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Post-traumatic stress disorder (PTSD) is a psychological disorder affecting individuals that have experienced

life-changing traumatic events. The symptoms of PTSD experienced by these subjects—including acute

anxiety, flashbacks, and hyper-arousal—disrupt their normal functioning. Although PTSD is still categorized as

a psychological disorder, recent years have witnessed a multi-directional research effort attempting to

understand the biomolecular origins of the disorder. This review begins by providing a brief overview of the

known biological underpinnings of the disorder resulting from studies using structural and functional

neuroimaging, endocrinology, and genetic and epigenetic assays. Next, we discuss the systems biology

approach, which is often used to gain mechanistic insights from the wealth of available high-throughput

experimental data. Finally, we provide an overview of the current computational tools used to decipher the

heterogeneous types of molecular data collected in the study of PTSD.

1 Introduction

Post-traumatic stress disorder (PTSD) is the fifth most common
psychiatric disorder with an occurrence rate of about 8% in the
United States.1 Unlike other psychiatric disorders, PTSD may
develop in individuals only after they have experienced a terrify-
ing traumatic event such as torture, rape, kidnapping, or natural
disasters such as floods or earthquakes. The incidence of

a Institute of Collaborative Biotechnologies, University of California Santa Barbara,

Santa Barbara, California, USA
b Department of Chemical Engineering, University of California Santa Barbara,

Santa Barbara, California, USA. E-mail: doyle@engineering.ucsb.edu;

Fax: +1-805-893-4731; Tel: +1-805-893-8133
c Department of Computer Science, University of California Santa Barbara,

Santa Barbara, California, USA
d US Army Center for Environmental Health Research, Fort Detrick, Maryland, USA
e Department of Mechanical Engineering, University of California Santa Barbara,

Santa Barbara, California, USA

Gunjan S. Thakur

Gunjan Singh Thakur is a post-
doctoral scholar in the Institute for
Collaborative Biotechnologies at
University of California Santa
Barbara. He received his Bachelor
of Technology from Indian Institute
of Technology, Guwahati in Mech-
anical Engineering in 2000, Masters
of Science in Engineering Science
and Mechanics from Virginia
Polytechnic Institute and State
University, in 2004 and PhD in
Mechanical Engineering form
UCSB in 2011. His research

interests include dynamical systems, system biology, controls,
machine learning and mathematical modeling of biological systems.

Bernie J. Daigle Jr

Bernie Daigle, Jr is Assistant
Researcher in the Institute for
Collaborative Biotechnologies at
the University of California,
Santa Barbara. Prior to his
current appointment, he was a
postdoctoral researcher in the
Department of Computer Science
at UCSB. He received his BS in
Biology, summa cum laude, from
Cornell University in 2002. In
2010, he received his PhD in
Genetics from Stanford University
School of Medicine, where he was

the recipient of Geraldine Jackson Fuhrman and Howard Hughes
Medical Institute Predoctoral Fellowships. His research interests
include computational modeling and analysis of stochastic
biochemical systems, and integration of genome-scale datasets for
disease biomarker identification.

Received 10th July 2014,
Accepted 13th January 2015

DOI: 10.1039/c4mb00404c

www.rsc.org/molecularbiosystems

Molecular
BioSystems

REVIEW

http://crossmark.crossref.org/dialog/?doi=10.1039/c4mb00404c&domain=pdf&date_stamp=2015-01-28


This journal is©The Royal Society of Chemistry 2015 Mol. BioSyst., 2015, 11, 980--993 | 981

occurrence of PTSD in war veterans is relatively high. Approxi-
mately 22% of veterans returning from Iraq and Afghanistan are
diagnosed with the disorder.2 Before 1980, when it was officially
recognized as a medical disorder, PTSD was referred to by
different names. During the American Civil War it was referred
to as ‘‘Soldier’s Heart’’, during World War I as ‘‘Combat Fatigue’’,
during World War II as ‘‘Gross Stress Reaction’’, and during the
Vietnam War as ‘‘Post-Vietnam Syndrome’’. Other names for
PTSD include ‘‘Battle Fatigue’’ and ‘‘Shell Shock’’.

Currently, survey-based assays are used to diagnose PTSD,
including the clinician-administered PTSD scale (CAPS)3 from

the ‘‘Diagnostic and Statistical Manual of Mental Disorder’’
(considered to be the gold standard) and self assessment scales
such as the ‘‘Posttraumatic Diagnostic Scale’’.4 These tests help
diagnose whether or not a subject has PTSD with fairly good
accuracy. However, these tests are not designed to diagnose stages
of the disorder, from an early manifestation to later advanced
stages. Thus there is a need to identify reliable biomarkers for
PTSD that can be used for the accurate diagnosis, prognosis, and
evaluation of therapeutics for the disorder. Although many candi-
date biomarkers have been identified for PTSD, reliable markers
for specific clinical applications are still lacking.
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In a number of disease models, system biology approaches
have shed light on the complex underlying biophysical net-
works.5–8 Systems biology aims to understand the complexity of
a biological system by integrating experimental data at different
scales with mathematical models (e.g., differential equations,
stochastic models and data-driven approaches such as machine
learning) to obtain useful information about the system at the
scale of interest.9 These scales range from the single-cell and
single-molecule level up to the genome-wide, organismal level
(see Fig. 1). Depending on the scale of investigation, informa-
tive experimental data may consist of ‘‘omics’’ measurements
(e.g., transcriptomics and proteomics), quantification of indi-
vidual metabolites, or brain images. The systems approach
enables us to make testable predictions (e.g., identification of
diagnostic/prognostic biomarkers or drug targets) and gain
mechanistic insights into the system in question.

In the remainder of this review, we first provide a brief
overview of the known biological underpinnings of PTSD,
noting that many excellent reviews are available reflecting the
vast, but often conflicting, amount of information available on
the subject.10–14 Next, we focus on the range of systems biology
approaches that have been used to understand the disorder.
Finally, we present model studies which have employed these
tools to obtain new clinical and biological insights.

2 Biology of PTSD

A large body of literature has documented symptoms of
PTSD in human subjects. These symptoms include memories/
avoidance of traumatic events, emotional numbing, hyper-arousal

(e.g. exaggerated startle and lack of sleep), alteration in fear
conditioning, and impaired extinction learning.15–17 Recently,
many neurobiological studies have been performed, effectively
broadening the view that PTSD is purely a psychological disorder
and helping to obtain a deeper insight into the disease mecha-
nism. Psychophysiological observables such as heart rate,18

skin conductance (measurement of sweat activity), eye blinking
(measurement of startle state), facial electromyogram (EMG, used
to assess the neuronal signaling to muscles) and cortical electro-
encephalographic event related potentials (ERPs, measurement of
brain activity)19,20 have been used to quantify PTSD symptoms in a
systematic manner. Most psychophysiological studies conduct
cross-sectional comparisons between the treatment (individuals
with PTSD) and control (individuals without PTSD) groups. These
studies generally find autonomic reactivity, such as heart rate and
skin conductance, and startle response to trauma-related stimuli
to be elevated in the treatment group. Specifically, a strong
correlation has been observed between the level of reactivity to
trauma-related stimuli and the severity of PTSD.21,22 Increases in
heart rate, recurrent recall of trauma memories, and exaggerated
startling are typically all acquired in individuals with the disorder,
but these behaviors may not be unique to PTSD.

Neuroimaging

To gain a better understanding of the disorder, many studies
have focused on macroscopic features of the human brain by
employing techniques such as structural (sMRI) and functional
magnetic resonance imaging (fMRI). The brain regions related
to symptoms of the disorder include the hippocampus, amygdala,
ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate

Fig. 1 Systems biology approach for the study of PTSD: a multitude of data types can be experimentally collected by probing biological systems at
different scales. This wealth of data is then further processed by employing mathematical and computational techniques (e.g., statistics, machine
learning, computational modeling) to gain insight into the system under study.
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cortex (dACC) and insular cortex (see Table 1). sMRI studies have
shown a decrease in the volume of hippocampus,23,24 vmPFC,25

dACC25,26 and the insular cortex27,28 for patients with PTSD. In the
case of changes to the hippocampal volume, it is not clear
whether this decrease is caused by the extreme trauma or simply
represents a risk factor; however, some studies point to the
latter.29 We note that exceptions to the above have been reported
in children with PTSD,30 possibly due to lack of neuronal matura-
tion, and in cases where symptom severity was not very strong.31

Studies performed with combat twins using voxel-based morpho-
metry suggest that the reduction in ACC volume may be an
acquired feature due to extreme trauma.25

Functional MRI studies have shown increased activity in
the amygdala,32,33 dACC34 and insular cortex,35 and decreased
activity in the vmPFC36 for PTSD patients subjected to trauma-
related stimuli. Positron emission tomography, an fMRI tech-
nique quantifying local changes in cerebral blood flow, has
been performed on identical twins to study resting dACC
glucose metabolism and dACC activation during non-
emotional inference tasks. These studies demonstrated that
combat-exposed veterans with PTSD and their co-twins have
greater metabolism37 and greater activation38 compared to
veterans without PTSD and their co-twins. This suggests that
increased activation of dACC is a PTSD risk factor rather than
a symptom. Finally, activation in the amygdala39 and insular
cortex40 does not appear to be unique to PTSD, as these
responses are also seen in other anxiety disorders. Functional
MRI techniques are also used to measure resting state brain
activity and functional connectivity (i.e., temporal correlations
between brain regions with common functional properties).
A recent paper by Yan et al.41 found increased activity in the
amygdala and the anterior insula and decreased activity in the
thalamus to be common features in both resting state brain
activity and task-based fMRI studies (as reported by other
authors, see citations included in the paper), in male combat
veterans with PTSD. Their results also highlight decreased
activity in the precuneus region of the brain, which is respon-
sible for integrating information from the past and future.
Furthermore, Rabinak et al.42 found enhanced connectivity
between the amygdala and insula in combat-related PTSD
patients. However, as many studies of anxiety-related dis-
orders have also reported fMRI-based amygdala and insula
activation,43 these responses may not be unique to PTSD.

Neuroendocrinological studies

The major constituents of the neuroendocrine response to
physical and emotional threat and stress are the sympathetic
nervous system (SNS) and the hypothalamic-pituitary adrenal
(HPA) axis.62 The immediate SNS response mobilizes the acute
fight-or-flight response and is followed by a response from the
HPA axis that reinstates homeostasis. PTSD patients showed
low cortisol levels, which is surprising for a disorder precipi-
tated by extreme stress, and differs from that observed in
studies of acute and chronic stress and major depressive
disorder (which have been associated with increased cortisol
levels).63 Moreover, PTSD patients exhibited increased levels of
norepinephrine, corticotropin-releasing hormone (CRH) and
proinflammatory cytokines, reflecting reduced glucocorticoid
signaling. This profile of alterations has been associated with
PTSD pathophysiology. However, emerging research indicates
that these alterations may instead reflect pre-traumatic vulner-
abilities to the later development of PTSD.62

Gene expression

Previous gene expression studies of PTSD have focused on
two types of biomarkers: predictive and diagnostic signatures.
Predictive biomarkers indicate risk of PTSD development after
trauma exposure and require longitudinal studies. Multiple
longitudinal studies have presented panels of potential risk
biomarkers.64,65 These biomarkers include up-regulated genes
involved in type-1 interferon signaling (IFI27, OAS1, OAS2,
OAS3, XAF1, and USP18)64 and differentially expressed genes
which associate with glucocorticoid receptors (GR), including
low FKBP5 and high GILZ expression.65 Additionally, many
studies suggest potential mRNA diagnostic biomarkers, includ-
ing the GR-associated genes FKBP5 and STAT5B66 among
others.67,68 Early markers for PTSD development have been
reported which may aid in developing early detection diagnostic
tools. Gene expression data collected in emergency rooms
immediately following trauma led to the discovery of 574 differ-
entially expressed genes distinguishing those who would later
develop PTSD from those who would recover.69 These transcripts
were enriched in genes involved in immune activation, cell cycle,
and signal transduction, among other biological processes.
While these and other initial results are promising, no valida-
tion studies have shown that these biomarkers are valid in

Table 1 Summary of neuroimaging findings in subjects with PTSD. Abbreviations used: vmPFC denotes ventromedial prefrontal cortex and dACC
denotes dorsal anterior cingulate cortex

Brain regions

Function imaging Structural imaging

Normal function
Activity in
PTSD subjects

Correlation with
PTSD severity Volume change

Amygdala Detection of threat, processing/learning
of fear stimulation47,48

Increased32,33 Positively44–46 Not clear

vmPFC Goal-directed decisions making49 Decreased36,44,50 Negatively44,51 Decrease25

dACC Regulates cognitive control, error detection,
fear appraisal/expression54,55

Increased51–53 Positively34,38 Decrease25,26

Hippocampus Short and long term memory56,57 Mixed58,59 Negatively29 Decrease23,24

Insular cortex Monitoring internal body states60 Increased35,61 Positively35 Decrease35
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independent data sets. Additionally, the biomarkers were iden-
tified strictly by differential expression statistics or panels
derived from classification algorithms (e.g., support vector
machines) and do not incorporate known or inferred biological
network information. This limits the ability of these gene
panels to give biological insight into the development and
progression of PTSD and does not provide a clear path for
identification of therapeutics.

Epigenetics

Research on epigenetic mechanisms has revealed that environ-
mental experiences such as early life stress and fear condition-
ing can modify the expression of genes without altering the
corresponding DNA sequence.11,70–73 Most of the studies inves-
tigating the role of epigenetics in PTSD have focused on DNA
methylation, typically comparing peripheral blood methylation
levels between PTSD patients and controls.74–78 In particular,
studies have found that the number of uniquely methylated
genes was significantly higher in PTSD-affected patients.79

Furthermore, genes found to be hyper-methylated in PTSD
patients include: COMT,80 H19, IL18,81 LINE-1,82 PAC1
(female),83 SLC6A3,84 MAN2C1,85 CLEC9A,86 ACP5,86 and
TLR8.86 Conversely, genes such as FKBP5,87 Alu,82 SLC6A4,74

TPR, and ANXA286 were found to be hypo-methylated in PTSD.
Studies have also found that for subjects with low socio-
economic status, the relationship between DNA methylation
and risk of developing PTSD may be modified in genes pre-
dominantly related to nervous system function.88

Subtypes of PTSD

The heterogeneous nature of the symptoms and development
of PTSD create challenges in diagnosing and treating the
disease. While multiple studies have emphasized clear divi-
sions into PTSD subgroups,89,90 very little work has focused on
identifying unique biological signatures for these subtypes.
Instead, recent work has focused on using symptoms and
symptom trajectories to identify these distinct subgroups, or
on correlating specific biological measures to these symptom
classes. For example, longitudinal data from the Jerusalem
Trauma Outreach and Prevention Study identified three trajec-
tories of PTSD symptoms which they called rapid-remitting,
slow-remitting and non-remitting.89 Interestingly, they note
that only subjects classified as slow-remitting showed symptom
improvements when given antidepressants. Similar responses
to antidepressants were seen in another study90 where promoter
methylation of FKBP5 and GR showed differences between
responders and non-responders to treatment. These examples
further emphasize the existence of subgroups within PTSD, but
overall provide little biological insight into the key differences
between these groups. In order to progress in the identification
and characterization of these subtypes in a manner useful for
diagnostic and therapeutic development, specific biological
signatures must be extracted from large-scale data. In particular,
the biological features extracted from this type of analysis would
provide a more comprehensive picture of subtype biology than
these single gene correlations. We note that the identification of

subgroups from DNA microarray data has previously been applied
to the study of diseases such as cancer and fibromyalgia.91–93

3 Systems biology approach

The molecular inputs used for understanding a given biological
system from a systems perspective include genomic, transcrip-
tomic, epigenomic, metabolomic, and proteomic data. These
data types measure the genome-wide amounts of and changes
to DNA sequence, mRNA expression, DNA methylation/histone
modification, metabolite production, and protein expression,
respectively. Commonly used experimental techniques for
collecting this data include high-throughput sequencing methods,
array-based hybridization assays (e.g. microarrays), liquid and gas
chromatography, and mass spectrometry. In addition to high-
throughput molecular measurements, neuroimaging assays,
such as functional and structural MRI, provide an organism-
wide measure of brain activity and morphology, respectively.
When studying disease mechanisms, each of the above assays
can be utilized in either a cross-sectional or longitudinal
manner. In the former case, different subjects with and without
the disease phenotype are measured simultaneously, with the
goal of identifying time point-specific differences between
the groups. In the latter case, measurements are repeatedly
collected from the same subjects over time, which helps to
reduce inter-individual variability and can provide temporal
information regarding disease progression. Fig. 2 shows the
analysis pipeline typically applied to ‘‘omics’’ data to uncover
the underlying biology of PTSD. In the remainder of this section,
we review some commonly used methods in this pipeline.

Raw data from all of the above experimental modalities are
corrupted with noise. It is essential to understand the sources of
this noise in order to control for them in downstream analyses,
as the final conclusions of the study depends on it. Noise sources
can be broadly categorized into two groups: one deriving from
the stochastic nature of molecular interactions (referred to as
biological noise), and the second coming from the measurement
techniques and other experimental strategies used (measure-
ment noise). As an example of the first group, gene expression
levels measured in genetically identical cells show substantial
cell-to-cell variations.94,95 These unavoidable variations are
attributed to random molecular interactions and are known to
influence phenotypic properties,96 environmental response,97

decision making at different stages of cell development,98 and
information processing.99 In contrast, the measurement noise
introduced into the data must be minimized, otherwise it can
lead to incorrect downstream analyses.100

As the first step of data analysis, the raw data is corrected for
measurement noise. Methods for performing this task with high-
throughput data include background correction, normalization
and batch correction. The first technique is typically used in
fluorescence-based assays for reducing the effects of non-specific
background fluorescence. One part of this procedure often
involves removing those measurements that are indistinguish-
able from background noise. Although this introduces missing

Molecular BioSystems Review



This journal is©The Royal Society of Chemistry 2015 Mol. BioSyst., 2015, 11, 980--993 | 985

values into the dataset, such values are preferable to measure-
ments entirely lacking in biological signal. The second techni-
que, normalization, is used in most high-throughput assays to
remove systematic biases in the data due to experimental
artifacts rather than biological signal. Examples of such biases
include differing amounts of biological starting material across
assays (between-assay normalization) and unequal fluorescence
labeling efficiencies in dual-color fluorescence-based assays
(within-assay normalization). Normalization methods often
make assumptions about the biological signal present in the
data, including that the overall signal range is the same across
all samples and that the majority of assayed measurements do
not differ significantly between samples.101

Variability in high-throughput data is often associated with
location,102 time,103 individuals conducting the experiment and
other technical factors.104,105 In addition to measurement
noise, this gives rise to what is known as a batch effect—where
the structure of measurement error, generally thought to be fixed
within each batch, varies across batches. This effect must be
taken into account (see the second step in Fig. 2) to allow the
integration of data from different batches, thus obtaining greater
statistical power for further analyses.106 Methods such as surro-
gate variable analysis107 (SVA), independent surrogate variable
analysis108 (ISVA), and ComBat106 have been used to perform
batch correction. ComBat is an empirical Bayes method which
is robust to outliers and can also correct for small batch size.
When the sources of experimental batches are simple100

(e.g., processing time), ComBat outperforms many other methods.109

However, certain confounding factors are more difficult to
ascertain. For these cases, SVA and ISVA provide methods to
correct for noise due to unmodelled, unmeasured, or unknown
factors. However, we note that these methods do not address
the situation where the phenotype of interest is highly corre-
lated with the experimental batches.

Once noise correction has been performed on the available
high-throughput data, a range of analysis methods can be
applied to characterize the biological signal present. One of
the most common methods used to study disease mechanism
is differential expression (DE) analysis. The goal of DE analysis
in this context is to identify genes/metabolites/proteins that are
differentially expressed between disease and control samples.
Use of proper statistical testing is essential for this task, as the
huge numbers of candidate biomarkers in genome wide studies
(e.g., roughly 20 000 genes on a typical microarray) can lead to
large numbers of false positive and false negative predictions.
Statistical methods like the classical t-test, moderated t-test110

and SAM statistic111 have all been successfully used to generate
DE p-values (i.e., probabilities that candidate biomarkers’ DE
scores are due to random chance rather than biological signal).
Given a list of p-values, multiple hypothesis testing correction
methods that control the false discovery rate (FDR) or family
wise error rate (FWER) can then be used to reduce numbers of
false positives and negatives.112 After identifying disease-
specific DE candidates, a natural next step is to perform gene

Fig. 2 Analysis pipeline for heterogeneous molecular data generated in PTSD studies. The raw data is first corrected for systematic errors and batch
effects, both of which may be introduced during the experimental process. Provided the biological signal is significant, correcting these errors improves
the signal-to-noise ratio and ensures more reliable downstream analyses. Following this step, statistical and machine learning tools are used at
appropriate stages (shown in the blue boxes) to obtain useful system information (shown in red).
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set enrichment analysis (GSEA).113 Using a Kolmogorov–
Smirnov (K–S) statistic, GSEA identifies statistically enriched
biological functions or pathways within a list of candidate
biomarkers. GSEA can be very useful for ascribing biological
meaning to output from DE analyses.

An alternative to DE analysis for identifying disease bio-
markers is to employ machine learning tools. In general, there
are two distinct algorithmic approaches, namely (1) supervised
and (2) unsupervised learning. The nature of the available data
and the objective of the learning task dictates the selection of
the proper approach. Unsupervised learning is used when
observation labels (e.g., class or category) are not available.
Algorithms of this type are widely used for clustering, dimen-
sional reduction, principal component analysis, and probability
density estimation of a population. In contrast, supervised
learning refers to algorithms that use available observation
labels in the learning process. These algorithms are mostly
used for classification (i.e., assigning membership labels to a
given observation) and regression (i.e., estimating relationships
between variables). Supervised classification generally consists
of two phases: training and testing. During the training phase,
features from samples of known status (e.g., disease or control)
are used to build a predictor that is then evaluated during the
testing phase on samples of unknown status. Many algorithms
are available for classification, including: decision trees, random
forests, k-nearest neighbors, Bayesian methods, neural networks,
support vector machine (SVM), nearest shrunken centroids
(NSC),114 pathway-based classifiers like the condition-responsive
genes (CORGs) method,115 and core module biomarker identifi-
cation with network exploration (COMBINER).116 However, only a
limited number of these algorithms have been previously used
for PTSD research (e.g., SVM,64 Logistic regression,65 COMBI-
NER116). Currently used methods for PTSD identify biomarker
panels by considering combinations of single, unrelated genes or
gene sets associated with known pathways. However, none of
these methods utilize known molecular interaction networks,
which can provide useful insight into network perturbations
associated with PTSD, and has shown improvement in classifica-
tion performance and stability for diseases such as cancer.117

Generally, classification performance can be quantified in several
ways; some of the most common include: prediction error rate,
sensitivity, precision, F-score and area under the receiver operat-
ing characteristic curve (AUC). The choice of which specific
classification algorithm to use is critical, as an incorrectly chosen
classifier often leads to poor performance. In this case, one must
try to select a more appropriate algorithm given factors such as
size of the training set, preselection of features given as input to
the algorithm, the dimensionality of the dataset, and a potential
imbalance in class sample sizes. In addition, algorithm para-
meters can often be more optimally tuned to improve classifica-
tion performance. Further information addressing the above can
be found in published reviews.118–121

In order to derive mechanistic insights for a given condition,
the systems biology approach also attempts to predict inter-
action networks between different chemical species. To do this,
the expression levels of genes, proteins, and metabolites are

first measured using high-throughput technologies. Depending
on the nature of the species under study, different types of
interaction networks can be inferred. For example, network
analysis of gene expression data gives rise to gene regulatory
networks, while a similar analysis of protein expression data
generates signal transduction networks. The inferred relation-
ships between species range from physical interactions
(e.g., between transcription factors and their target genes) to
functional interactions (e.g., correlated expression between
groups of genes). Statistical methods such as regression and
correlation analysis,122 mutual information-based approaches,123

Bayesian networks,124 and probabilistic graphical models125 have
all been used to predict interactions between species. Detailed
reviews of this topic can be found in the following ref. 122,
124, 126–129.

An important challenge in the systems biology approach is
the fusion of information from multiple ‘‘omics’’ sources.130

Zhao et al. have used machine learning techniques to perform
unsupervised gene biomarker selection in cancer by integrating
both mRNA and miRNA data.131,132 Ye et al. have identified
Alzheimer’s disease biomarkers by combining MRI data, demo-
graphic information, and genetic information.133 Finally, Xiang
et al. have identified Alzheimer’s biomarkers by combining
proteomics, PET, MRI and CSF datasets.134 However, to our
knowledge there are no studies performing heterogeneous data
integration for the analysis of PTSD.

4 Model studies

In this section we review representative studies employing systems
tools to investigate PTSD. The first two studies use ordinary
differential equation (ODE) models to obtain a mathematical
description of the disorder, while those remaining use statistical
and machine learning techniques.

Subjects with PTSD are known to have altered fear condi-
tioning responses. As a first case study we highlight the work
done by Li et al.,136 where they performed systems modeling of
neurons in the lateral amygdala (LA) region (a key site of
synaptic events that contribute to fear learning). Using experi-
mental data from the literature, the authors built a computa-
tional network model consisting of ten neurons found in the
amygdala—eight pyramidal cells and two GABAergic interneurons.
Their twin-compartment model represents a soma (diameter of
15 mm; length of 15 mm) and the dominant apical dendrite. The
authors derived ODEs for somatic and dendritic membrane
potentials by balancing different current sources (e.g. intrinsic,
synaptic currents and electrode current). They then used their
model to demonstrate the characteristic abilities of the LA in both
fear conditioning and extinction. Their results suggest that fear
expression is determined by a balance between pyramidal cell and
interneuron excitations. Furthermore, the authors show that fear
memory is stored in the pyramidal cells, whereas extinction
memory is stored in both interneurons and pyramidal cells.
Finally, results from the model suggests that fear memory is not
erased fully by extinction; rather, it is inhibited by interneurons
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that undergo synaptic plasticity during extinction training. As
emphasized by the authors, their model for the plasticity of
inhibitory synapses in the LA improves understanding of the fear
mechanism.

Mathematical models of varying complexity have been
proposed to describe the circadian dynamics of the HPA axis
(see Vinther et al.137 and references therein). An ordinary
differential equation model for cortisol dynamics in the HPA
axis has been developed by Sriram et al.135 (see Fig. 3), where
they seek to understand the mechanism leading to hypocorti-
solemia in PTSD and hypercortisolemia in depressed patients.
The developed model and its estimated parameters support
Yehuda’s hypothesis that hypocortisolemia in PTSD is due to the
strong negative feedback loop operating in the neuroendocrine
axis under severe stress.138 The model was used to simulate in
silico patients whose behavior suggested that, due to disrupted
negative feedback loops, cortisol levels are different in normal,
PTSD and depressed subjects during the night. Moreover, the
model predicted transitions from normal to diseased states due
to changes in the strength of the negative feedback loop and the
stress intensity in the neuro-endocrine axis.

Animal models have been used to investigate the effects
of trauma and draw parallels with PTSD and other neuro-
degenerative disorders in humans. Next we consider a recent
study by Hammamieh et al. where they developed a ‘‘social-
defeat’’ model by exposing male C57BL/6J mice to aggressor
mice for six hours daily for five or 10 days in total, using a
‘‘cage-within-cage resident-intruder’’ protocol.140 The mice
showed significant behavioral, physiological, and histological
changes associated with the trauma stressor. Furthermore,
seven brain regions, including the hippocampus, amygdala,
and medial prefrontal cortex, as well as whole blood were

harvested and the corresponding whole-cell mRNA populations
were extracted. In order to understand the underlying mole-
cular principles, Yang et al.139 used a computational tool
entitled core module biomarker identification with network
exploration (COMBINER). This approach using machine learn-
ing and statistical tools, was first developed by Yang et al.116

COMBINER provides a novel method for the identification of
disease biomarkers. Designed to take multiple data cohorts as
input, COMBINER identifies gene module biomarkers that are
consistent across the population of samples and constructs
their associated regulatory networks. The social defeat study
identified common differentially expressed genes in multiple
brain regions as well as between the brain and blood. These
DEGs were used to obtain the core disease module (see Fig. 4).
Many of the resulting modular gene networks were found to be
previously associated with PTSD, depression, and other neuro-
degenerative diseases.

Studies141,142 have indicated that subjects with PTSD also
have a higher risk of cardiovascular conditions, including
increased basal heart rate and blood pressure, higher risk for
hypertension and stroke. A recent study by Cho et al.143 used a
systems approach to study the effect of traumatic experiences on
heart function using the animal model developed by Hammamieh
et al.140 In particular, they found that myocarditis was a frequently
detected pathology in stressed subject mice, suggesting a stress-
associated heart injury. The authors studied the temporal expres-
sion of mRNA and miRNA in heart samples obtained from
stressed and control animals, providing a characterization of the
heart tissue repair process in response to stress-induced tissue
injury. Inflammatory-related genes were found to be significantly
regulated after as little as one day of exposure to stress, and most
of the changes in gene expression returned to normal levels after a
recovery period. Additionally, key molecular processes involved in
classical wound healing in the heart tissues of subject mice
were identified, including the chemokine signaling pathway,
extracellular remodeling and epithelial to mesenchymal transi-
tion (EMT). Taken together, the results of Cho et al.143 suggest a
molecular basis for the observed higher risk of cardiovascular
disorders in PTSD patients, further illustrating the increased
likelihood of cardiac dysfunction induced by long-term stress
exposure.

Blood samples are one of the most common sources for
obtaining biological data. A gene expression study of the
peripheral blood mononuclear cells (PBMC) has been per-
formed by Segman et al.69 In this study, blood samples were
collected for subjects visiting the emergency room following
trauma as well as after a four month follow-up visit. The aim of
the study was to identify the PTSD gene expression signature by
applying differential expression analysis, classification, and
functional enrichment of the blood samples collected. Differ-
ential expression analysis identified DEGs as genes which were
significantly (p o 0.05) expressed using three methods: t-test,
threshold number of misclassifications (TNoM), and the Info144

method. The number of DEGs identified by the intersection of
these three methods is 408, 574, and 656 genes for the
emergency room, four month follow-up, and combined times

Fig. 3 Regulatory network of cortisol in the HPA axis. Stress induces the
secretion of corticotropin release hormone (CRH) in the hypothalamus that
in turn activates the release of adreno-corticotropin hormone (ACTH) in the
anterior pituitary gland. ACTH moves to the adrenal cortex and stimulates
cortisol (CORT). The secreted cortisol binds to glucocorticoid receptors (G)
to form a complex GR followed by dimerization. Cortisol complex GR binds
to both CRH and ACTH to down regulate the production of cortisol. This
closed loop gives rise to a negative feedback in the circuit that is vital in
maintaining the homeostasis of the system during stress.135
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points, respectively. Next, a Naive Bayesian Classifier was
trained and tested using leave-one-out cross validation
(LOOCV) on the samples from the emergency room (ER)
(6 PTSD, 5 control) and the four month follow-up (5 PTSD,
4 control). The ER and follow-up classifiers had misclassifica-
tion error rates of 18% and 11%, respectively with all misclas-
sifications being false positives. Additionally, gene ontology
enrichment analysis was used to understand the biological
pathways related to the identified PTSD signature. Terms
significantly enriched in DEGs from the differential expression
analysis were determined using the hypergeometric p-value and
a false discovery rate (FDR) cutoff of 0.1. Terms related to RNA
processing, metabolism, and binding as well as nucleic acid
metabolism and binding were found to be significant. Overall,
this exploratory analysis presented both gene and pathway-level
analysis of PTSD mRNA signatures from blood, the result of
which require further validation in larger studies to understand
their usefulness as molecular markers of PTSD.

In addition to gene expression signatures in blood, there has
been increasing interest in epigenetic markers of PTSD, speci-
fically DNA methylation. The changes in DNA methylation can
occur during development, but also later in life in response to
an individual’s environment and experience. These epigenetic
changes can create long-term changes in gene expression,
resulting in disease phenotypes involving perturbed biological
function. The first published epigenetic study of PTSD79 iden-
tified genes which were uniquely methylated or unmethylated
in those who developed PTSD, compared to control subjects
who had experienced similar levels of trauma. This exploratory
study of methylation in 14 000 genes over 23 PTSD and 77
control samples identified approximately 400 genes which were
uniquely methylated or unmethylated in PTSD subjects using
the Wilcoxon test (p o 0.01). To understand the related biology,
the authors used functional annotation clustering (FAC) analysis
to identify Gene Ontology terms that were enriched in the set of

uniquely methylated and unmethylated genes. Terms related to
both the innate and adaptive immune system were identified
as the most significantly enriched. This finding was further
strengthened by an independent measure of immune function:
the amount of antibodies to a common herpesvirus, CMV.
Antibody levels were significantly different in PTSD vs. control
subjects (p = 0.016). Finally, the authors used ANOVA to assess
the contributions of comorbid diseases and found that only a
small number of genes showed differential methylation across
groups divided by comorbidity, indicating that the PTSD methyl-
ation findings are specific to PTSD and not affected by the
increased rates of major depressive disorder or generalized
anxiety disorder in PTSD populations.

5 Conclusions and future challenges

As stated in the Introduction, post-traumatic stress disorder is
the only psychological disorder for which the onset of the
pathological condition is fairly precise, i.e., occurring after an
extreme traumatic event. A wealth of often contradictory physio-
logical findings point to the underlying complexity of the
disorder. Although considered a psychological disorder, PTSD
also affects the functioning of numerous non-neurological sys-
tems in the body, including the immune, endocrine and cardio-
vascular systems. In order to understand the relationship between
the progression of PTSD and these other systemic responses,
specific details about the molecular mechanism must be unraveled.
In particular, details analogous to the increased negative feedback
identified in the HPA axis135 must be identified to understand the
cardiovascular and immunological changes that frequently occur in
PTSD. However, identifying the relevant components in these
systems is further complicated by the high rates of comorbid
diseases (biological noise) and experimental artifacts from high-
throughput experiments (experimental noise). Addressing these

Fig. 4 Blood-brain gene network for a ‘‘social defeat’’ mouse model. (a) Nine core gene expression modules identified by COMBINER. The core
modules consist of only those genes that are expressed in both blood and multiple brain regions (which include the amygdala, hippocampus, hemibrain,
medial PFC, septal region, stria terminalis and ventral striatum). Known protein–protein interactions (PPIs) are marked by lines connecting genes—blue
lines denote within-module interactions, while gray lines denote between-module interactions. (b) The color scale for the blood expression level of each
gene in the nine modules, as indicated by the colored circles in (a). (c) Putative biological functions of the expression modules as inferred using KEGG
annotation. The above figure has been adapted from Yang et al.139
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challenges will require careful consideration and likely novel
adaptations to current machine learning strategies, including the
use (or development) of data integration techniques that can
accommodate data from multiple biological length scales.

The complexity of the disorder has posed a great challenge
to the identification of biomarkers for diagnostic, prognostic
and therapeutic applications. The time dependent profile,
different for each subject, further complicates the diagnosis.
A recent clinical study89 has shown three different trajectories
of symptom progression: rapid-remitting (fast decrease of
symptoms in one to five months), slow-remitting (symptoms
decrease after 15 months) and non-remitting (persistent symp-
toms). In order to understand the three clinical trajectories
from a biological perspective and to explore the prognostic
and therapeutic opportunities, it is increasingly evident that
integration of both the biological and the clinical manifesta-
tions of PTSD is essential. Additionally, if these symptom
trajectories or other distinct subtypes of PTSD exist, the choice
of how and where these subgroups should be integrated or
separated for biomarker identification analysis must be system-
atically explored. Specifically, the biological mechanism of
PTSD development must be extensively studied (using long-
itudinal data) in all potential subtypes of PTSD to determine if
overlapping signals exist. In the absence of overlapping bio-
logical mechanisms, multi-class classification strategies may be
required. Since PTSD originates in the brain, it is extremely
difficult to collect samples for scientific study. Alternatively,
animal models are used to correlate with clinical findings, thus
enabling one to draw inferences that may lead to diagnostic
and therapeutic solutions.

Many animal models that exhibit one or more ‘‘PTSD-
specific’’ symptoms have been proposed, including predator-
exposure,145–147 exposure to single prolonged stress,148 and
exposure to foot shock149,150 with additional stress. However
none to date have been widely accepted as an ideal model for
PTSD. These models approximately mimic physiological and
tissue-level responses in human PTSD subjects and have helped
in identifying biological processes, such as the HPA axis,
neurotransmitter receptor system, and others (see review by
Pitman et al.12), that may be involved in PTSD. In the model
studies section of this review, we presented a study by Cho
et al.143 based on the social defeat mouse model140 that
identifies key short-term physiological and histological changes
that occur in PTSD-like mice. These changes, including cardiac
histopathology differences as well as increased weight gain,
show similarities to established comorbid PTSD phenotypes of
obesity and cardiovascular disease. In addition to gaining
insight into development and progression of PTSD, animal
models may also provide an avenue for pharmacological stu-
dies. For example, the social defeat mouse model responds to
chronic (but not acute) exposure to antidepressant medication,
which agrees with human PTSD responses. In general, these
proposed animal models of PTSD have shown agreement with
previously identified pharmacological, organismal and tissue-
level responses in humans. However, to the best of our knowl-
edge, no study to date has compared long-term animal model

response with human PTSD subjects. These long-term
responses, as well as detailed cellular and molecular changes
across all time scales must be carefully addressed in future
studies to more conclusively identify how well animal model
findings can be translated to understand PTSD in humans.

In light of the complexity of the PTSD disease mechanism, a
systems approach integrating both the clinical findings and
animal validation studies is necessary to understand the under-
lying mechanisms driving PTSD and its variants. Such an
approach establishes a multidimensional research direction
combining patients, published animal models and mathe-
matical analysis tools. The goals of such an approach is to (1)
identify the differentially expressed genomic, proteomic and
metabolic drivers of PTSD; (2) identify approaches to diagnose
different clinically observed PTSD trajectories; (3) identify
possible biological risk factors, prognostic indicators, and
therapeutic strategies; (4) identify the underlying molecular
principles to facilitate detailed studies of relevant molecular
networks. In order to achieve these goals there is a need to
integrate heterogeneous experimental data (e.g., molecular and
neuroimaging data) from different studies by employing new or
existing mathematical tools to uncover useful information from
large noisy datasets (on the order of a million data points per
subject). In this paper we outline the preliminary studies that
pave the way for a multidisciplinary integrated systems biology
approach, and highlight some current challenges to identifying
and understanding the molecular underpinnings of post-
traumatic stress disorder.
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