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Traumatic injury is the leading cause of death for people under the age of 44 (Hoyert and Xu 2012). Many of
these deaths are the result of uncontrolled bleeding due to a trauma-induced disorder called Acute Traumatic
Coagulapathy, or known more simply as Coagulopathy (Brohi et al. 2003). How major trauma causes
Coagulapathy and how to treat the disease is still a subject of ongoing research. There are various competing
hypotheses for why so many trauma patients are coagulapathic. The Coagulation Cascade and the Fibrinolytic
system are complex networks of dynamically interacting proteins in blood that are responsible for forming
and breaking up clots (Gonzalez et al. 2014).

It is generally understood that Coagulopathy comes as a result of a malfunction in one of or both these systems.
To better study these complex networks, and how they are affected during trauma, doctors and scientists have
two major assays at their disposal: direct protein concentration measurements and Thromboelastography,
known as TEG (Figure 1). Direct protein concentration measurements can tell us the concentration levels of
key players in the body’s coagulation system, thus they can help us to understand why a patient’s blood is
not clotting and how they can be treated. Unfortunately, these tests are only available at very select number
of hospitals specializing in trauma, they are expensive to run, and most importantly they are slow to run in a
setting where applying the correct treatment as quickly as possible is of the utmost importance.

In contrast to direct protein measurements, TEG measurements are ubiquitous, inexpensive to run, and
can provide results in as little as 20 minutes. However, they do not measure protein concentrations directly.
Instead, TEG works by placing a small sample of blood in a cup, chemically initiating the clotting process,
then using a metal probe to measure the physical size of the resulting clot over time in millimeters (mm)
(Figure 2). The resulting output is a measure of clot thickness over time for the patient that is indicative of
several important features of their clotting state including:

• How long it takes for a patient’s blood to start forming a clot
• How fast the clot grows once clotting is initiated
• How strong the patient’s clots become
• How long the clots are able to maintain their integrity before being broken up

The Goal: Inferring Protein Concentrations Using TEG and Our Mechanistic
Understanding of the Coagulation System.

While TEG measurements clearly contain useful information regarding a patient’s clotting state, they
are simply a proxy for the latent system of clotting proteins in the blood that is much more difficult to
measure. Ideally, we can use our mechanistic understanding of the coagulation system in the form of Ordinary
Differential Equations (ODEs) along with a statistical model, to better understand what exactly TEG is
telling us about the state of the underlying coagulation system, and furthermore to infer a patient’s protein
concentrations using solely their TEG measurements.

∗University of California, Santa Barbara
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Figure 1: Figure 1: Direct protein concetration measurements and TEG are used to examinethe
state of the Coagulation Cascade of trauma patients using a small blood sample. While direct
protein measurements are obviously more informative of the exact state of patient’s blood at
any given time, they are slow and expensive to obtain compared to TEG.

Figure 2: Figure 2: In a TEG assay a small sample of blood is placed in a cup which is spun
around quickly to initiate the clotting process. A thin metal pin then measures the size over
time in millimeters (mm) of the resulting clot.
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Figure 3: Figure 3: A seven-state model of coagulation that models the clotting process, actual
clots, and the clot breakdown process. The rate of activation of FII in the coagulation cascade
is summarized by a delay term that is governed by parameters that are specific to the patient.

A Mechanistic Model of the Coagulation System

The coagulation system is a well-studied, with several mechanistic ODE models in the literature that describe
how the system evolves dynamically over time. Models for the coagulation system vary widely in the number
of states, reactions, and parameters they contain, including complex models with up to 80 states (Mitrophanov,
Wolberg, and Reifman 2014) . For our purposes we developed a simple reduced-order model based off of
elements from both the work by (Mitrophanov, Wolberg, and Reifman 2014) as well as (Sagar and Varner
2015) that captures the most important players in the coagulation system. The model includes the most
basic components of the clotting process: the coagulation cascade responsible for forming clots, actual clot
material, and clot breakdown or Fibrinolysis (Figure 3).

We model the coagualation cascade as primarily consisting of the activation of the blood protein FactorII (FII)
to its activated form FIIa via the action of a sigmoid delay function that is parameterized by parameters b
and c. We model these parameter values as specific to the patient. Importantly, FIIa can be blocked by
antithrombin (AT ). FIIa once activated can then facilitate the conversion of raw clot material, Fibrinogen,
or Fg in to an actual clot Fibrin, or Fn. Once a clot is formed, the clot can be broken up by the protein
tPA, which itself can be blocked by the protein PAI. The differential equations for this model summarize
this process and are shown below. Values for reaction constants represent how fast these respective reactions
occur with respect to on another. The values we used for these constant were either gathered from the
literature or fit using Maximum A-Posteriori (MAP) estimation.

3



dFII

dt
= −CascadeDelay(t,b, c) · TFPI(t) · FII

KF IIa + FII
dFIIa

dt
= CascadeDelay(t,b, c) · TFPI(t) · FII

KF IIa + FII
− kAT · FIIa ·AT

dAT

dt
= −kAT · FIIa ·AT

dFg

dt
= −kclot · FIIa ·

Fg

Kclot + Fg

dFn

dt
= kclot · FIIa ·

Fg

Kclot + Fg
− klys · tPA ·

Fn

Klys + Fn

dtPA

dt
= −kP AI · tPA · PAI

dPAI

dt
= −kP AI · tPA · PAI

Using the R package deSolve, we can forward simulate from this ODE to get an idea of what the solutions
for this system look like:
library(tidyverse)
library(deSolve)

seven.state <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {

cascade_delay <- 1/(1+exp(c-b*t))
tfpi <- (1-tfpi_min)/(1+exp(-ct+bt*t)) + tfpi_min

r_FIIa <- k_FIIa*cascade_delay*tfpi*((FII/g_FII)^c_FIIa)/(K_FIIa + (FII/g_FII)^c_FIIa)
r_AT <- k_AT*FIIa*(AT/g_AT)
r_clot <- k_clot*FIIa*((Fg/9e-6)^c_clot)/(K_clot + (Fg/9e-6)^c_clot)
r_lys <- k_lys*tPA*(Fn^c_lys)/(K_lys + Fn^c_lys)
r_PAI <- k_PAI*tPA*PAI

dFII <- g_FII*(-r_FIIa) # pct activity
dFIIa <- r_FIIa -r_AT # 10s of nmol/L
dAT <- -g_AT*r_AT # pct activity
dFg <- -r_clot # 1 mg/dl = 29.41 nmol/L
dFn <- 1e7*(r_clot - r_lys) # mm of clot
dtPA <- -r_PAI # 1 ng/mL = 14.29 pmol/L
dPAI <- -r_PAI # 1 ng/mL = 23.26 pmol/L

list(c(dFII, dFIIa, dAT, dFg, dFn, dtPA, dPAI))
})

}

parameters <- c(g_FII = 100/1.4e-6, g_AT = 100/3.4e-6,
c = 5.0, b = 0.4e-1,
ct = 10, bt = 0.15e-1, tfpi_min = 0.2,
k_FIIa = 3.5e-9, c_FIIa = 1, K_FIIa = 1.4e-6,
k_AT = 1.6e4,
k_clot = 3.0, c_clot = 1, K_clot = 0.75,
k_lys = 1, c_lys = 1, K_lys = 0.5,
k_PAI = 4.5e5)
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state <- c(FII = 1e2, FIIa = 0, AT = 100, Fg = 9e-6, Fn = 0, tPA = 7e-11, PAI = 4e-10)

times <- seq(0, 1800, by = 2)

out <- ode(y = state, times = times, func = seven.state,
parms = parameters, method = "bdf",
atol = 1e-6, rtol = 1e-5) %>% as.data.frame %>% as_tibble

out %>%
gather(state, value, -time) %>%
mutate(state = factor(state, levels = c("FII", "FIIa", "AT", "Fg", "Fn", "tPA", "PAI"))) %>%
ggplot(aes(time,value)) + geom_line() + facet_grid(state ~ ., scales = "free")
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A Mechanistic Model for TEG

While the model includes the concentration of Fn (Fibrin) which is a criticial component of clots, the actual
clot thickness which TEG measures is not measuring Fn per se, but some function of it. Following Sagar and
Varner (2015) , we used the Hill function

ClotThickness(t) = k
Fn2

K + Fn2

with k = 64.0 and K = 100.0 to translate Fn to clot thickness. Clot thickness is plotted below for the ODE
we simulated above:
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Fn <- out$Fn
ClotThickness <- 64.0 * Fn^2/(100.0 + Fn^2)
qplot(times, ClotThickness, geom = "line")

0

20

40

60

0 500 1000 1500

times

C
lo

tT
hi

ck
ne

ss

Inferring Hybrid Mechanistic-Statistical Models and the Unortho-
dox Nature of TEG Data

Typically, mechanistic ODE models are fit in Stan using data that consists of the states of the ODE over
time, see e.g. (Carpenter 2018) or (Margossian and Gillespie 2017) . In these settings one typically posits an
error distribution for the data that is centered around the forward simulated values of the ODE. In contrast,
our TEG data does not come in the form of clot thickness over time, but rather in the form of four quantities
derived from the clot thickness curve that are typically used in the medical community to summarize the
most important properties of a TEG curve (Figure 4). These four quantities are described below:

1. R: The time (in minutes) for the clot to reach 2 mm. This quantity represents the time it takes for the
clotting process to initiate.

2. K: The time (in minutes) for the clot to reach 20 mm from the time it reached 2 mm. This quantity
represents speed of clot formation.

3. MA: The maximum amplitude of the clot i.e. the size of the clot when it is at its largest. This quantity
measures the strength of a patient’s clot.

4. Ly30: The percentage of the clot which has broken down after 30 minutes as compared to the maximum
amplitude of the clot. This quantity measures how fast clots are being broken up.

To use these quantities to infer unknown parameters and initial conditions, we must first forward simulate
our ODE, compute the clot thickness as a function of Fn, then use the trajectory of clot of thickness over
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Figure 4: Figure 4: TEG curves represent the thickness of a clot over time and are summarized
by the four key quantities R, K, MA, and Ly30.

time to derive our simulated TEG data, which we finally can compare to our data by positing some statistical
model. We describe the finer points of this process in the following section.

Inferring ODEs Using Hitting Time and Max Data in Stan

In the typical ODE estimation setting, where our data consists of the value of the ODE states over time,
yn, n = 1, · · · , N we typically have a likelihood of the form

N∏
n=1

p(yn|y(sim)
n (y0, θ))

where y(sim)
n (y0, θ) is a forward simulation of our ODE given the initial conditions y0 and the parameters θ.

The Hamiltonian Monte Carlo (HMC) algorithm in Stan works by taking derivates of the likelihood with
resepct to the quantities we are trying to estimate, in this case y0 and θ.

In our case, the data consists of hitting times like R, which is the time the clot takes to reach a size of 2 mm,
and we instead set up a probabilistic model, or likelihood of the form

p(R|R(sim)(y0, θ)).

For HMC to get the correct gradients, we have to be careful about how we compute the hitting time Rsim(y0, θ)
in our Stan program. First, note that the ODE solver in Stan will return the value of the solution at discrete
time points, which we will then use to compute clot thickness, Cn at the discrete time points t1, · · · , tN . R is
a continuous value formally defined as

R := inf{t : C(t|y0, θ) > 2.0}

where C(t) is the clot thickness over time. The discrete analogue we would be able to compute with our ODE
solution Cn is

R := min{tn : Cn(y0, θ) > 2.0}

which unfortunately does not have a smooth derivative with respect to the initial conditions and unknown
parameters. In practice, this would cause problems for HMC and Stan, because the log-likelihood should be
a smooth function of the unknowns, and ideally have smooth derivatives as well.

To ameliorate this, we can use our discrete solution points {Cn(y0, θ)} to obtain a continuous function
C(t|y0, θ) by interpolating the solution points using cubic splines. The interpolated function will have two
smooth derivatives, allowing Stan’s HMC to run smoothly.
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Using Cubic Splines to Obtain Continuous ODE Solutions in Stan

Fortunately, the Stan language is expressive enough to allow us to easily implement code for computing a
smooth function C(t) that interpolates through the discrete points Cn, n = 0, · · · , N defined at the points
t0, · · · , tN . In particular, we can write a function in Stan to fit a cubic interpolating spline through a given set
of points. We provide a quick review of cubic smoothing splines and how to compute them loosely following
the exposition in (Quarteroni, Sacco, and Saleri 2010) . Actual Stan code for computing cubic splines is freely
available in our Stan files.

Our aim is to derive the functional form of a group of cubic splines s3,i−1(t) over the intervals [ti−1, ti]. The
functions will be cubic polynomials and will be twice differentiable, even at the nodes t0, · · · , tN . We first
define fi = s3(ti), mi = s3(ti), and Mi = s′′3(ti) for i = 0, · · · , N . Since s3,i−1 is a cubic polynomial, its
second derivative is linear. Since the cubic spline must have continuous second derivatives we have

s′′3,i−1(t) = Mi−1
ti − t
hi

+Mi
t− ti−1

hi

for t ∈ [ti−1, ti] where hi = ti − ti−1. Integrating twice we obtain

s3,i−1(t) = Mi−1
(ti − t)3

6hi
+Mi

(t− ti−1)3

6hi
+ Ci−1(t− ti−1) + C̃i−1

The constants Ci−1 and C̃i−1 are uniquely determined by imposing the end point values s3(ti−1) = fi−1 and
s3(ti) = fi, yielding for i = 1, · · · , N − 1

C̃i−1 = fi−1 −Mi−1
h2

i

6

Ci−1 = fi − fi−1

hi
− hi

6 (Mi −Mi−1)

By imposing continuity of the first dervivatives at the nodes we arrive at the linear system

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, · · · , N1

where

µi = hi

hi + hi+1

λi = hi+1

hi + hi+1

di = 6
hi + hi+1

(
fi+1 − fi

hi+1
− fi − fi−1

hi

)
for i = 1, · · · , N − 1. Setting λ0 = µN = 1 and d0 = d1 leads to the following linear equation which defines
our spline coefficients:



2 λ0 0 · · · 0

µ1 2 λ1
. . .

...

0
. . . . . . . . . 0

...
. . . µN−1 2 λN−1

0 · · · 0 µN 2




M0
M1
...

MN−1
MN

 =


d0
d1
...

dN−1
dN
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Because this system is tridiagonal, we can solve it in O(N) time using the Thomas algorithm, which is
implemented in our provided Stan files.

Obtaining Hitting Times from the Spline Interpolation

With our continuous clot thickness function in hand, we are now able to compute stopping times that are a
smooth function of our unknowns by using an algebraic solver on our continuous function and appealing to
the implicit function theorem. Letting C(t|y0, θ) represent our spline function that interpolates the discrete
points Cn(y0, θ), R is defined implicitly as

C(R(y0, θ)|y0, θ) = 2.0.

Note that R, the time that the clot hits 2.0 mm is dependent on the initial value of the system, as well as the
parameter values of the system. Taking the partial derivative of both sides of the equation with respect to θ
yields

∂

∂R
C(R|y0, θ)

∂R

∂θ
+ ∂

∂θ
C(R|y0, θ) = 0.0.

which then yields the correct partial derivative we need for HMC:

∂R

∂θ
= − ∂

∂θ
C(R|y0, θ)

(
∂

∂R
C(R|y0, θ)

)−1
.

This solve can be accomplished and the correct partial derivative will be used in Stan’s HMC implementation
by simply passing the function C(t) to the algebraic solver available in Stan which uses a modified version of
Newton’s method to find the solution of nonlinear systems of equations (Margossian 2018) .

Because Newton Iterations may diverge with a bad starting point, and at the time of this writing Stan’s
algebraic solver does not support variable initial guesses, we opted to implement a custom C++ solver based
off of the bisection method. For a tutorial on using custom C++ functions and their gradients in Stan models
see (Bales and Petzold 2018) .

Obtaining the Max of Our Spline Function

Note that the MA, or maximum amplitude TEG values also requires a nonlinear solve to obtain. To compute
this value we also use custom C++ code based off of the bisection method on the derivative of the function.
In this case the appropriate gradient can be comptued similarly.

Testing our Code on the ODE Test Equation

We first try out our code for inferring unknowns using hitting times on the simple ODE test equation:

dy

dt
= −λy.

with initial value y(0) = 1 and λ = 1. The solution of this equation is simply y(t) = e−t, which hits the value
y(t) = 0.6 at t = − ln 0.6 ≈= 0.5108. We set up a Stan model to infer the value of the initial condition given
the value of the hitting time.
library(rstan)

## Loading required package: StanHeaders
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## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)

## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)

##
## Attaching package: 'rstan'

## The following object is masked from 'package:tidyr':
##
## extract
options(mc.cores = parallel::detectCores())

# use special include arugments since we're compiling a Stan model with externally
# defined custom C++ code
fit.test.eq.cpp.src <- stanc("stan/fit_test_eq.stan", allow_undefined = TRUE)$cppcode

fit.test.eq.stan.model <- stan_model("stan/fit_test_eq.stan", allow_undefined = TRUE,
includes = paste0('\n#include "', file.path(getwd(), 'src/cubic_spline_solvers.hpp'), '"\n'))

## In file included from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/config.hpp:39:0,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/math/tools/config.hpp:13,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core/var.hpp:7,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core/gevv_vvv_vari.hpp:5,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core.hpp:12,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/mat.hpp:4,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math.hpp:4,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/src/stan/model/model_header.hpp:4,
## from filebcae1139fc61.cpp:8:
## /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/config/compiler/gcc.hpp:186:0: warning: "BOOST_NO_CXX11_RVALUE_REFERENCES" redefined
## # define BOOST_NO_CXX11_RVALUE_REFERENCES
## ^
## <command-line>:0:0: note: this is the location of the previous definition
# fit model
test.eq.stanfit <- sampling(fit.test.eq.stan.model, chains = 4, iter = 1000,

data = list(Nt = 200, ts = seq(0.01, 2.0, by = 0.01), teg = 0.5108256),
init = list(list(y0 = array(1,1)), list(y0 = array(1,1)), list(y0 = array(1,1)), list(y0 = array(1,1))))

As expected, the value of the hitting time and the value of the initial condition are highly correlated. When
the initial condition is large, it takes longer for the ODE to reach y(t) = 0.6. Note that our posterior samples
have a much smaller variance than our prior samples, indicating that the stopping time is very informative of
the initial value of the ODE.
#print posterior summary and pairs plot
test.eq.stanfit

## Inference for Stan model: fit_test_eq.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## y0[1] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 648 1.01
## teg_sim 0.51 0.00 0.01 0.49 0.50 0.51 0.52 0.53 649 1.01
## lp__ -0.54 0.02 0.74 -2.49 -0.71 -0.27 -0.05 0.00 953 1.00
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##
## Samples were drawn using NUTS(diag_e) at Sun Jun 3 13:47:44 2018.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
pairs(test.eq.stanfit, pars = c("y0", "teg_sim"))

y0[1]
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0.
97

0.
99

1.
01
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03

0.97 0.99 1.01 1.03

0.
48

0.
50
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0.
54 teg_sim

# compare prior to posterior
test.eq.stan.samples <- rstan::extract(test.eq.stanfit, pars = c("y0", "teg_sim"))

tibble(y0.prior = rnorm(2000, 1, 0.1), y0.posterior = test.eq.stan.samples$y0[,1]) %>%
gather(Distribution, Value) %>%
mutate(Distribution = factor(Distribution, levels = c("y0.prior", "y0.posterior"), labels = c("Prior", "Posterior"))) %>%
ggplot(aes(Value)) +
geom_histogram(binwidth = 0.01) +
facet_grid(Distribution ~ ., scales = "free") +
xlab(expression(y[0]))
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Putting it All Together to Infer Protein Concentrations Using TEG
Data

Now that we know our Stan code works on a simple problem, it’s time to try it out on some real trauma
data. We will try out our model on the following trauma patient for whom we have TEG values for and
initial protein values for all the proteins in our model except for tPA and PAI. Our goal here will be to infer
this patients initial concentration of tPA given their TEG measurements. In theory this should be possible
because tPA is a protein primarily responsible for clot breakup and the Ly30 measurement of TEG measures
the amount of clot breakup after 30 minutes. In this case, the patient has an unusually high Ly30 value of
1.7, indicating that 1.7% of their clot already broke up after only 30 minutes. In light of this, we should
expect this patient to have a higher than average tPA concentration.
patient.data <- tibble(sex = "Male", age = 22, inj.mech = "StabWound",

FII = 90, AT = 115, Fg = 162*29.41*1e-9, tPA = NA, PAI = NA,
R = 0.8, K = 1.5, MA = 60.2, Ly30 = 1.7)

patient.data

## # A tibble: 1 x 12
## sex age inj.mech FII AT Fg tPA PAI R K MA
## <chr> <dbl> <chr> <dbl> <dbl> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl>
## 1 Male 22. StabWound 90. 115. 4.76e-6 NA NA 0.800 1.50 60.2
## # ... with 1 more variable: Ly30 <dbl>
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Choosing Priors for Unknown Protein Concentrations and Model Parameters

Recall that in our mechanistic model every patient has “cascade delay” parameters b and c that describe
the specific state of the coagulation cascade. Using our four pieces of TEG data, we must infer there two
parameters and also the value of the unknown protein concentrations tPA and PAI for our patient. To
do this reasonably, it helps to incorporate any prior knowledge we have about these parameters. For the
protein concentrations, we set the prior distributions to exponential distributions with respective means
4e-10 and 9.3e-10. These are the distributions of these protein concentrations for general trauma patients.
With the information given it’s reasonable to assume our trauma patient’s protein values are drawn form
the distribution of protein values for trauma patients. For b and c, we use weakly informative priors that
are representative of a wide variety of possible coagulation profiles that we would expect to see in trauma
patients.

With our priors set, we are ready to fit our model, integrating our prior knowledge and our data to produce a
posterior distribution of this patient’s tPA values:
# format data for Stan
times <- c(seq(0, 600, by = 6), seq(660, 1800, by = 60))

proteins <- patient.data %>% select(FII, AT, Fg, tPA, PAI) %>% as.matrix %>% as.vector
proteins <- ifelse(is.na(proteins), -1, proteins)

teg <- patient.data %>% select(R, K, MA, Ly30) %>% as.matrix %>% as.vector

num_missing <- c(0,0,0,1,1)

dat <- list(Nt = length(times), ts = times, proteins = proteins, teg = teg, num_missing = num_missing)

# compile Stan model with custom C++ code
teg.cpp.src <- stanc("stan/fit_teg.stan", allow_undefined = TRUE)$cppcode
teg.stan.model <- stan_model("stan/fit_teg.stan", allow_undefined = TRUE,

includes = paste0('\n#include "', file.path(getwd(), 'src/cubic_spline_solvers.hpp'), '"\n'))

## In file included from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/config.hpp:39:0,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/math/tools/config.hpp:13,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core/var.hpp:7,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core/gevv_vvv_vari.hpp:5,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/core.hpp:12,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math/rev/mat.hpp:4,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/stan/math.hpp:4,
## from /home/arya/R/x86_64-pc-linux-gnu-library/3.4/StanHeaders/include/src/stan/model/model_header.hpp:4,
## from filebcae762fb880.cpp:8:
## /home/arya/R/x86_64-pc-linux-gnu-library/3.4/BH/include/boost/config/compiler/gcc.hpp:186:0: warning: "BOOST_NO_CXX11_RVALUE_REFERENCES" redefined
## # define BOOST_NO_CXX11_RVALUE_REFERENCES
## ^
## <command-line>:0:0: note: this is the location of the previous definition
# fit model
teg.fit <- sampling(teg.stan.model, chains = 1, iter = 1000, data = dat,

control = list(adapt_delta = 0.99, max_treedepth = 8), refresh = 100,
init = list(list(FII_missing = rep(72.0, num_missing[1]),

AT_missing = array(82.0, num_missing[2]),
Fg_missing = rep(5.5-06, num_missing[3]),
tPA_missing = array(1.6e-10, num_missing[4]),
PAI_missing = array(3.4e-10, num_missing[5]),
theta = c(3.0, 0.03))))
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##
## SAMPLING FOR MODEL 'fit_teg' NOW (CHAIN 1).
##
## Gradient evaluation took 0.00296 seconds
## 1000 transitions using 10 leapfrog steps per transition would take 29.6 seconds.
## Adjust your expectations accordingly!
##
##
## Iteration: 1 / 1000 [ 0%] (Warmup)
## Iteration: 100 / 1000 [ 10%] (Warmup)
## Iteration: 200 / 1000 [ 20%] (Warmup)
## Iteration: 300 / 1000 [ 30%] (Warmup)
## Iteration: 400 / 1000 [ 40%] (Warmup)
## Iteration: 500 / 1000 [ 50%] (Warmup)
## Iteration: 501 / 1000 [ 50%] (Sampling)
## Iteration: 600 / 1000 [ 60%] (Sampling)
## Iteration: 700 / 1000 [ 70%] (Sampling)
## Iteration: 800 / 1000 [ 80%] (Sampling)
## Iteration: 900 / 1000 [ 90%] (Sampling)
## Iteration: 1000 / 1000 [100%] (Sampling)
##
## Elapsed Time: 91.924 seconds (Warm-up)
## 79.0762 seconds (Sampling)
## 171 seconds (Total)

Our MCMC diagnostics all pass, and we are ready to examine the posterior distribution of this patient’s tPA
concentration. Sure enough, this patient’s tPA concentration is higher than the population average, which
we used as our prior distribution. This is reflective of their relatively high Ly30 value, just as we expected.
teg.stan.samples <- rstan::extract(teg.fit, pars = c("tPA_missing"))

tibble(tPA.prior = rexp(500,1/(4e-10)), tPA.posterior = teg.stan.samples$tPA_missing[,1]) %>%
gather(Distribution, Value) %>%
mutate(Distribution = factor(Distribution, levels = c("tPA.prior", "tPA.posterior"), labels = c("Prior", "Posterior"))) %>%
ggplot(aes(Value)) +
geom_histogram() +
facet_grid(Distribution ~ ., scales = "free") +
xlab(expression(y[0]))

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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