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The weighted stochastic simulation algorithm �wSSA� was developed by Kuwahara and Mura
�J. Chem. Phys. 129, 165101 �2008�� to efficiently estimate the probabilities of rare events in
discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy
in the estimation of the probability of the rare event. The original algorithm biases the reaction
selection step with a fixed importance sampling parameter. In this paper, we introduce a novel
method where the biasing parameter is state-dependent. The new method features improved
accuracy, efficiency, and robustness. © 2010 American Institute of Physics.
�doi:10.1063/1.3493460�

I. INTRODUCTION

The stochastic simulation algorithm �SSA� is widely
used for the discrete stochastic simulation of chemically re-
acting systems. Although ensemble simulation by SSA and
its variants has been successful in the computation of prob-
ability density functions in many chemically reacting sys-
tems, the ensemble size needed to compute the probabilities
of rare events can be prohibitive.

The weighted SSA �wSSA� was developed by Kuwahara
and Mura1 to efficiently estimate the probabilities of rare
events in stochastic chemical systems. The wSSA was devel-
oped to estimate p�x0 ,� ; t�, which is the probability that the
system, starting at x0, will reach any state in the set of states
� before time t. The estimation procedure is a carefully bi-
ased version of the SSA, which in theory can be used to
estimate any expectation of the system. However, it is im-
portant to note that, in contrast to SSA trajectories, wSSA
trajectories should not be regarded as valid representations of
the actual system behavior.

The key element in the wSSA is importance sampling
�IS�, which is used to bias the reaction selection procedure.
The wSSA introduced in Ref. 1 uses a fixed constant as the
IS parameter to multiply the original propensities. In this
paper, we introduce a state-dependent IS method that has
several advantages over the original fixed parameter IS
method. The new method features improved accuracy, effi-
ciency, and robustness.

In Sec. II we describe the current status of the wSSA. In
Sec. III we present the new state-dependent biasing method.
We apply the new biasing method to several examples in

Sec. IV and compare its performance with that of the original
wSSA. In Sec. V we summarize the results and discuss areas
for future work.

II. CURRENT STATUS OF THE WSSA

In this section, we briefly describe the weighted stochas-
tic simulation algorithm. A more detailed explanation of the
algorithm can be found in Refs. 1 and 2.

To begin, consider a well-stirred system of molecules of
N species �S1 , . . . ,SN� which interact through M reaction
channels �R1 , . . . ,RM�. We specify the state of the system at
current time t by the vector x= �x1 , . . . ,xN�, where xi is the
number of molecules of species Si. The propensity function
aj of reaction Rj is defined so that aj�x�dt is the probability
that one Rj reaction will occur in the next infinitesimal time
interval �t , t+dt�, given that its current state is X�t�=x. The
propensity sum a0�x� is defined as a0�x�=� j=1

M aj�x�. The
SSA is based on the fact that the probability that the next
reaction will carry the system to x+v j, where v j is the state
change vector for reaction j, between times t+� and t+�
+�� is

Prob�x → x + v j in �t + �,t + � + d���

= a0�x�e−a0�x��d� �
aj�x�
a0�x�

. �1�

In the direct method implementation of the SSA, we choose
�, the time to the next reaction, by sampling an exponential
random variable with mean 1 /a0�x�. The next reaction index
j is chosen with probability aj�x� /a0�x�.

In the wSSA the time increment � is chosen as we would
in the SSA, but we bias the selection of reaction index j: for
that we use, instead of the true propensities aj�x�, an alter-
nate set of propensities bj�x�. We then correct the resulting
bias with appropriate weights wj�x�. In the original wSSA,
bj�x�=� jaj�x�, where � j �0 is called the importance sam-
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pling parameter for Rj. Choosing � j �1 will make Rj more
likely to be selected while choosing � j �1 will have the op-
posite effect. When � j =1 for all j, i.e., we do not bias the
reaction selection process, the wSSA simply turns into the
SSA. Thus, in the wSSA, the right side of Eq. �1� becomes

a0�x�e−a0�x��d� �
bj�x�
b0�x�

, �2�

where b0�x�=� j=1
M bj�x�. This biased probability can be re-

stored by multiplying Eq. �2� by the weighting factor,

wj�x� =
aj�x�/a0�x�
bj�x�/b0�x�

. �3�

Together, we have

Prob�x → x + v j in �t + �,t + � + d���

= a0�x�e−a0�x��d� �
bj�x�
b0�x�

�
aj�x�/a0�x�
bj�x�/b0�x�

. �4�

We can extend this statistical weighting of a single-reaction
jump to an entire trajectory by using the memoryless Mar-
kovian property—each jump depends on its starting state but
not on the history of the state; therefore, the probability of a
single trajectory is the product of all the individual jumps
that make up the trajectory. Since each jump in the wSSA
requires a correction factor of wj�x� in Eq. �3�, the entire
trajectory needs to be weighted by w=	 jwj�x�.

The aim of the wSSA is to estimate

p�x0,�;t� 
 the probability that the system,

starting at time 0 in state x0,

will first reach any state in the set �

before t . �5�

It is important to note that p�x0 ,� ; t� is not the probability
that the system will reach some state in � at time t, but will
have reached that set at least once before time t.

Estimating p�x0 ,� ; t� with the SSA is straightforward.
After running n simulations of SSA, we record mn, the num-
ber of trajectories that reached any state in � before time t.
Since each trajectory in the ensemble is equally statistically
significant, we can estimate p�x0 ,� ; t� as mn /n, which ap-
proaches the true probability as n→�. While estimating
p�x0 ,� ; t� with the SSA is a simple procedure, an extremely
large n is required to obtain an estimate with low uncertainty
when p�x0 ,� ; t�	1.

Knowing the uncertainty of an estimate is crucial be-
cause it provides quantitative information about the accuracy
of the estimate. The one standard deviation uncertainty is
given by 
 /�n, where 
 is the square root of the sample
variance. For sufficiently large n, the true value is 68% likely
to fall within one-standard-deviation of the estimate �within
the range of + /−
 /�n�. Increasing the uncertainty interval
by a factor of 2 raises the confidence level to 95%; increas-
ing it by a factor of 3 gives us a confidence level of 99.7%.
Therefore, it is desirable to obtain an estimate with a small
uncertainty �i.e., small sample variance� because it signifies
that the estimate is close to the true probability.

For unweighted SSA trajectories, the relative uncertainty
is �see Ref. 2�

relative uncertainty 

uncertainty

mn/n
= ��1 − �mn/n�

mn
.

�6�

When p�x0 ,� ; t�	1 �and mn /n	1�, Eq. �6� reduces to

relative uncertainty � �� 1

mn
. �7�

This shows that to we need to observe 10 000 successful
trajectories to achieve 1% relative accuracy. Since the aver-
age rate of observing a state in � using SSA is 1 / p�x0 ,� ; t�,
we need about 1 / p�x0 ,� ; t��10 000 SSA simulations, which
quickly becomes computationally infeasible as p�x0 ,� ; t� de-
creases, especially for large systems.

The wSSA resolves the inefficiency of the SSA by as-
signing a different weight to every trajectory. In estimating
the same probability with a given n, we can observe many
more successful trajectories using the wSSA than the SSA.
Each successful trajectory is likely to have a very small
weight, which results from using an alternate set of propen-
sities b�x�, instead of the original propensities a�x�. Since
each trajectory in the wSSA has a different weight, we rede-
fine mn /n
mn

�1� /n
�1 /n��k=1
n wk, where wk=0 if the kth tra-

jectory did not reach � before time t. We also keep track of
the second moment of the trajectory weights, mn

�2� /n

�1 /n��k=1

n wk
2 in order to calculate the sample variance,

given by 
2= �mn
�2� /n�− �mn

�1� /n�2. Note that different algo-
rithms, such as described in Ref. 3, can be used to compute a
running variance to avoid cancellation error.

The current algorithm can be seen in Fig. 1.

III. THE STATE-DEPENDENT BIASING METHOD

The key element of the wSSA is importance sampling,
which is a general technique often used with a Monte Carlo
method to reduce the variance of an estimate of interest. The
rationale for using this technique is that not all regions of the
sample space have the same importance in simulation. When
we have some knowledge about which sampling values are
more important than others, we can use important sampling
to improve efficiency as well as accuracy. The technique in-
volves choosing an alternative distribution from which to
sample the random numbers. This alternative distribution is
chosen such that the important samples are chosen more fre-
quently than they are in the original distribution. After using
the alternative distribution to sample, a correction is applied
to ensure that the new estimate is unbiased. The wSSA em-
ploys this technique in the reaction selection procedure. The
next reaction is chosen using b�x� �12° in Algorithm 1�, and
the bias is corrected with an appropriate weight,
�aj�x� /bj�x��� �b0�x� /a0�x�� �13°�. Mathematical details of
importance sampling and Monte Carlo averaging can be
found in Appendix of Ref. 2.

The current method for selecting b functions is to simply
multiply the original propensities by a positive scalar � j, i.e.,
bj�x�=� jaj�x�. The fixed multiplier facilitates the wSSA
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implementation, but there are several associated drawbacks.
The most obvious drawback is increased variance due to
over- and underperturbations. The changes in species popu-
lation during the simulation cause the relative propensity of
reaction j, aj�x� /a0�x�, to fluctuate as well, changing the
probability of selecting the jth reaction at each time step. If
� j is constrained to be a constant for all possible values of
aj�x� /a0�x�, then the optimal value for � j would be the one
that perturbed aj “just right” for most values of aj�x�. How-
ever, if aj�x� /a0�x� varied widely, then � j would over- or
underperturb aj�x� near the extreme values of aj�x� /a0�x�. A
related drawback concerns a narrow parameter space of � j

that produces an accurate estimate for p�x0 ,� ; t�. If
aj�x� /a0�x� reaches values near 0 as well as 1 during a single
simulation, then it is impossible to avoid both over- and un-
derperturbations because the jth importance sampling param-
eter can have only a single value which can avoid only one
of the two cases. Thus, there will be very few values for � j

that produce an accurate estimate. Unless the initial value for
� j is set near these few values, the resulting estimate is guar-
anteed to have high variance. This unreliable estimate is not
useful in deciding how to perturb � j to obtain an estimate
with lower variance �step 19° of the Algorithm 1�. Conse-
quently, one may waste a lot of computational power search-
ing for a value of � j that produces an accurate estimate.

Since the above problems are due to fluctuations in the
propensity, which is caused by fluctuations in population
size, an intuitive solution would be to vary � j according to
the current state x. Although an arbitrary function may be
used to achieve such goal, we proceed as follows.

First, we partition reactions into three groups:GE, GD,
and GN. We define GE as the set of reactions that are to be
encouraged. This set may include reactions that directly or
indirectly increase the likelihood of rare event observation.
The IS parameters for this group have values greater than 1
to increase the reaction firing frequency. Similarly we define
GD as the set of reactions that are to be discouraged. The IS
parameters for GD will be between 0 and 1, to decrease the
likelihood of firing a reaction in GD. All reactions that do not
influence the rare event observation are grouped into GN.
Since the reactions in GN do not need to be perturbed, the IS
parameters for these reactions are set to 1. We note that in
practice, optimal partitioning of the reactions requires
knowledge of the system, which may not always be avail-
able.

Second, we define the relative propensity of reaction j as
� j�x�
aj�x� /a0�x�. � j�x� is a fractional propensity between
0 and 1 that roughly indicates the likelihood of choosing Rj

as the next reaction from the current state x. Since the value
of � j at each time step gives a qualitative indication of the
amount of perturbation needed by Rj, the new biasing
method will define � j to be a function of � j.

When � j→0, the probability of choosing Rj as the next
reaction decreases. Thus, for Rj �GE, more encouragement
is needed as its relative propensity decreases. However,
when � j �1, Rj is likely to be selected as the next reaction
without any additional encouragement. In this case, taking
bj�x��aj�x� will overperturb the system and thus increase
the variance in the estimate. Therefore, for Rj �GE, there
must be a value of � j at which no further encouragement is
applied. Similarly for Rj �GD, no further discouragement is

Algorithm 1 wSSA procedure using constant IS parameters

1◦ m
(1)
n ← 0,m

(2)
n ← 0

2◦ for k=1 to n do

3◦ s ← 0,x ← x0, w ← 1

4◦ evaluate all ai(x) and bi(x); calculate a0(x) and b0(x)

5◦ while s ≤ t do

6◦ if x∈ ε then

7◦ m
(1)
n ← m

(1)
n + w, m

(2)
n ← m

(2)
n + w2

8◦ break out of the while loop

9◦ end if

10◦ generate two unit-interval uniform random numbers r1 and r2

11◦ τ ← a−1
0 (x) ln(1/r1)

12◦ j ← smallest integer satisfying
∑j

i=0 bi(x) ≥ r2b0(x).

13◦ w ← w × (aj(x)/bj(x))× (b0(x)/a0(x))

14◦ s ← s+ τ, x ← x+ νj

15◦ update ai(x) and bi(x); recalculate a0(x) and b0(x)

16◦ end while

17◦ end for

18◦ σ2 =
(
m

(2)
n /n

)
−
(
m

(1)
n /n

)2

19◦ repeat from 1 using different b functions to minimize σ2

20◦ estimate p (x0, ε; t) = m
(1)
n /n with a 68% uncertainty of ±σ/

√
n

FIG. 1. The weighted stochastic simulation algorithm using constant importance sampling parameters.
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necessary when � j �0. The value of � j for which we stop the
perturbation is defined as � j

0, i.e., � j =1 for � j � j
0�Rj

�GE� and for � j �� j
0�Rj �GD�. Lastly for Rj �GD, more

discouragement is necessary as � j increases. This corre-
sponds to � j→0 as � j→1.

Based on above considerations, we take the jth IS pa-
rameter of Rj �GE as

� j�� j�x�� = 1 if � j�x�  � j
0,

gj�� j�x�� if � j�x� � � j
0 � �8�

where gj�� j� is a parabolic function of � j that has the follow-
ing properties:

gj�0� = � j
max,

gj�� j
0� = 1, �9�

gj��� j
0� = 0.

For Rj �GD, we select � j as the following:

� j�� j�x�� = � 1 if � j�x� � � j
0

1

hj�� j�x��
if � j�x� � � j

0, � �10�

where hj�� j� is a parabolic function of � j that has the follow-
ing properties:

hj�1� = � j
max,

hj�� j
0� = 1, �11�

hj��� j
0� = 0.

Graphical representations of the function � j�� j�x�� are illus-
trated in Fig. 2, for Rj �GE and Rj �GD.

There are two parameters, � j
max and � j

0, for each
� j�� j�x��. � j

max is defined as the parameter associated with the
maximum perturbation allowed on the jth reaction. Given
the values for � j

max and � j
0, gj�� j�, and hj�� j� as defined in

Eqs. �9� and �11� are unique parabolas whose formula is

gj�� j� = �� j
max − 1

�� j
0�2 ��� j

0 − � j�2 + 1 �if Rj � GE� ,

�12�

hj�� j� = � � j
max − 1

�� j
0 − 1�2��� j

0 − � j�2 + 1 �if Rj � GD� .

An important point to keep in mind is that perturbing
aj�x� by an unnecessarily large amount not only potentially
increases the number of rare event observations but also in-
creases the variance of an estimate as well. We want to ob-
serve enough rare events to calculate necessary statistics, yet
at the same time to minimize the variance. The advantage of
using � j�� j� is that a user has the freedom to choose � j

max and
� j

0, whose optimal values are problem dependent. Currently,
there is no fully automated method to find the optimal value
for the two parameters. For the examples in Sec. IV, we first
choose a value for � j

0 by assigning a value near 0.15�0.05
�Rj �GD� or 0.55�0.05 �Rj �GE�. We then vary � j

max to find
an estimate with the lowest parameter.

After incorporating the new strategy for choosing � j, we
obtain the algorithm in Fig. 3.

IV. NUMERICAL EXAMPLES

In this section we illustrate our new biasing algorithm
with three examples, comparing the results with those ob-
tained using the original algorithm. As we will see, the new
biasing method increases the computational speed not only
relative to the SSA but also relative to the scheme used in the
original wSSA papers.1,2 The measure used to calculate gain
in computational efficiency is the same as in Ref. 2, given by

g 

nSSA

nwSSA , �13�

where nSSA and nwSSA are the numbers of runs in each of the
two methods required to achieve comparable accuracy.

A. Two-state conformational transition

Consider the following system:

A�
k2

k1

B, with k1 = 0.12 and k2 = 1. �14�

The initial state is set to x0= �100 0�, i.e., all 100 mol-
ecules are initially in A form. This model concerns two con-
formational isomers—isomers that can be interconverted by
rotation about single bonds. For this system we are interested
in p�0,30;10� for B; that is, the probability that given no B

FIG. 2. �a� A graphical representation of � j�� j�x�� for Rj �GE. �b� A graphi-
cal representation of � j�� j�x�� for Rj �GD.
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molecules at time 0, its population reaches 30 before time
10. The steady-state population of B for the rate constants in
Eq. �14� is approximately 11. The rare event description of
x2=30 is about three times its steady-state value, so we ex-
pect its probability to be very small. Because this is a simple
closed system, it is possible to calculate the exact probability
of p�0,30;10� using a generator matrix �or a probability
transition matrix�.4 Using MATLAB’s matrix exponential func-
tion, we have calculated p�0,30;10�=1.191�10−5.

Since the steady-state population of B is much less than
the rare event description of 30, it is necessary to bias the
system so that the population of B increases. This can be
achieved by either encouraging R1 or discouraging R2. Note

that changing the propensities of both reactions is not neces-
sary, as only the relative ratio of the two propensities matters
in reaction selection.

For simulation of system �14� with the original wSSA,
R1 was encouraged with different values of �1�1. Thus, the
b functions are given by

b1�x� = �1a1�x�, b2�x� = a2�x� . �15�

To find the �1 that produces the minimum variance, �1 was
varied from 1.05 to 1.65 in increments of 0.05. Of these
values, �1=1.4 produced the lowest variance. Taking n
=107 and �1=1.4, the following estimate� twice the uncer-
tainty �95% confidence interval� was obtained:

Algorithm 2 wSSA procedure using state-dependent IS parameters

1◦ Partition all reactions into three groups: GE , GD, and GN

2◦ for all Rj ∈ GE do

3◦ choose ρj
0 ∈ [0.5, 0.6]

4◦ choose the initial value for γmax
j

5◦ end for

6◦ for all Rj ∈ GD do

7◦ choose ρj
0 ∈ [0.1, 0.2]

8◦ choose the initial value for γmax
j

9◦ end for

10◦ for all Rj ∈ GN do

11◦ γj = 1 {bj(t) = aj(t) for ∀ t}
12◦ end for

13◦ m
(1)
n ← 0,m

(2)
n ← 0

14◦ for k=1 to n do

15◦ s ← 0,x ← x0, w ← 1

16◦ evaluate all ai(x) ; calculate a0(x)

17◦ calculate ρj(x) for all Rj ∈ GE and all Rj ∈ GD

18◦ calculate all γj(x); evaluate bi(x); calculate b0(x)

19◦ while s ≤ t do

20◦ if x∈ ε then

21◦ m
(1)
n ← m

(1)
n + w, m

(2)
n ← m

(2)
n + w2

22◦ break out of the while loop

23◦ end if

24◦ generate two unit-interval uniform random numbers r1 and r2

25◦ τ ← a−1
0 (x) ln(1/r1)

26◦ j ← smallest integer satisfying
∑j

i=0 bi(x) ≥ r2b0(x).

27◦ w ← w × (aj(x)/bj(x))× (b0(x)/a0(x))

28◦ s ← s+ τ, x ← x+ νj

29◦ update ai(x) and ρj(x)

30◦ recalculate γj(x); update bi(x); recalculate b0(x)

31◦ end while

32◦ end for

33◦ σ2 =
(
m

(2)
n /n

)
−

(
m

(1)
n /n

)2

34◦ repeat from 13 using different γmax
j values or from 1 using different b functions to minimize σ2

35◦ estimate p (x0, ε; t) = m
(1)
n /n with a 68% uncertainty of ±σ/

√
n

FIG. 3. The weighted stochastic simulation algorithm using state-dependent importance sampling parameters. Changes from Fig. 1 are highlighted in red.
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p�0,30;10� = 1.21 � 10−5 � 0.06 � 10−5. �16�

In the new biasing method, we replicated the reaction parti-
tion as done in the original system, i.e., GE= �R1�, GD= �� �,
GN= �R2�. After assigning �1

0=0.5, �1
max was varied from 8 to

34 in increments of 2. Using n=105 and the optimal �1
max

=20, the following estimate was obtained with a 95% confi-
dence interval:

p�0,30;10� = 1.190 � 10−5 � 0.011 � 10−5. �17�

Although both estimates contain the true probability in their
95% confidence interval, the new biasing method required
only 1% of the total number of simulations used in the origi-
nal algorithm. Furthermore, the new biasing method pro-
duced a more accurate estimate with a much tighter confi-
dence interval. Figure 4 shows a side by side comparison of

2 for p�x0 ,30;10� using both biasing methods. We note that
the new algorithm not only decreased the variance by a fac-
tor of 1000 but also produced an accurate estimate with a
larger range of �1

max. Given n=107, the previous algorithm
was able to produce an accurate estimate with a narrow range

of �1� �1.10 1.60�. In contrast, any estimate from using the
new biasing method with �1

max� �8 34� produced more ac-
curate estimate than Eq. �16�.

Using the SSA to obtain an estimate with similar vari-
ance as in Eq. �17� would require a much greater computa-
tional expense. For our particular simulation, the calculated
efficiency gain of the new algorithm over the SSA was 4.1
�104, i.e., it would have taken a computer 4.1�104 times
longer to obtain a similar result using the unweighted SSA.

B. Single species production and degradation

Our next example is taken from Refs. 1 and 2 and con-
sists of the following two reactions:

S1→
k1

S1 + S2, S2→
k2

� with k1 = 1 and k2 = 0.025.

�18�

The initial state of the system is x0= �1 40�, and we are
interested in p�40,80;100� for S2—the probability that x2

reaches 80 before time 100 given x2=40 at t=0. This par-
ticular reaction set is well-studied, and it is known that the
population of S2 in its steady-state follows the Poisson dis-
tribution with mean �and variance� of k1x1 /k2. Since the ini-
tial state of S2 is also its steady-state mean, x2 is expected to
fluctuate around 40 with a standard deviation of 6.3. To ad-
vance the system toward the rare event, R1 was chosen to be
encouraged in both of the following wSSA simulations.

First, 4�107 wSSA simulations were performed for
each �1 ranging from 1.45 to 2.25 in increment of 0.05. The
following estimate was obtained using the optimal �1=1.85:

p�40,80;100� = 2.985 � 10−7 � 0.020 � 10−7

�95% confidence� .
�19�

We repeated the simulation with the new state-dependent bi-
asing method which encouraged R1 as was done with the
original algorithm. After running only 105 simulations with
�1

0=0.6 and different values of �1
max, we obtained the follow-

ing result using the optimal �1
max=14:

p�40,80;100� = 2.986 � 10−7 � 0.019 � 10−7

�95% confidence.�
�20�

Figure 5 shows a side by side comparison of the variance
using both biasing methods. As is shown, the biasing method
with a state-dependent importance sampling parameter
yielded estimates with variance two orders of magnitude less
than that produced using the constant parameter importance
sampling parameter. We also note that the latter simulation
required 100 times fewer simulations to obtain a result with
equivalent accuracy and uncertainty �20�, which is a signifi-
cant improvement over Eq. �19�. Furthermore, the variance
of an estimate generated by using any �1

max� �4,26� is lower

FIG. 4. �a�. A plot of 
2 vs �1 obtained in wSSA runs of reaction Eq. �14�
using the algorithm in Fig. 1. Here we estimate p�0,30;10� for B. Each
vertical bar shows the estimated mean and one standard deviation of 
2 at
that �1 value as found in four n=107 runs. �b� A plot of 
2 vs �1

max obtained
from using the algorithm in Fig. 3. Each vertical bar was obtained from four
n=105 runs.
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than the variance of estimate �19�. Lastly, the computational
efficiency gain of Eq. �20� over SSA was 3.1�106, which is
more than 100 times the gain from using the original biasing
method.

C. Modified yeast polarization

Our last example concerns pheromone induced
G-protein cycle in Saccharomyces cerevisia5 with a constant
population of ligand, L=2. The model description was modi-
fied from Ref. 5, such that the system does not reach equi-
librium. There are six species in this model, x
= �R G RL Ga Gbg Gd� and eight reactions as follows:

R1: � →
kRs

R ,

R2:R→
kRd

� ,

R3:L + R →
kRLL

RL + L ,

R4:RL→
kR

R ,

�21�

R5:RL + G→
kGa

Ga + Gbg,

R6:Ga→
kGd

Gd,

R7:Gd + Gbg→
kG

G ,

R8: � →
kRL

RL .

The kinetic parameters are

kRs
= 0.0038, kRd

= 4.00e − 4, kRLL = 0.042,

kR = 0.0100, kGa
= 0.011, kGd

= 0.100,

kG = 1.05e + 3, kRL = 3.21.

The state representing the initial condition is x0

= �50 50 0 0 0 0�—there are 50 molecules of R and G, but
none of the other species are initially present. For this sys-
tem, we define the rare event to be p�x0 ,�Gbg

;20�, where �Gbg
is the set of all states x for which the population of Gbg is
equal to 50. We first partition the reactions as GE= �� �,
GD= �R6�, and GN= �R1 , . . ,R5 ,R7 ,R8�. The only reaction
chosen to be perturbed is R6, which indirectly discourages
the consumption of Gbg by delaying the production of Gd.
Here we note that a more intuitive choice of reactions to
include in GD would be R7, since it directly consumes a Gbg

molecule. Upon numerical testing, however, we found that
the estimate from perturbing R7 showed much higher vari-
ance than the one obtained from discouraging R6. This dif-
ference in performance is due to the four orders of magnitude
separating the reaction constants kGd

and kG. Because the
reaction constant kG is so large, an extremely small IS pa-
rameter is required to effectively discourage R7. The results
from our testing indicate that such a small IS parameter con-
fers high variance. In contrast, the IS parameter needed by R6

was more modest and led to much better performance.
Following the partitioning with GD= �R6�, the b func-

tions for the constant parameter biasing method are

b6 =
1

�6
a6,

�22�
bj = aj, j = 1,2,3,4,5,7,8.

First, we ran 108 simulations of wSSA for each of the
constant IS parameter �6, where �6 ranged from 1.2 to 2.0 in
increments of 0.1. Then 108 simulations with the state-
dependent biasing method was conducted for each �6

max

= �12,14, . . . ,22,24� with �6
0=0.15, where the b functions

are given by

b6 = �6��6�a6,

�23�

FIG. 5. �a� A plot of 
2 vs �1 obtained in wSSA runs of reaction �18� using
the algorithm in Fig. 1. Here we estimate p�40,80;100� for S2. Each vertical
bar shows the estimated mean and one standard deviation of 
2 at that �1

value as found in four n=4�107 runs. �b� A plot of 
2 vs �1
max obtained

from using the algorithm in Fig. 3. Each vertical bar was obtained from four
n=105 runs.
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bj = aj, j = 1,2,3,4,5,7,8.

Because R6�GD, the value of �6 at each time step is chosen
according to hj�� j� in Eq. �12�. The best IS parameter, �
=1.5, from the first set of simulations yields the following
estimate:

p�x0,�Gbg
;20� = 1.23 � 10−6 � 0.05 � 10−6

�95% confidence� .
�24�

The best estimate from using the state-dependent IS method
with �max=3 yields

p�x0,�Gbg
;20� = 1.202 � 10−6 � 0.014 � 10−6

�95% confidence� .
�25�

System �21� exhibits high intrinsic stochasticity, which
causes difficulty in obtaining an estimate with low variance
unless a large n is used. Despite this difficulty, we see that
the uncertainty of the estimate obtained from using the state-
dependent biasing algorithm is about three times less than

the uncertainty in Eq. �24�. Figure 6 shows a side by side
comparison of 
2 for p�x0 ,�Gbg

;20�, and we see that the
variance in Fig. 6�b� is less than the variance in Fig. 6�a� by
a factor of 10. In addition to increased accuracy, the new
method also provides increased robustness, in that it provides
a broader range of acceptable values for its parameter
�6

max�12–24� than for the old method’s parameter
�6�1.3–1.8�.

The computational gain of wSSA from using a constant
importance sampling parameter is 21, while that of the state-
dependent importance sampling method is 250. Both gains
imply a significant speed up against the SSA considering that
the simulation time for 108 wSSA trajectories of system �21�
is several days.

Lastly, we comment that although the value of � j
0 is

chosen arbitrarily from a specified range �0.15�0.05 for
Rj �GD and 0.55�0.05 for Rj �GE�, the performance of the
state-dependent biasing algorithm remains almost the same
for different values of � j

0. For Rj �GE, the lower and upper
boundary values for � j

0 are 0.5 and 0.6, respectively. Figure
5�b� of system �18� was obtained using �1

0=0.6, which is the

FIG. 6. �a� A plot of 
2 vs �6 obtained in wSSA runs of reaction �21� using
the algorithm in Fig. 1. Here we estimate p�0,�Gbg

;20�, where �Gbg
is the set

of all states x in which the population of Gbg is 50. Each vertical bar shows
the estimated mean and one standard deviation of 
2 at that �6 value as
found in four n=108 runs. �b� A plot of 
2 vs �6

max obtained from using the
algorithm in Fig. 3. Each vertical bar was obtained from four n=108 runs.

FIG. 7. �a� A plot of 
2 vs �1
max obtained in wSSA runs of reaction �18�

using �1
0=0.5. Here we estimate p�40,80;100� for S2. Each vertical bar

shows the estimated mean and one standard deviation of 
2 at that �1
max

value as found in four n=105 runs. �b� A plot of 
2 vs �1
max obtained using

the same setting as in Fig. 7�a�, except �1
0=0.55.
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upper boundary value of � j
0 range. To compare the perfor-

mance of the new algorithm for system �18� using different
values of �1

0, we have created a plot of variance versus �1
max

with two different values of �1
0� �0.5,0.55�, which are

lower boundary and median value �Figs. 7�a� and 7�b��. We
see that the minimum variance from both subplots of Fig. 7
is of similar magnitude compared to the minimum variance
in Fig. 5�b�. Similar observation can be made for the other
two examples.

V. CONCLUSIONS

In this paper we have introduced a state-dependent bias-
ing method for the weighted stochastic simulation algorithm.
As numerical results from Sec. IV support, the new state-
dependent biasing method improves the accuracy of a rare
event probability estimate and speeds up the simulation time.
While the state-dependent biasing method excels in many
aspects, it involves twice the number of parameters than the
constant parameter biasing method. Currently, there is no
automated method to assign an appropriate value to these
parameters, and thus the computational effort associated with
this task can be challenging as system size increases. It may
be thought that using a line instead of a parabola in Eq. �12�
would simplify the algorithm. However, owing probably to
the nonlinearity of propensities that involve more than one
species, we have found that the parabola usually works bet-
ter. We have also observed in our numerical experiments that
using a line has a negative impact on robustness, as com-
pared to a parabola.

As noted in Sec. III, the new biasing algorithm toggles
between the original propensities and the biased propensities
to select the next reaction, depending on the value of � j�x�.
Therefore, the wSSA using the state-dependent biasing

method can be regarded as an efficient adaptive algorithm.
However, the value for two parameters � j

0 and � j
max must be

determined prior to the simulation, and correctly partitioning
reactions into three groups �GE, GD, and GN� can be chal-
lenging for large systems. These issues will be explored in
future work.
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