et al., 2010 ) do not require an external growth criteria; rather, the failure criteria is

intrinsically built into the method. While the latter methods have been shown to qualitatively capture experimental obser-

vations of non-planar crack growth ( Hakim and Karma, 2009; Madenci et al., 2016 ), a clear definition of kink nucleation

conditions for each method in terms of the local crack tip parameters has yet to be established. 

Of particular relevance to modeling non-planar crack evolution is the recent work of Strom and Parmigiani (2014) , which

builds off the earlier work of Parmigiani and Thouless (2006) as well as Foulk et al. (2008) . In these works, the authors

model a bi-layer film/substrate specimen with a vertical channel crack impinging at the interface (e.g., perpendicular to

the interface). Cohesive elements are placed along the interface and the plane associated with straight penetration into the

substrate, and the dimensionless toughness and strength ratio of the cohesive law is parameterized. 
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In the early work of Parmigiani and Thouless (2006) , the authors examine the specific criteria for substrate penetration

versus deflection into the interface (initially with no putative kink flaw), in terms of the relative bulk-to-interface strength

and toughness ratios. Through large parameter studies, they conclude that the specific nature of the impinging crack pene-

trating into the substrate or deflecting into the interface must depend on both the strength of the cohesive law, it as well as

the toughness. In the appendix of this work, the authors take the analysis a step further and explicitly include kink flaws.

With highly refined meshes and kink flaws that are much smaller than any physical length in the problem, the authors

illustrate that the critical driving force for deflection or penetration converges to the values predicted by He and Hutchin-

son (1989a) . 

In the subsequent work ( Strom and Parmigiani, 2014 ), the authors continue the analysis and consider the critical driv-

ing forces for the case without a kink crack (in addition to the parameters controlling deflection/penetration selection) to

extend or deflect the penetrating crack. In this work, results are shown for the normalized critical applied stress for either

penetration or deflection as a function of the strength and toughness ratio. The theoretical result for the critical load for

penetration is derived using LEFM analysis for the bimaterial strip, and the theoretical load for deflection is derived using

the putative kink energy based analysis of He and Hutchinson (1989a) . Both theoretical are curves plotted simultaneously

with the results from the cohesive zone models. It is illustrated that, when the criteria for deflection is satisfied, and is far

from the deflection-to-penetration transition, the critical driving force for the deflecting crack asymptotically approaches the

energy-based predictions established by He and Hutchinson (1989a) . 

Conversely, near the transition, the authors show that the critical load is elevated due to interacting process zones along

the bulk and interface that require additional energy to drive cracking. The authors confirm the notion in Parmigiani and

Thouless (2006) that both stress and energy play a role in the criteria for distinguishing penetration vs. deflection in cohe-

sive zone models where a kink in not initially included. These works can be considered pioneering work relating to crack

nucleation, in that they (i) bridge the gap between stress based models ( Cook and Gordon, 1964; Gupta et al., 1992 ) and

energy based models ( He and Hutchinson, 1989a ) and (ii) illustrate that the critical driving force for deflection based on

energetic predictions of a small kink crack may indeed be recovered without an inclusion of a kink flaw, provided the con-

ditions are far from the transition between deflection and penetration. We again emphasize that neither of the models in

Strom and Parmigiani (2014) and Parmigiani and Thouless (2006) recover the criteria for transition between penetration

and deflection based on energy alone as in He and Hutchinson (1989a) , but Strom and Parmigiani (2014) illustrates that the

critical driving force for deflection may be captured in certain limits of cohesive zone analysis without the inclusion of a

putative flaw. 

The objective of the current work is to unify previous works for predicting crack deflection with similar simulations that

capture crack kinking out of the interface. Here, rather than restricting the crack path to two orthogonal crack planes, arbi-

trary kinking directions are captured by inserting cohesive zones in between all element pairs within an unstructured Delau-

nay triangulation mesh. In one sense, the approach is a generalization of the works of Parmigiani and Thouless (2006) and

Strom and Parmigiani (2014) to predict arbitrary kinking directions for a wide range of mode mix and toughness mismatch.

By exploiting modern parallel computing platforms and a highly optimized explicit time stepping code, we conduct broad

parameter studies to identify the requirements on mesh resolution, quantify the role of cohesive parameters, and establish

an efficient set of criteria for crack path evolution. 

3. Simulation framework 

The simulation framework consists of an explicit dynamic finite element implementation, with rate-independent cohesive

elements embedded between all elements in the mesh. It is essentially identical to the method pioneered by Xu and Needle-

man (1994) , with the exception of the description of the cohesive constitutive behavior. For small displacements relative to

the cohesive separation parameter, the implementation fully recovers conventional continuum elasticity. Similar frameworks

have been widely used to study fracture initiation and growth, albeit with cohesive elements limited to pre-defined crack

paths ( Blackman et al., 2003; Borg et al., 2002; El-Sayed and Sridharan, 2002; Hamitouche et al., 2008; Harper and Hallett,

2008; Needleman, 1990a; 1990b; Tvergaard, 1990; Tvergaard and Hutchinson, 1992 ). This requires that the crack path be

known in advance, either by experimental measurement or by nature of the structure (e.g., material interfaces). Here, we

apply a more general strategy and generate meshes using an unbiased, unstructured Delaunay mesh with cohesive zones

distributed at all element pairs (similar to the work found in Camacho and Ortiz (1996) ; Xu and Needleman (1994) and

Geubelle and Baylor (1998) ). In this approach, a non-interfacial crack does not ever follow a perfectly straight path, as any

crack trajectory is limited to pre-defined element boundaries; the consequences of this are examined closely in the results

section. 

The remainder of the paper is organized as follows: Section 3.1 outlines the cohesive law and problem geometry, while

details regarding the controlling length-scales and numerical implementation are given in Section 3.2 ; the ensuing parameter

study is guided by the dimensional analysis presented in Section 3.3 . Results and related discussion are in Section 4 , while

key conclusions are summarized in Section 5 . 
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Fig. 2. Schematic of piecewise cohesive law used in analysis for normal (a) and tangential (b) tractions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Material description, geometry and loading 

Here, we implement a piecewise cohesive law identical to that used in the work of Pro et al. (2015a,b) and

Lim et al. (2016) , and similar in spirit to that of Strom and Parmigiani (2014) . The cohesive law is shown graphically in

Fig. 2 , and is completely defined by three parameters: a cohesive stiffness ( k ), the peak strength ( σ ), and work of separation

( �). As illustrated in Fig. 2 , the normal and tangential behaviors are coupled, such that normal separation will alter the

tangential tractions that can be maintained, and vice versa. The full mathematical description of the cohesive law is given

in Pro et al. (2015a) , and is omitted here for brevity. Since different cohesive laws are prescribed for elements along the

material interface than those in the bulk, we adopt the notation of ( k i , σ i , �i ) for the cohesive elements along the material

interface, and ( k b , σ b , �b ) for the cohesive elements in the bulk (between adjacent elements). The implications of these

parameters and their relative values are discussed in detail in the next section. The chosen cohesive law dictates that the

cohesive work of separation � is independent of the specific loading path to full rupture ( Lim et al., 2016 ). As such, the

associated material toughness is independent of the mode mix, an assumption typically employed with brittle materials. It

is worth noting that the form of the cohesive law is easily modified to account for mode-dependent toughness, by speci-

fying different values for the cohesive work of normal separation and the cohesive work of tangential separation ( Xu and

Needleman, 1994 ). 

The geometry considered in this work consists of a semi-infinite interface crack subjected to mixed-mode loading, as

shown schematically in Fig. 3 a. The disk is assumed to have homogeneous elastic moduli and Poisson’s ratio, denoted as

E b and νb , as shown in Fig. 3 b. Plane strain conditions were enforced in all calculations. The disk is loaded by applying

displacements along the outer radius ( R o ) that are defined by the asymptotic elastic crack tip fields for an interface crack

( Tada et al., 1973 ). These displacements are increased monotonically by increasing the associated energy release rate for the

parent interface crack, G i . A given case is completely defined by prescribing G i ( t ) (where time is arbitrary), the mode mix

through the phase angle ψ (fixed in time), and the bulk elastic constants E b and νb . The phase angle defining the mode mix

can be found via the equation 

ψ = tan 

−1 
(

K II 

K I 

)
(2) 

Using this relation, the stress intensity factors can be expressed in terms of the phase angle and energy release rate for the

interface crack as follows: 

K I = cos ψ 

√ 

Ē b G i ; K II = sin ψ 

√ 

Ē b G i (3) 

where Ē b = E b / (1 − v 2 
b 
) . Using these relationships, the displacements (for an isotropic material) take the form: 

u i (r, θ ) = K I 

√ 

r f I i (r, θ, E b , v b ) + K II 

√ 

r f II i (r, θ, E b , v b ) (4) 

where f I 
i 

and f II 
i 

are dimensionless functions and can be superposed with prescribed values of K I and K II to span the full

range of mode mixity, similar to the approach of Zavattieri et al. (2008) . As these functions are cumbersome to express in

their complete mathematical form, the reader is referred elsewhere for the details ( Tada et al., 1973 ). 

In all calculations, the disk was ramp loaded in displacement control past the point where the parent crack begins to

advance. For all subsequent analysis, crack advance is defined as the point at which the interface separation between the

elements directly ahead of the crack tip exceeds the full rupture separation ( 	R + 	Y ) at either Gaussian integration point.

The critical macroscopic ERR of the parent crack at initiation is denoted as G 

c 
i 
. Provided that kinking is avoided, the process

zone is sufficiently resolved, and the specimen is large enough that the far field elastic stresses are the dominant driving

force (i.e., small scale yielding), then the value of G 

c 
i 

is equal to the cohesive work of separation. 
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Fig. 3. Schematic of (a) simulated disk with Mode I/II displacements applied along the outer boundary (b) crack tip and seeded interface (c) characteristic 

element size h e and (d) focused Delaunay triangulation with varying mesh densities within focused region ( r < r f ), where r is the radial coordinate in a 

polar coordinate system centered at the crack tip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The authors have also performed calculations indicating the involving the case where elastic mismatch is present in the

disk with non-zero Dundurs’ parameters (both α � = 0 and β � = 0) which showed preliminary agreement with the correspond-

ing He and Hutchinson results. However, due to the complications of the oscillating stress field ahead of the crack tip, these

results are not shown here as they required additional verification within the context of the cohesive zone model. 

3.2. Controlling length-scales and numerical considerations 

The presence of the cohesive zones introduces several new length scales into the problem not present in conventional

finite element analysis. First and foremost, the elastic stiffness of the material as a whole is altered via the cohesive stiffness,

as noted by Turon et al. (2007) . It can be shown that for a regular grid of finite elements connected by elastic cohesive

elements, the effective (composite) modulus E c can be expressed in the following form: 

E c 

E 
= 

k o h e 

k o h e + E(1 + c o ) 
(5)

where c o is a constant that depends on the aspect ratio of the elements, and E is the modulus used in the conventional

element description, k o is the stiffness of the cohesive law, and h e is the element size. The modulus ratio E c / E approaches

unity in the limit of infinitely stiff interfaces (i.e., h e k 0 � E ). For all practical purposes, a large value of the cohesive stiffness

k o may be implemented to achieve a modulus ratio near unity for any given element size. 

Note that increasing the value of h e k 0 / E also decreases the requirement on time stepping for numerical stability. One can

show that the time step for numerical stability scales inversely with the square root of the dimensionless cohesive stiffness,

indicating a tradeoff between simulation cost and accuracy of the material modulus. Turon et al. suggested a dimensionless

cohesive stiffness of h e k 0 /E = 50 ( Turon et al., 2007 ), which will be used for all subsequent calculations and produces near

identical results to continuum FEA simulations, while keeping the simulation cost reasonable. Note that if multiple moduli

are present, then the element modulus E should be taken as the largest modulus in the problem. 

The presence of the cohesive zones also introduces a fracture length scale into the problem, � cz , which has been shown

to scale as follows ( Parmigiani and Thouless, 2006 ): 

� cz = M 

E�
2 

(6)

σ
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where � is the work of separation of the cohesive interface, and σ is the peak strength of the cohesive law. The constant

M depends on the specific model of the cohesive law, which has been proposed to take on values ranging from 0.21 to 1 by

various authors ( Barenblatt, 1959; Dugdale, 1960; Falk et al., 2001; Hillerborg et al., 1976; Hui et al., 2003; Irwin, 1997; Rice,

1979 ); here we use a value of M = 1 for simplicity. The length scale � cz can be thought of as the size of the fracture process

zone; it must be small compared to any linear dimension of the specimen (e.g., � cz � R 0 ) in order for linear elastic fracture

mechanics to apply (i.e. G controlled crack stability), but large compared to the characteristic mesh size ( h e ) in the vicinity

of the crack tip to resolve the non-linear behavior in this region. However, as noted by Turon et al. (2007) , the specific

mesh resolution within the fracture length required for numerical accuracy is not generally agreed upon ( Carpinteri et al.,

20 03; Dávila et al., 20 01; Falk et al., 20 01; Moës and Belytschko, 2002 ), and for all practical purposes is problem-specific. By

Eq. (6) , one can alter the mesh resolution for a given material (or interface) by artificially increasing the size of the fracture

process zone (e.g. by reducing the cohesive strength σ with a concomitant change in critical separation 	R such that the

toughness is held fixed). It is critically important to note that when the interface and bulk materials have different work-of-

separation and strengths, there are multiple cohesive length scales, reflecting the difference in fracture process zones along

the interface and the bulk. In such instances, additional impacts of changes to cohesive parameters must be considered; this

is discussed in detail in the dimensional analysis of Section 3.3 . 

An automatic Delaunay triangulation algorithm is used to generate the mesh for a disk of radius R 0 , as shown in Fig. 3 .

The meshing algorithms from the open-source C code Triangle are used in this work ( Shewchuk, 1996; 2002 ). The elements

are focused at the center of the disk for computational efficiency, as shown in Fig. 3 d, with varying mesh densities. The

focused region of concentrated elements is contained within a circle of radius r f , as shown in Fig. 3 . For convenience, the

characteristic element size is defined as the average effective triangle height h e within the focused region (shown in Fig. 3 c),

and can be expressed as follows: 

h e = 

√ 

π r 2 
f 

N e, f 

(7) 

where N e, f is the number of elements in the focused region. Ordinary constant strain 3-noded triangular finite elements are

used for simplicity, with each element coupled to the adjacent element through the cohesive law described previously. 

Note that the non-linearity present in the cohesive law leads to a set of highly non-linear governing equations, which

can be prone to convergence difficulties when solving the quasi-static case, particularly at the onset of cohesive rupture.

For this reason, the full dynamic equations of motion are solved (e.g., with inertial terms) using an in-house developed

explicit time stepping code (very much similar to the approach of Xu and Needleman, 1994 2 ). However, quasi-static loading

conditions were enforced throughout the simulations. This was done by applying the displacement boundary conditions very

slowly, such that the results did not change upon decreasing the loading rate . Note that this is a general approach in which

the computing time does not depend on the non-linearity in the cohesive law, and has been used by other authors for

complicated non-linear problems ( Aoyanagi and Okumura, 2009 ). 

Both stiffness and mass damping were introduced into the calculations (as described in Cook et al., 2007 ). The dimen-

sionless damping ratio was set at ζ = 0 . 5 so that the system was near critical damping levels, which allows for larger load

rates to be applied. Here, the damping ratio is defined through the material properties as follows: 

ζ = 

1 

2 

( 

2 R 0 c M 

π

√ 

ρb 

E b 
+ 

c K π

2 R 0 

√ 

E b 
ρb 

) 

(8) 

where c M 

and c K are the mass and stiffness damping coefficients, respectively. 

The time stepping algorithm was implemented in C ++ . The data structure was designed for enhanced spatial and tem-

poral CPU cache locality, which reduces the amount of memory access and improves performance. It was parallelized using

PThreads with low overhead synchronization primitives. A Linux shell (.sh) script was used for generating various meshes

and loading conditions, associated with sweeping through dimensionless variables in the parameter space. 

3.3. Dimensionless analysis and parametric studies 

The critical value of the applied (far field) energy release rate G 

∗
i 

of the parent crack that leads to crack growth depends

on a large number of material properties: the cohesive parameters ( �i , �b , σ i , σ b , k i , k b ), the plane strain modulus Ē b , the

mesh size h e , and the disk radius R o . Presented in dimensionless form, this dependency can be expressed as: 

�b,i 

G 

∗
i 

= f 

(
ψ, 

h e k i 
E b 

, 
h e k b 
E b 

, 
E b �b 

σ 2 
b 

h e 

, 
�i σ

2 
b 

�b σ
2 
i 

, 
E b �b 

σ 2 
b 

R 0 

, 
E b �i 

σ 2 
i 

R 0 

, 
�b 

�i 

, 
σi 

E b 
, 
σb 

E b 
, 

�i 

E b R 0 

, 
�b 

E b R 0 

)
(9) 

These dimensionless groups agree with those of Strom and Parmigiani (2014) , with a few minor changes. When chang-

ing the dimensionless bulk-to-interface work of separation ratio �b / �i , and holding process zone resolution constant, the
2 Xu and Needleman (1994) developed a general method that accounts for arbitrarily large elemental strains and rotations. Here, we assume small 

rotations and small strains. 
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bulk-to-interface work of separation ratio cannot be changed without also altering the cohesive bulk-to-interface strength ratio ;

therefore these two parameters cannot be changed independently. For this reason, we have replaced σ i / σ b in the dimen-

sionless analysis with: 

� i cz 

� b cz 

= 

�i σ
2 
b 

�b σ
2 
i 

(10)

which is permitted by dimensionless analysis so long as the bulk-to-interface work of separation ratio �b / �i is still included

in the analysis as reference. This is advantageous in the current formulation because the work of separation ratio �b / �i

may be changed independently while maintaining a constant mesh resolution with respect to the fracture process zones.

Using these dimensionless parameters provides a straightforward means to modulate cohesive parameters while ensuring

small-scale yielding and a fixed resolution in the fracture process zones. 

As pointed out in Strom and Parmigiani (2014) , the ratios of the cohesive shear to normal strength of the interface or

bulk also play a role in the analysis. However, here we assume an ideally brittle material, such that the ratio of the normal

to tangential cohesive work of separation is set to unity ( Begley and Hutchinson, 2016 ), along with the cohesive normal and

shear strengths (for both the interface and the bulk). Therefore these parameters have been omitted from the dimensionless

analysis. 

Eq. (11) represents a large parameter space that is quite challenging and computationally expensive to map out in its

entirety. However, by ensuring that the specimen dimensions are much larger than the fracture length, Eq. (11) can be

reduced to eliminate any terms that depend on the disk radius, R 0 . This was done by trial and error such that the simulation

results did not change upon switching to a larger disk. The radius was chosen such that both the interface and bulk fracture

lengths were less than a critical value, e.g., 
� i cz 
R 0 

< η and 

� b cz 
R 0 

< η. A value of η ≈ 0 . 035 was chosen such that the critical ERR

of the parent crack was left unchanged upon switching to a larger disk radius R 0 in pure mode I loading. The dimensionless

interface stiffness terms h e k i, b / E b may also be omitted, via the reasoning in Section 3.2 . 

The number of relevant dimensionless terms in the analysis is therefore significantly reduced: 

�b,i 

G 

∗
i 

= f 

(
ψ, 

E b �b 

σ 2 
b 

h e 

, 
�i σ

2 
b 

�b σ
2 
i 

, 
�b 

�i 

, 
σi 

E b 
, 
σb 

E b 

)
(11)

This presents a straightforward path for an efficient parameter study, as follows. First, we fix bulk-to-interface work of

separation ratio �b / �i and the interface-to-bulk fracture length ratio � i cs /� 
b 
cz = 

�i σ
2 
b 

�b σ
2 
i 

at unity, and vary phase angle over dif-

ferent bulk mesh resolutions � b cz /h e = 

E b �b 

σ 2 
b 

h e 
until consistent results are obtained. For these calculations, we initially chose

σb 
E b 

= 

σi 
E b 

= 0 . 0087 and held it fixed. Note that the cohesive strength is analogous to the atomic bond rupture strength for a

brittle material, and realistic values of 
σ0 
E b 

would be much larger ( ≈ 0.044 assuming σ0 = 10 GPa, E = 200 GPa, and ν = 0.35).

However, increasing the cohesive strength (while maintaining the bulk fracture length resolution) has substantial implica-

tions with regard to the computational cost. 

With the mesh resolution established, we then back-checked the effect of the dimensionless cohesive strength 

σi,b 

E b 
with

a separate parameter study that completely isolated it completely against all other variables. This parameter study was

performed by fixing ψ, 
E b �b 

σ 2 
b 

h e 
, 

�b 
�i 

, and 

�i σ
2 
b 

�b σ
2 
i 

, and varying 
σb,i 

E b 
over the range 0.002 to 0.014 (values greater than 0.014 were

avoided as they yielded calculation times over 10 days). The same study was repeated for each value of 
E b �b 

σ 2 
b 

h e 
that was used

in any other simulation. As will be shown, this study revealed that the ratios σ i, b / E b had a second order effect on the

results; therefore the following approximation was assumed to hold for the remainder of the calculations: 

�b,i 

G 

∗
i 

≈ f 

(
ψ, 

E b �b 

σ 2 
b 

h e 

, 
�i σ

2 
b 

�b σ
2 
i 

, 
�b 

�i 

)
(12)

Finally, a very large parameter study was performed to examine the effect of both the interface-to-bulk fracture length

ratio and the bulk-to-interface work of separation ratio ( 
�i σ

2 
b 

�b σ
2 
i 

and 

�b 
�i 

, respectively) at fixed 

E b �b 

σ 2 
b 

h e 
. For these calculations,

about 10 different phase angles and 10 different bulk-to-interface toughness ratios were each run at 3 different levels of
�i σ

2 
b 

�b σ
2 
i 

, for a total of about 300 simulations. In these calculations, each simulation had a wall time of about 2 days using 8

cores each. About 30 jobs were run simultaneously, for a total of about 3 weeks of straight computation time. The UCSB

supercomputers KNOT and IRP were utilized in all cases to facilitate the computations. 

4. Results and discussion 

4.1. Kink nucleation for �i = �b and σi = σb : Effect of mesh resolution 

In this section, we illustrate the efficacy of the framework by considering the simplest case of a mixed mode interface

crack with isotropic toughness, i.e. identical bulk and interface toughness ratios. The interface and bulk strengths are also
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Fig. 4. Stress contours at various loading increments in the simulation for two levels of mode mix,(a) ψ = 9 ◦ and (b) ψ = 81 ◦ . For all cases, the mesh 

resolution parameter is � b cz /h e = 

E b �b 

σ 2 
b 

h e 
= 178, σi = σb and �i = �b (such that � i cz /� 

i 
cz = 1 ). 

Fig. 5. Critical energy release rate of parent crack as a function of applied phase angle ψ and process zone resolution � b cz /h e = 

E b �b 

σ 2 
b 

h e 
. Results shown for 

�b = �i and σb = σi , such that the cohesive lengths scales of the interface and bulk are identical. The inverse of G ∗
i 
/ �b is used to match the presentation 

of He and Hutchinson (1989b) . 

 

 

 

 

 

 

 

 

 

assumed to be identical, σi = σb , such that the process zones along the interface and throughout the bulk are the same size.

Stress contours resulting from the simulations are shown in Fig. 4 for various loading increments. In all plots, the stresses

are normalized by the bulk cohesive strength σb = σi . The direction of the emergent crack from the fracture process zone

depends strongly the mode mix, as expected, with strong mode II loading leading to high angle kinks. 

This situation is identical to that of He and Hutchinson (1989b) , with the important exception that a putative kink crack

is not included in the present analysis. Hence, this simulation effectively determines if the behavior of crack nucleation is

comparable to the growth criteria associated with the presence of a flaw that is much larger than the process zone. The

two key outcomes of the simulation are the critical value of the far field energy release rate G 

∗
i 
, as a function of mode

mix (shown in Fig. 5 ), and the direction of crack growth, defined by kink angle, ˜ � (shown in Fig. 6 ). Results are shown

for several different meshes; the normalized parameter in the inset is essentially the number of elements in the estimated

process zone. 
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Fig. 6. (a) Kink angle measured through regression analysis as a function of applied phase angle ψ for a completely isotropic system, i.e. σi = σb , and �i = 

�b . The solid line is the prediction of He and Hutchinson (1989b,c) assuming G max 
k 

= �b , while the dashed line is the He and Hutchinson (1989b,c) result 

assuming K II = 0 at the tip of the kink crack. The critical energy release rate for growth in this system is shown in Fig. 5 a. The data points used to compute 

the average kink angle are shown directly in (b), where the crack path is defined as a traction free surface where the opening displacement exceeds the 

full rupture displacement 	R + 	Y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been demonstrated by several authors that three basic criteria are suitable for capturing the kinking plane: the

maximum ERR criteria, the zero mode-II criteria, and the maximum principal stress criteria ( Cotterell and Rice, 1980; He and

Hutchinson, 1989b; Hutchinson and Suo, 1992 ). It is generally agreed that there is little practical distinction between the

first two criteria ( He and Hutchinson, 1989b ), and in most loading configurations the last two criteria are identical (although

one could envisage cases where maximum principal stress criteria is different from the K II = 0 criteria in the presence of

substantial in-plane stress, where the K II = 0 criteria corresponds to the minimum principal stress). Therefore, for subsequent

results, both the K II = 0 and maximum ERR criteria are shown from the predictions of He and Hutchinson (1989b,c) . 

One can immediately see from Figs. 5 and 6 that, with sufficient mesh resolution, the present framework produces the

results of He and Hutchinson (1989b,c) . This clearly indicates that the kink nucleation problem, when �i = �b and σi = σb ,

gives near identical results to the case with a putative flaw according to the criterion G k = �b . In all cases shown in Fig. 5 ,

the coarse meshes overestimate the critical far-field load, G 

∗
i 

(or underestimate its reciprocal 1 /G 

∗
i 
), and in that sense cannot

be regarded as conservative. 

For the results shown in Fig. 5 a, the bulk work of separation �b was normalized by the mesh tortuosity ˆ a , defined as

the ratio of actual crack length (accounting for the jaggedness of the mesh edge faces) to the length of a straight line join-

ing the initial and final crack tip at a distance equal to the fracture process zone length. Fig. 5 b shows the effect of this

normalization; the same results are plotted for fixed process zone resolution, only now with both the normalized ( �b ̂  a ) and

unnormalized work of separation ( �b ). It is hypothesized that artificial tortuosity introduced by random Delaunay triangu-

lation slightly increases the macroscopic toughness due to the additional surface area traversed by a crack relative to the

area of a straight path. For most calculations this was about 5%; the results are in excellent agreement with those of He and

Hutchinson (1989b,c) when accounting for the effect of tortuosity. 

The averaged kink angle of the emergent crack ( Fig. 6 ) was computed as the inverse tangent of the slope of the line of

best fit through all the cracked nodes over one bulk fracture length. The positions of initially coincident nodes along the

crack faces were averaged along the crack path and used for the regression analysis. As shown in Fig. 6 , the results are again

in excellent agreement with the predictions of He and Hutchinson (1989b) . 

Regarding the effect of mesh resolution shown in Fig. 5 , similar insights have been drawn with cohesive zone models

previously for cracks growing along pre-defined paths ( Carpinteri et al., 2003; Dávila et al., 2001; Falk et al., 2001; Moës and

Belytschko, 2002 ), hence it appears that this concept may be generalized for arbitrary crack trajectories within a random

mesh as well (when accounting for the mesh tortuosity ˆ a ). As the number of nodes within the bulk fracture length is

increased, the number of potential paths from one node to another increases, hereby increasing the number of averaged

kink angles that may accurately be resolved. Additionally, the distribution in mesh tortuosity is narrowed as the nodal

sample size is increased, leading to more consistent values of ˆ a . 

It is worth noting that the authors performed numerical experiments with other mesh structures as well, including a

radial fan mesh as well as a mesh of cross triangulated quadrilaterals (exactly as in Xu and Needleman, 1994 ). However,

consistent results were unable to be obtained with non-random meshes. The radial fan mesh required triangles of very high

aspect ratio focused at the crack tip, when accounting for the angular resolution in kinking required ( ≈ 1 – 2 °). While this

mesh produces a theoretical initial mesh tortuosity of zero during the initial stages of crack advance, none of the attempted

calculations were numerically stable for the range of time steps that would keep the simulation cost reasonable; therefore

these calculations have been omitted from the results section. 

Finally, all of the calculations shown in Figs. 4–6 hold the dimensionless cohesive strengths constant, i.e. σb,i /E b = 0 . 0087 .

Put another way, the conditions driving growth of the pre-crack were initially assumed to be energetic, with fracture con-

trolled by G = �b = �i . As mentioned, a set of calculations was performed to confirm this assumption; the dimensionless
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Fig. 7. (a) Relative critical ERR of parent crack as a function of dimensionless interface strength for various bulk fracture length resolutions and (b) relative 

critical ERR of interface (both normalized and unnormalized) as a function of dimensionless interface strength (for fixed bulk fracture length resolutions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameters ψ , � b cz /h e , � 
i 
cz /� 

b 
cz , and �b / �i were fixed, while σ b, i / E b was varied. Note that this will inevitably increase the frac-

ture length relative to the disk radius R 0 . Therefore, whenever the cohesive strength input was changed, the disk radius was

also changed in order to keep all of the radius dependent terms in Eq. (11) constant. The load rate and damping parameters

were also adjusted such that the dimensionless loading rate and damping ratio (respectively) remained constant. Fig. 7 a in-

dicates that at sufficiently high resolution, the energetic condition for failure is recovered, as indicated by the nearly perfect

constant data for � b cz /h e = 178 and above. Fig. 7 b shows only the case with the highest resolution; the critical kinking energy

release rate is clearly independent of the bulk and interface cohesive strength. Fig. 7 also shows the effect of the tortuosity

correction, which again brings the results in near excellent agreement with that of He and Hutchinson (1989b) . However,

Fig. 7 a indicates that at lower resolution this outcome may not be guaranteed, as suggested by the somewhat oscillatory

data for � b cz /h e < 178 . 

4.2. Impact of different bulk and interface process zone sizes 

In the previous section, the ratio of process zone lengths for the interface and bulk, defined by � i cz /� 
b 
cz = �i σ

2 
b 
/ (�b σ

2 
i 
) ,

was held constant at unity while �b = �i . A more interesting study involves the transition between kinking and interface

failure, which is controlled by interacting process zones (for the interface and bulk) that have different length-scales. To

address this, a large parameter study was also performed by independently altering each of the phase angle ( ψ), the process

zone size ratio � i cz /� 
b 
cz = �i σ

2 
b 
/ (�b σ

2 
i 
) , and the work of separation ratio �b / �i . 

The results in Fig. 8 a show a map of kinking and interface delamination as a function of both phase angle ψ and the work

of separation ratio �b / �i , for the case where � i cz = � b cz . This figure was constructed by brute force, i.e. running simulations

with the parameter combinations shown and tabulating whether the crack advanced along the interface or kinked into the

bulk. The solid line corresponds to the theoretical bulk interface toughness that would be required to suppress kinking

according to the He and Hutchinson (1989b,c) criterion; beneath this line, �b is not high enough to suppress kinking. For

this case, in which � i cz = � b cz , the results shown in Fig. 8 a illustrate that a significantly higher bulk toughness is required

to suppress nucleation of a kink crack. The discrepancy clearly increases with increasing mode mix; we postulate that the

process zone along the interface reduces the constraint of the interface against the emergence of a high angle kink. While

similar to Fig. 5 a, it should be noted that Fig. 8 a does not indicate the value of the far-field energy release rate required to

drive kinking- this is shown in Fig. 9 . 

Fig. 8 b provides an alternative representation of the kink/delamination map for � i cz = � b cz , based on the same He and

Hutchinson (1989b,c) criterion for kinking. The criterion can be stated as follows: kinking occurs when 

G k 

�b 

> 

G i 

�k 

or ˜ �R ≡ G i �b 

G k �i 

< 1 (13) 

where G k is the energy release rate for a putative kink in the direction that maximizes its value, while G i is the energy

release rate of the parent crack (both compiled by He and Hutchinson, 1989b; He and Hutchinson, 1989c ). One may interpret
˜ �R as the ratio of the bulk toughness to that of the interface, but normalized by the ratio required to suppress kinking according

to putative kink calculations . From Fig. 8 b, it is clear that for � b cz = � i cz kinking can occur even when G k / �b < G i / �i , i.e. ˜ �R >

1 . In essence, the interacting process zones at the interface and in the bulk lower the value of �i needed to suppress

delamination and favor kink nucleation. 

Fig. 8 c and d show the boundaries between delamination and kinking for cases where � i cz � = � b cz . It is clear that the He and

Hutchinson (1989b,c) criterion for kink stability best matches nucleation conditions when the process zone on the interface

is slightly larger than that in the bulk, i.e. � i cz ∼ 1 . 5 � b cz . At low phase angles, the bulk toughness required to suppress kinking

is lower than He and Hutchinson (1989b,c) suggest, while at higher phase angles the bulk toughness required to suppress
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Fig. 8. Transition between kinking and interface fracture as a function of (a) phase angle and work of separation ratio with all data points shown, (b) phase 

angle and the normalized work of separation ratio equivalent to the He and Hutchinson (1989b,c) kinking criteria, (c) phase angle and work of separation 

ratio for several process zone ratios (d) phase angle and the normalized work of separation ratio equivalent to the He and Hutchinson (1989b,c) kinking 

criteria. The dashed lines in (d) represent the critical values of the He and Hutchinson (1989b,c) criterion from the cohesive zone model (CZM) simulations 

for fixed process zone size ratios. For all calculations shown in (a)–(d) the bulk fracture length resolution was set at � b cz /h e = 178 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kinking is higher. Clearly, a large interface process zone (in comparison to the bulk process zone) strongly suppresses kinking

in favor of interface delamination. This is entirely expected and is supported by experiments on glass-epoxy systems involve

much larger process zones associated with yielding in the epoxy ( Liechti and Chai, 1991 ). 

Simply put, kink nucleation is more likely than the He–Hutchinson criterion suggests when the fracture process zones

interact and are approximately equal. Conversely, when the interface fracture process zone is much larger than the bulk

fracture process zone, kink nucleation is much less likely than suggested by the He–Hutchinson stability criterion. This

disagreement is a trend also realized by Strom and Parmigiani (2014) and Parmigiani and Thouless (2006) , who tested the

deflection versus penetration criteria with cohesive laws (rather than the kinking versus delamination as in the present

work). More specifically, the transition between kink nucleation and delamination is dependent on both the phase angle

and the normalized toughness ratio ˜ �R . Thus, the kink nucleation criterion can be expressed as: 

˜ �R < f 

(
ψ, 

� i cz 

� b cz 

)
(14)

where f is a linear function in ψ and non-linear with respect to the ratio of the process zone sizes. 

Fig. 9 shows the critical energy release rate of the parent crack that drives failure, G 

∗
i 
, normalized by the toughness

that controls failure, �∗. That is, when kinking occurs, �∗ = �b , while when delamination occurs, �∗ = �i . Data is shown

in Fig. 9 for cases with � i cz = � b cz , � 
i 
cz = 2 � b cz and � i cz = 4 � b cz , respectively. Further, data was generated for constant normalized

toughness ratios, ˜ �R . The fracture path is indicated by circles for kink nucleation, and squares for delamination. 

Consider Fig. 9 a for an isotropic material with � i cz = � b cz : for most cases, the fracture modality is fixed across all values

of mode mix for a given value of ˜ �R ; for others, such as ˜ �R = 1 . 35 , the modality is delamination at low mode mix but

switches to kinking at higher values of mode mix. This switch in modality does not happen when 

˜ �R � 1 (kinking almost

always favored), and when 

˜ �R � 1 (delamination is almost always favored). As indicated by Fig. 9 a, when � i cz = � b cz and
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Fig. 9. Relative critical initiation ERR for various interface-to-bulk fracture length ratios as a function of applied phase angle ψ and normalized toughness 

ratio ˜ �R . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜ �R ∼ 1 , the critical far-field energy release rate required to trigger kink nucleation is virtually identical to that required to

drive a putative kink crack. However, as the normalized toughness ˜ �R increases closer to the transition to delamination, the

critical G i to nucleate a kink crack is higher than that required to drive a putative crack. This is because the fracture process

zone at the interface provides additional dissipation that must be overcome to nucleate the kink. 

Similarly, Fig. 9 a demonstrates that one recovers the interface cracking condition G i = �i when the normalized toughness

ratio is very large, i.e. a bulk toughness that is much larger than that required to suppress kinking. However, when the

normalized toughness ratio is moderate and close to the transition, e.g. ˜ �R = 2 , the critical G i required to drive interface

cracking is higher than �i . This is because the fracture process zone for kink nucleation is present and provides additional

dissipation that must be overcome to drive interface cracking. For these cases, the process zone for kinking never reaches

a critical value, such that a kink does not nucleate. The upper limit for the additional interface dissipation in the bulk is

simply the bulk work of separation ratio �b ; therefore the upper limit in the apparent toughness of the interface is simply

�b + �i . It was confirmed in all simulations that this value was not exceeded. 

Note that in many brittle systems where interfacial failure occurs, there would be virtually no contribution to the in-

terface toughness due to energy dissipation in the adjoining bulk material. Conversely, in cases where kinking in the bulk

occurs in a brittle system, one would expect no contribution from the interface to the bulk toughness. This could be ac-

counted for in a cohesive zone model by altering the respective strength; the effect of this alteration is illustrated in Fig. 9 .

As the bulk strength is increased (through the process zone length ratio 
� i cz 

� b cz 

= 

�i σ
2 
b 

�b σ
2 
i 

) the contribution of �b to the effective

interface toughness disappears and all of the curves collapse to the straight line prediction that represents purely interfa-

cial separation. Hence, the apparent macroscopic toughness in the limit of infinite bulk strength is simply �i , which was

confirmed by our simulations. 

Fig. 9 illustrates and confirms many of the trends first discovered by Strom and Parmigiani (2014) in their deflection vs.

penetration simulations, yet extends it to arbitrary kinking angles. That is, the authors discovered that near the transition

region between deflection and penetration, the inactive mechanism begins to act as an energy sink due to competing process

zones and delays the active cracking mechanism further. In their work, they clearly illustrate that there exists an elevated
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load for deflection near the deflection-to-penetration transition (relative to the He and Hutchinson, 1989a predictions), and

conversely an elevated load for penetration near the penetration-to-deflection transition (relative to LEFM predictions). Far

from the deflection/penetration transition, the authors showed that the results are in near identical agreement with the

putative crack analysis of He–Hutchinson in the limit that the interface process zone dominates over the bulk, without

including kink sources in the simulation. Both of these trends are identical to what is observed here in Fig. 8 : For all phase

angles, in the limit that kinking conditions are preferred (dictated by ˜ �R < 1 ), the results are essentially identical to the

He–Hutchinson predictions but without including kink sources. 

Conversely, in the limit that delamination is largely preferred (dictated by ˜ �R � 1 ), LEFM conditions for interface delam-

ination are recovered over the full range of mode mix for all cases shown in Fig. 9 . This is a powerful result, as illustrated

in Fig. 9 : if one knows a priori that kinking is preferred, then the correct kink angle is selected naturally as an outcome

the simulation. Increasing the dimensionless ratio � i cz /� 
b 
cz simply increases the interface process zone relative to the bulk (as

shown in both Figs. 8 and 9 ), effectively lowering the transition from interface delamination to kinking. 

As mentioned, the results in Figs. 8 and 9 illustrate that near the transition between kinking and delamination, the

effective toughness of the active mechanism is increased due to damage in the inactive mechanism, which is not realistic

for brittle systems. While it would be difficult to show computationally, we hypothesize that continually increasing the

cohesive strength would virtually eliminate the competition between process zones and there would be no contribution

from the interface toughness to the bulk toughness in the transition region, and vice versa. With that said, there are many

material systems where it is known a priori that kinking occurs, in which case the cohesive zone model could be adjusted

to suppress delamination entirely. In this limit, as clearly illustrated in Fig. 9 , there is virtually no contribution from the

interface to the bulk toughness. This is in fact, quite realistic for brittle systems and illustrates that atomistic resolution is

not required provided the conditions are far from the transition. 

It is worth noting that, despite the approximate nature of the cohesive law for brittle systems, all of the present cal-

culations ensure small fracture process zones relative to the geometry. As such, while the details of the cohesive law are

likely to effect the details of process zone interactions, one expects that the trends with relative toughness and strength are

reasonable. 

5. Conclusions 

The results in this paper provide new information regarding the nucleation of kink cracks from an interface, and highlight

the role of process zone interactions. We have exploited the unbiased meshing routines of a standard Delaunay triangula-

tion, and demonstrated that at high enough mesh resolution one recovered mesh independent results. The efficient and

numerically stable time stepping approach has allowed for broad parameter studies in dimensionless space, effectively re-

lating the required mesh resolution, the cohesive parameters, and the applied macroscopic mode mixity into a compact set

of results that can be used for subsequent analysis. The key research findings are: 

• For fixed cohesive strength σ b / E b , and when the process zones for kinking and delamination are of equal size, the results

for both kink direction and critical load for kink nucleation are in excellent agreement with that of He and Hutchin-

son (1989b) . The length scale controlling convergence was shown to be the number of elements per unit length of the

fracture length, � cz /h e = E b �/ (σ 2 h e ) (as expected from previous analyses of cohesive zone models), and excellent results

were obtained for � cz / h e > ∼ 50. 

• The critical energy release rate is independent of the bulk cohesive strength σ b / E b , provided that the bulk fracture length

resolution is held constant as σ b / E b is changed and enough elements were contained within the process zone. 

• The competition between kink nucleation and interface delamination is not always in agreement with the results of He

and Hutchinson (1989b,c) due to interacting process zones, with relative process zone size 
�i σ

2 
b 

�b σ
2 
i 

= 

� i cz 

� b cs 

controlling the

transition. In terms of ˜ �R , the transition criterion between kink nucleation and delamination can be expressed as ˜ �R ≤
f 

(
ψ, 

� i cz 

� b cz 

)
, where f is linear with respect to mode-mix. In contrast, the model of He and Hutchinson for kinking from a

putative flaw, which implies that there is no interaction between the fracture process zones, suggests the transition is

defined by ˜ �R = 1 . 

• For all values of the process zone and the toughness ratio, and when kinking or interface delamination are largely pre-

ferred (e.g., ˜ �R � f 

(
ψ, 

� i cz 

� b cz 

)
for kinking and 

˜ �R � f 

(
ψ, 

� i cz 

� b cz 

)
for delamination), it can be generalized that the critical

loads for He–Hutchinson crack stability are very similar to those addressing kink nucleation. However, when neither

kinking nor delamination are strongly preferred, i.e. ˜ �R ∼ f 

(
ψ, 

� i cz 

� b cz 

)
, the critical loads for kink nucleation or delamina-

tion can be much higher due to additional dissipation in the adjacent process zone. 
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