
Received 30 November 2015; revised 18 July 2016; accepted 1 October 2016.
Date of publication 6 February 2017; date of current version 7 March 2017.

Digital Object Identifier 10.1109/LLS.2017.2652448

GillesPy: A Python Package for Stochastic
Model Building and Simulation

JOHN H. ABEL1,2, BRIAN DRAWERT3, ANDREAS HELLANDER4, AND LINDA R. PETZOLD3

1Department of Systems Biology, Harvard Medical School, Boston, MA 02115 USA
2Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
3Department of Computer Science, University of California, Santa Barbara, CA 93106 USA

4Department of Information Technology, Division of Scientific Computing, Uppsala University, SE-751 85 Uppsala, Sweden

This work was supported in part by NIH under Grants R01GM096873-01 and R01EB014877, in part by DOE under Grant DE-SC0008975, and in part by
the Institute for Collaborative Biotechnologies, U.S. Army Research Office, under Grant W911NF-09-0001.

(John H. Abel and Brian Drawert contributed equally to this work.)

ABSTRACT GillesPy is an open-source Python package for model construction and simulation of stochastic
biochemical systems. GillesPy consists of a Python framework for model building and an interface to the
StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms.
To enable intuitive model construction and seamless integration into the scientific Python stack, we present an
easy-to-understand action-oriented programming interface. Here, we describe the components of this package
and provide a detailed example relevant to the computational biology community.

INDEX TERMS Biological systems, open-source software, stochastic systems, systems biology.

I. INTRODUCTION

STOCHASTICITY has recently been recognized as an
essential feature of cellular processes. Extrinsic noise

may be caused by fluctuations in the physical environment or
properties of the individual cell (e.g., cell age or size), and
may be captured in dynamic models through time-varying
noise in model parameters. Intrinsic noise is caused by the
low copy numbers of genes, transcripts, and proteins, and spa-
tial inhomogeneity within the cell. Intrinsic noise in particular
has gained attention, due to its essential role in cellular pro-
cesses such as genetic toggle switches, noise-driven oscilla-
tion, cell polarization, and cell population dynamics [1]–[5].

Deterministic ordinary differential equation (ODE)models
of biochemical processes are useful and accurate in the high-
concentration limit, but fail to accurately capture stochastic
cellular dynamics, as they assume spatial homogeneity and
continuous biomolecule concentration. To address the issue
of quantized concentrations, we can replace deterministic
ODEs with a continuous-time discrete-space Markov pro-
cess, with the probability density of the system governed by
the chemical master equation (CME). The CME is expensive
to solve directly due to the curse of dimensionality, and
more often, Gillespie’s stochastic simulation algorithm (SSA)
method is used to generate a trajectory that is a statistically
correct sample of the probability density. An ensemble of
trajectories can be generated via a Monte Carlo method to

form a basis for statistical analysis, a process that can be com-
putationally intensive for large systems or large ensembles.

The original SSA has been extended to includemethods for
more efficient exact and approximate simulations, including
the optimized-direct method, composition-rejection method,
and τ -leaping [6]–[9]. For a recent review, see [10]. Many of
these improved methods have been distributed in the popular
StochKit2 software package [11]. StochKit2 provides an effi-
cient C-implementation of algorithms for discrete stochastic
simulation with a command-line interface. StochKit2 models
must be created in StochML format, and simulation trajecto-
ries are returned as CSV files.

With its wide variety of numerical libraries and statistical
packages, Python has become one of the most com-
monly used and effective languages in computational biol-
ogy. In order to optimize computational biology workflow
and simplicity in working with stochastic model build-
ing and simulation, we have created the GillesPy package.
GillesPy combines a Python-based model construction
toolkit with the computational efficiency of the StochKit2
C-based SSAs. GillesPy builds on StochKit2, and provides
many enhancements to the model construction and simula-
tion workflows. The model construction toolkit allows sim-
ple setup and parameterization of the CME. For stochastic
simulation, StochKit2 automatically inspects the model to
be simulated and selects the most efficient SSA formulation

VOLUME 2, NO. 3, SEPTEMBER 2016

2332-7685
 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 35

Abel et al.: GillesPy: A Python Package for Stochastic Model Building and Simulation

based on the model size (direct method for small and
composition-rejection method for large; see [11] for a com-
plete description). For deterministic simulation, GillesPy uses
the StochKitODE solver from the StochSS software suite,
which uses the CVODES solvers from the Sundials soft-
ware package [12]. The GillesPy package encapsulates the
entire process in Python, for seamless integration with other
computational packages or statistical analysis. GillesPy also
supports the import of SBML models.

In this letter, we describe the features and use of GillesPy,
and provide a relevant example for efficient simulation and
numerical stability analysis of a genetic toggle switch.

II. MECHANISTIC MODELING OF BIOLOGICAL SYSTEMS
GillesPy is designed to simulate dynamicmechanistic models
of biochemical networks. Inmechanisticmodels, the dynamic
behavior of the system is built up from individual interactions
between biochemical species. Typically, this is a finite num-
ber of species and reactions interacting probabilistically in a
well-stirred domain. This is in contrast to empirical models,
which focus on mathematical functions based on external
characteristics such as dose-response curves. In these models,
the external dynamic behavior of the system is captured by
a set of mathematical equations, in a ‘‘top-down’’ approach,
and as a result has reduced predictive power [13].Mechanistic
models, unlike empirical models, can be used to predict the
system’s future behavior, or its behavior under perturbation.
Mechanistic models differ in that they may be used to probe
hypotheses about the underlying reaction pathways rather
than simply the in–out behavior of a system. Often, compli-
cated reaction pathways may be simplified through the use
of Michaelis–Menten or Hill-type kinetic equations. GillesPy
does allow for Michaelis–Menten and Hill propensity func-
tions, as these types of functions are quite common. However,
we caution that the developer of a model must always be
careful to check the validity of the assumptions of thesemodel
reduction functions [14]–[16].

III. GillesPy DESIGN
GillesPy is designed to follow the ‘‘pythonic’’ object-oriented
principles, and thus, biochemical models in GillesPy are
constructed in an object-oriented fashion. To construct a new
model, you define a new class that extends a base model
gillespy.Model. The model constructor defines the param-
eters, species, and reactions of the biochemical system by
associating the like named objects (Parameter, Species, and
Reaction) from the gillespy Python package. Once defined,
users interact with their model by instantiating instances
objects of the model. These objects may be used to generate
simulation trajectories of the biochemical systems through
their .run() method. This command calls the StochKit2
C-solvers to simulate the provided model. StochKit2 selects
the computationally optimal algorithm for simulating each
model.

After a simulation is completed, the resulting trajectories
are returned as Numpy arrays into the Python interface, where

the data are available for processing by the large library of
scientific Python tools. Model fitting, statistical analysis, or
visualization is not directly handled within GillesPy, as there
are numerous mature software packages for these purposes
commonly used in the scientific Python community (e.g.,
DEAP [17] formodel fitting through evolutionary algorithms,
pandas [18] for statistical analysis, or Matplotlib [19] for
visualization). The following section demonstrates the build-
ing and simulation of a simple and biologically relevant
example.

FIGURE 1. Schematic showing the genetic switch model from [2].

IV. EXAMPLE: A BISTABLE GENETIC SWITCH
Bistable stochastic genetic switches have been shown to play
important roles in cellular differentiation [20]. As the system
has two equilibria, deterministic simulations fail to accurately
capture the random switching between states. Fig. 1 is a
diagram of the genetic toggle switch, showing how each of
the two promoters expresses a gene that is the inhibitor for
the opposite promoter. Here, we demonstrate using GillesPy
to simulate a bistable switch from [2]. The deterministic
equations comprising this switch are

dU
dt
=

a1
1+ V β

− U (1)

dV
dt
=

a2
1+ Uγ

− V (2)

where U and V are corepressor concentrations. Here, the
parameters a1 and a2 are synthesis rates of U and V , respec-
tively. Parameters β and γ represent the cooperativity of each
repressor. We create a stochastic model from these equations
by converting them to four stochastic reaction channels: syn-
thesis and degradation of U and V , respectively

∅

α1
1+[V]β
−−−−−→ U , U

µ[U]
−−−−−→ ∅ (3)

∅

α2
1+[U]γ
−−−−−→ V , V

µ[V]
−−−−−→ ∅. (4)

We note that this simple model does not explicitly differenti-
ate between transcription and translation of U and V .

Constructing this model in Python begins with creating
a model object by inheriting from GillesPy’s model class

c l a s s B i s t a b l eTogg l e Sw i t c h (g i l l e s p y . Model) .

We create and add parameters within this object by

a1 = g i l l e s p y . Pa r ame t e r (‘ a1 ’ , e x p r e s s i o n =4)
s e l f . a dd_pa r ame t e r ([a1 , . . .])

and equivalently add species and reactions. We then simulate
this model by invoking

36 VOLUME 2, NO. 3, SEPTEMBER 2016

Abel et al.: GillesPy: A Python Package for Stochastic Model Building and Simulation

model = B i s t a b l eTogg l e Sw i t c h ()
r e s u l t s = model . run () \ ! .

A single simulation showing U and V populations using
both stochastic and deterministic solvers over the course of
hundreds is shown in Fig. 2.

FIGURE 2. Stochastic and deterministic simulation of the genetic toggle
switch with GillesPy. Bistability is evident in the stochastic model of this
switch (with β = γ = 2.0).

Here, the difference between stochastic and determin-
istic results is visually evident. For identical initial pop-
ulations of U and V , the deterministic system evolves
to a metastable state with equal U and V . For nonidenti-
cal initial conditions, the system evolves to a stable state
where only the species with a higher initial population
are produced (not shown). Meanwhile, the stochastic sim-
ulation of this system shows dynamic switching between
U -dominated and V -dominated states, as seen in [2], regard-
less of the choice of initial condition. Spontaneous switching
between stable states is never observed under deter-
ministic conditions. The full code for this model and
simulation is available at http://github.com/GillesPy/gillespy/
as GeneticToggleSwitch.ipynb.

Exploringmodel dynamics via a parameter sweep is a com-
mon task in computational biology. To perform a simple
parameter sweep, we allowed our model to accept parameter
arrays and assign these values to parameters upon initializa-
tion of the model object. Thus, GillesPy was used to algo-
rithmically generate, simulate, and analyze model dynamics
without forcing the user to manually create or parameterize
different models. Instead, the user can simply use a loop
(or a parallel loop) to parameterize a dynamically generated

model, perform simulations, analyze simulation trajectories,
and return summary statistics.

As noted in [2], the mono- or bistability of the switch
system is dependent on the values of cooperativity parameters
(β and γ), and promoter strengths (αs). Equations 1 and 2
yield stable solutions where (dU/dt) = (dV/dt) = 0.
For low cooperativity, this results in a single monostable
steady state. Increased cooperativity results in an increased
nonlinearity and sigmoidal switch-like behavior of the pro-
moter [21]. The sigmoidal shape of promoter kinetics results
in two stable states, and one metastable state for the sys-
tem. For this example, we investigated how the cooperativity
parameter affects bistability by repeatedly generating and
simulating the stochastic model with parameters β = γ ∈

[0, 4.0]. Fig. 3 demonstrates the results of this process for
varying β and γ in increments of 0.1. For our example,
α1 = α2 = 10.0, and a bimodal distribution of states first
appeared at approximately β = γ > 1.3, indicating that
this is where the transition to bistability occurs. This critical
bistability threshold would increase with a lower α, as lower
(or unbalanced) promoter activity results in less switch-like
behavior.

V. PARALLEL PROCESSING WITH MOLNs
GillesPy has been integrated with, and is distributed with
MOLNs, a cloud computing platform for computational sys-
tems biology that focuses on reproducibility and scalabil-
ity [22]. MOLNs allow computational scientists to easily
create compute clusters using cloud computing resources.
It further provides methods for automatically parallelizing
workflows for computing large ensembles of trajectories or
for conducting global parameter sweeps. This is combined
with a facility for efficient postprocessing of the resulting
stochastic trajectories, designed to maximize data locality by
distributing the code to worker nodes where the data are gen-
erated. This facility is built to utilize the simple-to-use pro-
gramming paradigm of MapReduce [23]. The user interface
for this system is an interactive Web-based environment, the
IPython Notebook [24]. These computable documents com-
bine code, equations, narrative text, visualizations, images,
as well as other media. Integration with MOLNs provides

FIGURE 3. Investigating bistability through β and γ . (a) Histograms of state (U − V) for three selections of cooperativity parameters β and γ .
(b) Heatmap of state probability for a range of β and γ in increments of 0.1. A bimodal state distribution first appears when β = γ > 1.3.
Simulations were performed for 25 000 s and sampled in increments of 1 s for each parameterization. Parallelization through IPython enables
this computationally intensive simulation to be performed on an 8-CPU desktop machine in approximately 5 min.

VOLUME 2, NO. 3, SEPTEMBER 2016 37

Abel et al.: GillesPy: A Python Package for Stochastic Model Building and Simulation

GillesPy users with a simple and powerful interface to scale
their computational workflows using public or private cloud
computing infrastructures.

VI. CONCLUSION
GillesPy is an open source package for stochastic model
building and simulation, and a Python interface to
the StochKit2 solvers. GillesPy runs on Linux/Unix or
Mac OS X. It is freely available under GPL version 3.
Installation instructions and downloads are available at
http://github.com/GillesPy/gillespy. We welcome both bug
reports and requests for assistance on our Github page.

REFERENCES
[1] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, ‘‘Stochastic gene

expression in a single cell,’’ Sci. Signal., vol. 297, no. 5584, pp. 1183–1186,
2002.

[2] T. S. Gardner, C. R. Cantor, and J. J. Collins, ‘‘Construction of a
genetic toggle switch in Escherichia coli,’’ Nature, vol. 403, no. 6767,
pp. 339–342, 2000.

[3] C. H. Ko et al., ‘‘Emergence of noise-induced oscillations in the cen-
tral circadian pacemaker,’’ PLoS Biol., vol. 8, no. 10, p. e1000513,
2010.

[4] M. J. Lawson, B. Drawert, M. Khammash, L. Petzold, and
T.-M. Yi, ‘‘Spatial stochastic dynamics enable robust cell polarization,’’
PLoS Comput. Biol., vol. 9, no. 7, p. e1003139, 2013.

[5] P. C. St. John, S. R. Taylor, J. H. Abel, and F. J. Doyle, III, ‘‘Amplitude
metrics for cellular circadian bioluminescence reporters,’’ Biophys. J.,
vol. 107, no. 11, pp. 2712–2722, 2014.

[6] Y. Cao, H. Li, and L. Petzold, ‘‘Efficient formulation of the stochastic
simulation algorithm for chemically reacting systems,’’ J. Chem. Phys.,
vol. 121, no. 9, p. 4059, 2004.

[7] Y. Cao, D. T. Gillespie, and L. R. Petzold, ‘‘Adaptive explicit-implicit tau-
leaping method with automatic tau selection,’’ J. Chem. Phys., vol. 126,
no. 22, pp. 1–27, 2007.

[8] D. T. Gillespie, ‘‘Approximate accelerated stochastic simulation of
chemically reacting systems,’’ J. Chem. Phys., vol. 115, no. 4,
pp. 1716–1733, 2001.

[9] A. Slepoy, A. P. Thompson, and S. J. Plimpton, ‘‘A constant-time kinetic
Monte Carlo algorithm for simulation of large biochemical reaction net-
works,’’ J. Chem. Phys., vol. 128, no. 20, p. 05B618, 2008.

[10] D. T. Gillespie, A. Hellander, and L. R. Petzold, ‘‘Perspective:
Stochastic algorithms for chemical kinetics,’’ J. Chem. Phys., vol. 138,
no. 17, p. 170901, 2013.

[11] K. R. Sanft et al., ‘‘StochKit2: Software for discrete stochastic simulation
of biochemical systems with events,’’ Bioinformatics, vol. 27, no. 17,
pp. 2457–2458, 2011.

[12] R. Serban and A. C. Hindmarsh, ‘‘CVODES: The sensitivity-enabled ODE
solver in SUNDIALS,’’ in Proc. ASME Int. Design Eng. Tech. Conf., 2005,
pp. 257–269.

[13] A. K. Thakur, ‘‘Model: Mechanistic vs empirical,’’ in New Trends in
Pharmacokinetics. New York, NY, USA: Springer, 1991, pp. 41–51.

[14] M. J. Lawson, L. Petzold, and A. Hellander, ‘‘Accuracy of the
Michaelis–Menten approximation when analysing effects of molecular
noise,’’ J. Roy. Soc. Interface, vol. 12, no. 106, p. 20150054, 2015.

[15] R. Grima, ‘‘Noise-induced breakdown of the Michaelis-Menten equation
in steady-state conditions,’’ Phys. Rev. Lett., vol. 102, no. 21, p. 218103,
2009.

[16] P. Thomas, A. V. Straube, and R. Grima, ‘‘Communication: Limitations
of the stochastic quasi-steady-state approximation in open biochemical
reaction networks,’’ J. Chem. Phys., vol. 135, no. 18, p. 181103, 2011.

[17] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, ‘‘DEAP: Evolutionary algorithms made easy,’’ J. Mach. Learn.
Res., vol. 13, pp. 2171–2175, Jul. 2012.

[18] W. McKinney, ‘‘Data structures for statistical computing in python,’’ in
Proc. 9th Python Sci. Conf., vol. 445, pp. 51–56, Jun. 2010.

[19] J. D. Hunter, ‘‘Matplotlib: A 2D graphics environment,’’Comput. Sci. Eng.,
vol. 9, no. 3, pp. 99–104, 2007.

[20] J. E. Ferrell, Jr., ‘‘Self-perpetuating states in signal transduction: Positive
feedback, double-negative feedback and bistability,’’ Current Opinion Cell
Biol., vol. 14, no. 2, pp. 140–148, 2002.

[21] U. Alon, An Introduction to Systems Biology: Design Principles of Biolog-
ical Circuits. Boca Raton, FL, USA: CRC Press, 2006.

[22] B. Drawert, M. Trogdon, S. Toor, L. Petzold, and A. Hellander, ‘‘MOLNs:
A cloud platform for interactive, reproducible, and scalable spatial stochas-
tic computational experiments in systems biology using PyURDME,’’
SIAM J. Sci. Comput., vol. 38, no. 3, pp. C179–C202, 2016.

[23] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[24] F. Pérez and B. E. Granger, ‘‘IPython: A system for interactive scientific
computing,’’ Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29, 2007.

38 VOLUME 2, NO. 3, SEPTEMBER 2016

