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In recent years there has been substantial growth in the development of algorithms for

characterizing rare events in stochastic biochemical systems. Two such algorithms,

the state-dependent weighted stochastic simulation algorithm (swSSA) and the dou-

bly weighted SSA (dwSSA), are extensions of the weighted SSA (wSSA) by Kuwahara

and Mura. The swSSA substantially reduces estimator variance by implementing sys-

tem state-dependent importance sampling (IS) parameters, but lacks an automatic

parameter identification strategy. In contrast, the dwSSA provides for the automatic

determination of state-independent IS parameters, thus it is inefficient for systems

whose states vary widely in time. We present a novel modification of the dwSSA—

the state-dependent doubly weighted SSA (sdwSSA)—that combines the strengths

of the swSSA and the dwSSA without inheriting their weaknesses. The sdwSSA au-

tomatically computes state-dependent IS parameters via the multilevel cross-entropy

method. We apply the method to three examples: a reversible isomerization process,

a yeast polarization model, and a lac operon model. Our results demonstrate that

the sdwSSA offers substantial improvements over previous methods in terms of both

accuracy and efficiency.
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I. INTRODUCTION

Stochasticity plays an important role in many biological processes. The significance of

this role is particularly evident when stochastic behavior gives rise to biochemical rare events.

These events are often accompanied by profound consequences to the underlying system. For

example, a recent study indicates that rare mutations in stem cells can cause blood disorders

such as chronic myeloid leukemia (CML) and paroxysmal nocturnal hemoglobinuria (PNH)1.

Because rare events can require a very long time period to be observed in a natural setting,

conducting in vivo or in vitro experiments may not be feasible. As an alternative, properly

formulated in silico simulations can provide essential information.

One popular mathematical approach for characterizing biochemical rare events utilizes

Monte Carlo methods like the Stochastic Simulation Algorithm (SSA)2. While the SSA

is straightforward to implement, it is not efficient for simulating a rare event, as a huge

number of realizations will be required to witness a single occurrence. This inefficiency can

be overcome with importance sampling (IS)3, a general technique that uses an alternate

distribution to estimate a distribution of interest. In 2008, Kuwahara and Mura developed

the weighted Stochastic Simulation Algorithm (wSSA)4, which incorporated IS into the

SSA for efficient characterization of rare events. The wSSA is designed to determine the

probability that, given an initial state, the system reaches a state in a prescribed rare event

set before the final simulation time. The wSSA alters the underlying probability distribution

of reaction firings at each time step such that the system is artificially shifted toward the

desired rare event. The bias introduced in this process is then corrected using a likelihood

ratio between the original probability mass function (PMF) and the altered PMF, yielding

an unbiased estimator. While the wSSA can be efficient, its efficiency as well as accuracy

largely depend on the choice of IS parameters. In particular, a poorly chosen set of IS

parameters can generate a wSSA estimate that is far less accurate than an SSA estimate.

For systems where favorable values of IS parameters are unknown, users must adopt the

costly trial-and-test method. The large computational burden imposed by this method

limits the size of systems that can be interrogated with the wSSA.

This issue was resolved with the recent development of the doubly weighted SSA

(dwSSA)5. When combined with the multilevel cross-entropy method6, the dwSSA au-

tomatically discovers IS parameter values that yield low-variance rare event probability
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estimates for any given system. Use of the dwSSA leads to a dramatic reduction in com-

putation time compared to both the original SSA and the wSSA5. Despite this favorable

performance, there is still room for improvement, as the dwSSA employs constant (i.e. sys-

tem state-independent) IS parameters. In contrast, systems whose species populations vary

widely in time require state-dependent IS parameters to yield the lowest possible estimator

variance. The state-dependent wSSA (swSSA)7 handles variation in the system state by

computing IS parameters that depend on the relative propensity of each reaction at the

current time step. However like the wSSA, the swSSA does not offer an efficient strategy

for choosing optimal IS parameters.

In this paper we present a novel modification of the dwSSA: the state-dependent doubly

weighted Stochastic Simulation Algorithm (sdwSSA), which automatically and efficiently

computes state-dependent IS parameters with minimal input from the user. Our presen-

tation is structured as follows: Section II provides background on rare event probability

estimation using Monte Carlo simulation. Section III describes the detailed algorithm of the

sdwSSA. In Section IV, we apply the sdwSSA to three examples of increasing complexity.

Finally in Section V, we summarize our contributions and discuss future areas of research.

II. BACKGROUND

A. Rare event probabilities and the SSA

Here we give a brief review of the SSA and define the class of rare events examined in

this paper. We begin by assuming a well-stirred chemical system whose N species popula-

tions at time t are represented as X(t). The system evolves in time by firing M reactions

{R1, . . . , RM}, whose propensities at time t are in the set {aj(X(t)) : j = 1, . . . ,M}, with

sum a0(X(t)). Starting at the initial state x0, the “direct method” implementation of

the SSA chooses the time to the next reaction τ and the index of the next reaction j′ as

exponential (with mean 1/a0(x)) and categorical (with probabilities aj(x)/a0(x)) random

variables, respectively. These random draws repeat until some stopping time T , which we

define as the smaller of the first time to reach the rare event and the final simulation time

(which will later be denoted by t). Given x0, the probability of a single SSA trajectory

J ≡ (τ1, j
′
1, . . . , τNT , j

′
NT

), with the notation τi denoting that the dwell time preceding the
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ith reaction firing lies within dτ of τi, can be expressed as follows:

PSSA(J) =

NT∏
i=1

[
a0(X(ti))e

−a0(X(ti))τidτ ×
aj′i(X(ti))

a0(X(ti))

]

=

NT∏
i=1

[
aj′i(X(ti))e

−a0(X(ti))τidτ
]
, (1)

with ti ≡
∑i

j=1 τj and NT the total number of reactions that fire in the interval [0, T ].

In this paper we are interested in estimating rare event probabilities of the form p(x0, E ; t),

defined as the probability that given the initial state x0, the system reaches any state in the

rare event set E at least once before time t. The Monte Carlo estimator for this probability

using the SSA is given by

p̂SSA(x0, E ; t) =
1

K

K∑
k=1

[
I{S(Jk)∩E}

]
, (2)

where K is the total number of trajectories, Jk is the kth SSA trajectory simulated over

time interval [0, T ], and I{S(Jk)∩E} is an indicator function that takes a value of 1 if any state

in E is visited by Jk, and 0 otherwise. We note that the quantity in (2) is equivalent to the

total number of trajectories that reached a state in E by time t, divided by K.

B. Doubly weighted SSA

The doubly weighted SSA (dwSSA) as presented in Ref.5 uses importance sampling (IS)

to bias both reaction selection and time to the next reaction. The system state under the

dwSSA evolves in time according to predilection functions given by

bj(X(t)) ≡ γjaj(X(t)), b0(X(t)) =
M∑
j=1

bj(X(t)), (3)

where each γj is a positive constant. The next reaction index j′ is chosen using the set of

predilection functions, and τ becomes an exponential random variable with mean 1/b0(X(t)).

Thus, the probability of a system trajectory J under the dwSSA is given by
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PdwSSA(J) =

NT∏
i=1

[
b0(X(ti))e

−b0(X(ti))τidτ ×
bj′i(X(ti))

b0(X(ti))

]

=

NT∏
i=1

[
bj′i(X(ti))e

−b0(X(ti))τidτ
]
. (4)

The bias that was introduced by the predilection functions can be corrected by multiplying

(4) by the following weight:

WdwSSA(J) =

NT∏
i=1

[
aj′i(X(ti))e

−a0(X(ti))τi

bj′i(X(ti))e−b0(X(ti))τi

]

=

NT∏
i=1

[
exp {(b0(X(ti))− a0(X(ti))) τi} × (γj′i)

−1
]
. (5)

It was shown in Ref.5 that the multilevel cross-entropy (CE) method of Rubinstein6

provides a closed-form solution in the dwSSA for each reaction’s optimal parameter estimate:

γ̂
∗(n)
j =

∑′

k

(
WdwSSA(J

(n−1)
k ; γ̂(n−1))× nkj

)
∑′

k

(
WdwSSA(J

(n−1)
k ; γ̂(n−1))×

∑NTk
i=1

[
aj(X

(n−1)
k (tki))τki

]) . (6)

Here γ̂(n−1) is the estimate of the optimal dwSSA biasing parameters in the (n)th level of

the multilevel CE method, J
(n−1)
k is the kth dwSSA trajectory parameterized with γ̂(n−1),

and nkj is the total number of times reaction Rj fires in the kth trajectory. The index k

in
∑′

k includes only the trajectories reaching the rare event. The multilevel CE method

defines a series of intermediate “less rare” events and sequentially biases the system towards

these events until the target rare event is reached. The process starts by simulating KCE

trajectories of the system in the interval [0, T ] using the dwSSA with all parameters set

to 1 (≡ SSA). We record the top dρKCEe trajectories (where ρ is typically ∼ 10−2) that

evolve farthest in the direction of the set E , and we label those states reached by the dρKCEe

recorded trajectories that are closest to E as E0. The set E0 represents a “less rare” event,

and we solve for the corresponding optimal dwSSA parameters γ̂(0). This process repeats

n times, until the intermediate set of states En is contained in the target rare event set

E . We note that (6) represents one of M uncoupled equations from the final step of the

multilevel algorithm in Ref.5, where γ̂∗(n) ≡ γ̂∗. In practice, each of these equations is solved
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at every level of the CE method until the final parameter estimates are obtained. For an

intuitive explanation of why (6) works, we note that the numerator represents a weighted

sum of the total number of times reaction Rj fires across the successful trajectories, while

the denominator is a weighted sum of the expected total number of times reaction Rj will

fire across those same trajectories. Reactions that are needed to fire more often than their

average behavior to reach the rare event will thus acquire a γ̂∗j greater than 1, while reactions

needed to fire less often than average will acquire a γ̂∗j less than 1.

III. SDWSSA FORMULATION AND THE MULTILEVEL

CROSS-ENTROPY METHOD

If our goal is to simply transform γj in (3) into a state-dependent IS parameter, the

number of possible transformations is infinite. However, it is important that any state-

dependent biasing scheme be computationally inexpensive and, more importantly, allow for

a closed-form solution for the IS parameters when combined with the cross-entropy method.

In Ref5, the authors showed that although the wSSA predilection function was simple to

compute, its formulation did not give rise to a closed-form solution for the wSSA parameters.

In the following subsections we present a novel state-dependent importance sampling scheme

whose IS parameters are easily computable in closed form. The first subsection introduces

the sdwSSA and describes its state-dependent IS strategy. The next subsection integrates

the sdwSSA into the cross-entropy framework and derives a closed form solution for the

optimal state-dependent IS parameters.

A. State-dependent doubly weighted SSA

It is well known that the optimal importance biasing scheme for any IS problem is state-

dependent. In typical biochemical systems, molecular populations of species change con-

stantly during a simulation as reactions fire. If only one IS parameter is used for each

reaction regardless of the system state, then γj is a positive constant that is multiplied by

aj(X(t)) at every time step. In this case, the best choice for γj would be a value that perturbs

the jth reaction by the “right amount” for “most of the visited states”, which is the precise

strategy used by the dwSSA. For a reaction Rj whose propensity changes substantially as
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the system evolves, this strategy will under- and over-perturb Rj when its propensity takes

on values that are much larger or smaller than average. We can improve such sub-optimal

biasing with a properly-formulated state-dependent biasing scheme.

The most obvious approach for making γj state-dependent is to set it to a time-varying

function of the system state, i.e. γj(X(t)). However, this is not a good formulation for two

reasons. First, closed form expressions for γ∗j are not available when γj is a continuous

function. Second, the system state alone is not sufficient to determine the amount of per-

turbation each reaction requires. Many different configurations of the state vector can yield

the same propensity value for a reaction involving more than one species, and the possible

number of states may be infinite. A better form for γj would be a discrete function that

depends on the relative propensity, aj(X(t))/a0(X(t)), which corresponds to the likelihood

of choosing Rj as the next reaction to fire. For simplicity, we assign a new variable πj(X(t))

to denote the jth relative propensity, i.e. πj(X(t)) ≡ aj(X(t))/a0(X(t)).

In short, our proposed state-dependent biasing scheme discretizes πj(X(t)) into non-

overlapping bins, and we estimate a constant biasing parameter for each bin. Thus, compared

to the dwSSA, the sdwSSA requires additional biasing parameters for each reaction as well

as bin discretization end points for each reaction. Specifically, the sdwSSA predilection

function is given by

bj(X(t)) ≡ γj(πj(X(t)))× aj(X(t)), b0(X(t)) =
M∑
j=1

bj(X(t)), (7)

where γj(πj) is a step function defined by

γj(πj) =



γj1, if πj ≤ c1j

γj2, if c1j < πj ≤ c2j
...

...

γjβj
, if c

βj−1
j < πj

, 0 < c1j < · · · < c
βj−1
j < 1. (8)

Here βj is the total number of bins used to discretize πj. The number of end points required

for βj bins is βj+1, and the minimum and maximum possible values of any relative propensity

are 0 and 1, respectively. Therefore, we need (βj + 1 − 2) total end points, which are

denoted by {c1j , · · · , c
βj−1
j } in (8). These end points are defined by the following process.

During the nth round of CE simulations, we determine the relative propensity range of
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each reaction parameterized with γ̂
(n−1)
j . After completing these simulations, we divide

each relative propensity πj into βmax bins, where βmax is a global variable denoting the

maximum number of bins for any reaction. In the next round of CE simulations, we record

the number of reaction firings in each bin. We identify bins with fewer than κmin firings,

where κmin is the minimum number required for each bin. We then repeatedly merge each

of these bins with the adjacent bin having the fewest number of firings until the aggregate

bin has at least κmin firings. Upon completion, we update the coordinates and numbers

of reaction firings in all merged bins. Once we have completed merging, the end points of

βj bins are given by {0, c1j , · · · , c
βj−1
j , 1}. For convenience, we let c denote a list of vectors

{[c11, · · · , c
β1−1
1 ], · · · , [c1M , · · · , c

βM−1
M ]}.

As with the dwSSA, the sdwSSA biases both the index of the next reaction and the time

to that reaction. Using the biasing scheme in (7) and (8), the probability of the reaction

trajectory in (1) under the sdwSSA is given by

PsdwSSA(J) =

NT∏
i=1

[
bj′i(X(ti))e

−b0(X(ti))τidτ
]

(9a)

=

NT∏
i=1

[(
γj′i(πj′i(X(ti)))× aj′i(X(ti))

)
e−(

PM
j=1 γj(πj(X(ti)))×aj(X(ti)))τidτ

]
. (9b)

The sdwSSA predilection function in (9a) has been written in detail in (9b), to emphasize

that it depends on the relative propensity of reactions at each time step. Similarly, the

trajectory weight to correct the bias has the same dependence:

WsdwSSA(J) =

NT∏
i=1

[
aj′i(X(ti))e

−a0(X(ti))τi(
γj′i(πj′i(X(ti)))× aj′i(X(ti))

)
e−(

PM
j=1 γj(πj(X(ti)))×aj(X(ti)))τi

]
. (10)

The product of (9a) and (10) equals the probability (1), which is the probability of an

unbiased SSA trajectory. Thus, the sdwSSA weight is the ratio between the SSA and the

sdwSSA of trajectory probabilities. As illustrated in the next section, the value of the

biasing scheme (7) and (8) is that it gives rise to closed form solutions for all
∑M

j=1 βj IS

parameters. In addition, the biasing scheme imposes very little computational overhead:

only the original reaction propensity is required to determine the degree of perturbation in

(8).
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B. The sdwSSA and the cross-entropy method

The derivation of a closed-form solution for the sdwSSA parameter values can be obtained

in a similar manner to that used for the dwSSA. Following the same logic as in Ref.5, we

derive the following system of
∑M

j=1 βj equations:

K∑
k=1

[
I{S(J

(0)
k )∩E} ×WsdwSSA(J

(0)
k ;γ(0))×∇

γ
ln PsdwSSA(J

(0)
k ; γ̂∗)

]
= 0, (11)

where γ̂∗ = {[γ̂∗11, · · · , γ̂∗1β1
], · · · , [γ̂∗M1, · · · , γ̂∗MβM

]} and J
(0)
k is the kth sdwSSA trajectory

parameterized with γ(0). Here we note that γ cannot necessarily be expressed as a matrix,

because each reaction can have a different value for βj.

Next, we substitute (9a) into (11) to obtain

0 =
K∑
k=1

I ×W ×∇
γ

ln

NTk∏
i=1

[
bj′ki

(Xk(tki))e
−b0(Xk(tki))τkidτ

]
=

K∑
k=1

I ×W ×∇
γ

ln

NTk∏
i=1

[
γ̂∗j′ki

(Xk(tki))aj′ki
(Xk(tki))

× exp

{
−τki

M∑
j=1

[
γ̂∗j (Xk(tki))aj(Xk(tki))

]}
dτ

])]
, (12)

where the subscripts in the first two factors inside the summation have been removed. Upon

taking the logarithm, collecting terms not depending on γ̂∗ in Cki, and simplifying, we obtain

0 =
K∑
k=1

I ×W ×∇
γ

NTk∑
i=1

[
ln
(
γ̂∗j′ki

(Xk(tki))
)
− τki

M∑
j=1

[
γ̂∗j (Xk(tki))aj(Xk(tki))

]
+ Cki

] .
(13)

After differentiation, we obtain a scalar version of (13) for all βj bins of all M reactions,

which leads to the following detailed closed-form expression for each optimal parameter

estimate:

γ̂
(n)
jr =

∑′

k

(
WsdwSSA(J

(n−1)
k ; γ̂(n−1))× nkjr

)
∑′

k

(
WsdwSSA(J

(n−1)
k ; γ̂(n−1))×

∑′

i
aj(X

(n−1)
k (tki))τki

) , j = 1, · · · ,M, r = 1, · · · , βj.

(14)
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where nkjr is the total number of times reaction j fires with γ̂
(n−1)
jr as its IS parameter in the

kth trajectory. We emphasize the similarity between (6) and (14). In both expressions, the

summation operator
∑′

k includes only those trajectories that have reached the rare event;

in the latter expression,
∑′

i also includes only those time steps where reaction Rj fired at

time tki, with γ̂
(n−1)
jr as its IS parameter. Equation (14) represents one of

∑M
j=1 βj uncoupled

equations from the final step of the multilevel CE algorithm, where γ̂(n) ≡ γ̂∗. We note

that the numerator in (14) represents a weighted sum of the total number of times Rj fires

with γ̂
(n−1)
jr as its IS parameter over the trajectories that reached the rare event. Similarly,

the denominator is a weighted sum of the expected total number of times Rj will fire with

γ̂
(n−1)
jr as its IS parameter across those same trajectories. Therefore, γ̂∗jr will be greater than

1 if the rth IS parameter for Rj is chosen more often than on average to reach the rare event

and less than 1 otherwise.

An important consideration when using the multilevel CE method is that the system

reaches a rare event after passing through multiple rounds of “less rare” events. The relative

propensity range spanned by a reaction upon reaching the first less rare event may differ

greatly from the one spanned by the same reaction after reaching the final (i.e. target) rare

event. We have resolved this difficulty by dynamically measuring the relative propensity

range and adjusting bin sizes at every step of the multilevel CE method.

The entire process for rare event characterization with the sdwSSA and the multilevel

cross-entropy method can be compactly described using the following two algorithms: core

sdwSSA and CE-DB (Cross Entropy-Dynamic Binning). Text in red indicates instructions

that are specific to the sdwSSA (i.e. that differ from the dwSSA). First, we learn the opti-

mal state-dependent biasing parameters γ and bin endpoints c using CE-DB, which calls

the core sdwSSA in each level of the multilevel cross-entropy method with KCE number

of trajectories. Once the CE-DB returns γ and c, they are substituted into the core sd-

wSSA along with K (the total number of realizations) to estimate the rare event probability

p(x0, E ; t). In our experience, the number of realizations K required to accurately compute

p̂sdwSSA(x0, E ; t) is much greater than KCE required to accurately compute γ̂∗sdwSSA. In core

sdwSSA, νj and tf represent the state change vector for Rj and the simulation end time,

respectively.

Algorithm: Core sdwSSA
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Input: K,γ and c

1: mK ← 0

2: for k = 1 to K do

3: t← 0, x← x0, w ← 1

4: evaluate all aj(x) and calculate a0(x)

5: evaluate all γj(πj(x)) and bj(x); calculate b0(x)

6: while t ≤ tf do

7: if x ∈ E then

8: mK ← mK + w

9: break out of the while loop

10: end if

11: generate two unit-interval uniform random numbers r1 and r2

12: τ ← b0
−1(x) ln(1/r1)

13: j ← smallest integer satisfying
∑j

i=1 bi(x) ≥ r2b0(x)

14: w ← w × (γj(πj(x)))−1 × exp{(b0(x)− a0(x))τ}

15: t← t+ τ , x← x + νj

16: update all aj(x) and a0(x); recalculate γj(πj(x)), bj(x) and b0(x)

17: end while

18: end for

19: return p̂sdwSSA(x0, E ; t) = mK/K

Algorithm: CE-DB (Cross Entropy-Dynamic Binning)

Input: KCE, ρ, βmax and κmin

1: γ ← {v1, · · · , vM}, where vj, is a vector of 1s with length βmax

2: i← −1

3: repeat

4: i← i+ 1

5: while running core sdwSSA with K = KCE do

6: mark the dρKCEe trajectories evolving farthest in the direction of E

7: record min(πj) and max(πj)

8: end while

9: Ei ← at most dρKCEe states closest to E reached by the marked trajectories (one per
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trajectory)

10: crj ← min(πj) +
max(πj)−min(πj)

βmax
× r, r ∈ {1, · · · , (βmax − 1)}

11: while running core sdwSSA with K = KCE do

12: record the number of firings among βmax bins for each reaction

13: store information of trajectories that reach Ei
14: end while

15: for j = 1→M do

16: merge bins until every bin contains greater than κmin reaction firings

17: update {c1j , · · · , c
βj−1
j } according to the result from step 16

18: end for

19: γ ← result of (14) evaluated using Ei and trajectories from step 13

20: until Ei ⊆ E

21: return γ̂∗ = γ and c

The two input parameters in the CE-DB, βmax and κmin, are specific to the sdwSSA

and control the dynamic binning strategy. Based on our experience, we recommend setting

βmax = 10 and κmin = 20. In Section IV we test the sensitivity of the rare event estimate

with respect to these parameters to illustrate the robustness of the sdwSSA.

Once CE-DB completes and returns γ̂∗ and c, we substitute these values into the core

sdwSSA to obtain the estimate p̂sdwSSA(x0, E ; t). Thus the total complexity of the rare event

characterization process is (2n × the complexity of the sdwSSA), where n is the number

of steps taken by the CE-DB. All examples we tested used n ≤ 4. For these examples, the

time needed for the CE-DB was much less than the time required for the core sdwSSA.

Finally, we note that the above two algorithms are easily parallelized. Specifically, the K

trajectories simulated in the core sdwSSA can be generated independently. In all examples

below, we execute the core sdwSSA and the CE-DB using a parallel computing cluster.

Source code for CE-DB and the core sdwSSA is available upon request.

IV. EXAMPLES

We illustrate sdwSSA performance on the following three examples: a reversible isomer-

ization process, a yeast polarization model, and a lac operon model. For each example, we

compare sdwSSA results and CPU time with that of dwSSA. Unless otherwise mentioned,
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we use the default parameter values listed in Table I.

To ensure fair comparison, we computed the dwSSA estimate with the same value of

KCE as with the sdwSSA. As the dwSSA required a larger value of K to exhibit comparable

accuracy to the sdwSSA, we continued simulating dwSSA trajectories until the dwSSA

estimate uncertainty was approximately equal to that of the sdwSSA. When possible, we

also estimated rare event probabilities using the swSSA parameterized with the optimal

parameter values given in Ref.7. Lastly, we computed a 68% confidence interval for every

estimate using the method described in Ref.8.

To study the relationship between βmax and the accuracy of an sdwSSA estimate, we

compared the uncertainties computed with different values of βmax ∈ {1, 2, · · · , 15}, where

an sdwSSA estimate with βmax = 1 is equivalent to a dwSSA estimate. We performed

a similar comparison with κmin when applicable. All results were obtained by running in

parallel on a 54 processor cluster (Intel Xeon 2.27GHz).

Lastly, we simplified our definition of a rare event in the following three examples by

limiting the states of interest E to those governed by only a single species S. Specifically, we

define a threshold species count θS above/below which the event occurs, rewriting p(x0; E ; t)

as p(x0; θ
S; t).

A. Reversible isomerization

Our first example is taken from Ref.7 and concerns isomers A and B that are intercon-

verted according to the following two reactions:

A
k1→ B, k1 = 0.12

B
k2→ A, k2 = 1

with x0 = [100 0].

We examine the rare event probability p(x0, θ
B; t) ≡ p(x0, 30; 10), the probability that

the population of species B reaches 30 before time 10, given that the initial population is

[100 0]. For this simple system the state space is finite, and it is possible to calculate the

exact probability (p(x0, 30; 10) = 1.191× 10−5) by constructing a generator matrix9.
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The optimal parameters for the dwSSA and the sdwSSA were learned from running the

dwSSA multilevel CE method and the CE-DB, respectively. The optimal parameters for

the swSSA were taken from Ref.7. Table II summarizes the results. For each method, the

rare event probability estimate, estimate uncertainty, CE-DB run time, and total simulation

time are displayed. The optimal set of biasing parameters employed in each method is listed

in Table III.

The total sdwSSA runtime is approximately equal to the runtime of the swSSA. While the

sdwSSA did not require any prior information to obtain the estimate in Table II, the swSSA

was given a window of parameter values that contained the optimal biasing parameter.

Without this prior information, the number of trials to find the optimal swSSA biasing

parameters (and thus the total simulation time) would be significantly greater. The dwSSA

runtime to reach the accuracy of the sdwSSA estimate in Table II is about 4300 times greater

than the sdwSSA runtime. Moreover, the sdwSSA required less time to estimate its optimal

biasing parameters than the dwSSA: CE-DB utilized one fewer intermediate rare event than

the dwSSA multilevel CE method. For this example, it is clear that a state-dependent

biasing strategy significantly improved efficiency in estimating p(x0, 30; 10).

The sdwSSA estimate in Table II was obtained with βmax = 10 and κmin = 20. If we

decrease βmax to 1, the sdwSSA becomes equivalent to the dwSSA regardless of the value

used for κmin. We therefore expected the accuracy of an sdwSSA estimate to increase with

increasing βmax, with this trend ending only when the value of βmax leads to the creation and

merging of superfluous bins. For this example, we recomputed sdwSSA estimate uncertain-

ties (by rerunning the CE-DB and the core sdwSSA) using values of βmax in {1, 2, . . . , 15},

keeping all other parameters the same as before. Figure 1 compares the results of four

independent sdwSSA estimates at each value of βmax to the dwSSA and swSSA.

As expected, the sdwSSA uncertainty decreases with increasing βmax, although the four

estimates for βmax ≤ 6 exhibit high variability. This variability diminishes for larger βmax,

indicating a more consistent discretization of relative propensities. As βmax reaches a value

of 11, we see a reproducible increase in uncertainty. This increase is specific only to the

reversible isomerization model (see examples below). We suspect that it is due to an artifact

of our binning strategy. We note that the uncertainty at βmax = 11 is still an order of

magnitude less than the lowest uncertainty achieved by dwSSA estimates. As we further

increase βmax, the uncertainty again decreases toward that achieved by the swSSA.
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Fig. 1 does not show the effects of varying κmin. Each isomerization reaction fires at

least 80,000 times in a single simulation, so unless we increase κmin to 200, the algorithm

yields the same estimate as in Table II with κmin = 20. We thus conclude that this rare

event probability estimate is not sensitive to κmin.

B. Yeast polarization

Next we consider the pheromone-induced G-protein cycle in Saccharomyces cerevisiae.

This system is taken from Ref.5 and consists of seven species x = [R L RL G Ga Gbg Gd],

whose dynamics are represented by the following eight reactions:

R1 : ∅ k1→ R k1 = 0.0038

R2 : R
k2→ ∅ k2 = 4.00× 10−4

R3 : L+R
k3→ RL+ L k3 = 0.042

R4 : RL
k4→ R k4 = 0.010

R5 : RL+G
k5→ Ga +Gbg k5 = 0.011

R6 : Ga
k6→ Gd k6 = 0.100

R7 : Gd +Gbg
k7→ G k7 = 1.05× 103

R8 : ∅ k8→ RL k8 = 3.21 ,

with x0 = [50 2 0 50 0 0 0]. For this system, we estimated the rare event probability

p(x0, θ
Gbg ; t) ≡ p(x0, 40; 5); i.e., the probability that the population of Gbg reaches 40 before

time 5. To accurately estimate this probability using any method, it is necessary to bias

more than one reaction of the system. However, the tortuous trial and error procedure asso-

ciated with optimizing two or more parameters of the swSSA prohibits us from estimating

p(x0, θ
Gbg ; t) with this method. The dwSSA and the sdwSSA estimates were obtained by

first computing respective optimal biasing parameters using the multilevel CE method with

KCE = 106, followed by simulating K = 107 sdwSSA and 6 × 108 dwSSA trajectories to

estimate the rare event probability. We note that due to the high intrinsic stochasticity,

we increased the values for KCE and sdwSSA K by ten times their default values. The
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simulation results and the optimal biasing parameters are summarized in Tables IV and V,

respectively.

In Table IV the simulation time of the dwSSA to yield an estimate of similar accuracy

as the sdwSSA is 24 times greater than the sdwSSA simulation time. When we compare

γ̂∗
dwSSA to γ̂∗

sdwSSA in Table V, the largest differences are observed in the parameters of

R4, R5, and R6 (ignoring the parameters of R1 and R2, which were previously shown to have

a negligible influence on the accuracy of the probability estimate). The sdwSSA parameters

of the other reactions (excluding R1 and R2) do not show appreciable variation between

bins and are in general agreement with the optimal dwSSA parameters. We conclude that

the use of state-dependent IS parameters for R4, R5, and R6 is largely responsible for the

almost 25-fold computational gain of the sdwSSA over the dwSSA.

We next measured the sensitivity of p̂sdwSSA to βmax. As before, we computed four

independent sdwSSA probability estimates for βmax = {1, · · · , 15}. Figure 2 displays their

uncertainties. As expected, the uncertainties gradually decrease with increasing βmax. Unlike

with the reversible isomerization model, we do not display the swSSA uncertainty for the

yeast model since it is not feasible to optimize multiple swSSA IS parameters.

Finally, we evaluated the sensitivity of p̂sdwSSA to the κmin parameter. We executed the

CE-DB and the core sdwSSA as before, using either κmin = 10 or κmin = 30. The results

are shown in Fig. 3. We see no apparent uncertainty differences among estimates generated

with κmin = 20 (Fig. 2) and κmin = 30 (Fig. 3b). However, estimate uncertainty varies

more strongly between the four ensembles using κmin = 10 (Fig. 3a). We hypothesize that

this higher variability is due to an insufficient number of reaction firings in each bin used

to estimate the optimal sdwSSA parameters. Since the yeast system exhibits high intrinsic

stochasticity, consistent estimates of IS parameters likely require >10 reaction firings in each

bin. This helps to illustrate a general point: whereas setting κmin too high can decrease

βj, leading to suboptimal exploration of the relative propensity range, setting it too low

can increase estimate variance. For the problems we have tested, κmin = 20 seems to confer

proper discretization of the relative propensity range as well as reliable estimation of sdwSSA

parameters.
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C. Lac operon

Our last example is a lac operon model10 consisting of 12 species (x = [MR R R2

O R2O I Iex I2R2 MY Y Y Iex Ytot]) and the following 25 reactions:
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R1 : ∅ k1→MR k1 = 0.111

R2 : MR
k2→MR +R k2 = 15.0

R3 : 2R
k3→ R2 k3 = 103.8

R4 : R2
k4→ 2R k4 = 0.001

R5 : R2 +O
k5→ R2O k5 = 1992.7

R6 : R2O
k6→ R2 +O k6 = 2.40

R7 : 2I +R2
k7→ I2R2 k7 = 1.293× 10−6

R8 : I2R2
k8→ 2I +R2 k8 = 12.0

R9 : 2I +R2O
k9→ I2R2 +O k9 = 1.293× 10−6

R10 : I2R2 +O
k10→ 2I +R2O k10 = 9963.2

R11 : O
k11→ O +MY k11 = 0.50

R12 : R2O
k12→ R2O +MY k12 = 0.010

R13 : MY
k13→ MY + Y k13 = 30.0

R14 : Y + Iex
k14→ Y Iex k14 = 0.249

R15 : Y Iex
k15→ Y + Iex k15 = 0.10

R16 : Y Iex
k16→ Y + I k16 = 60000

R17 : Iex
k17→ I k17 = 0.920

R18 : I
k18→ Iex k18 = 0.920

R19 : MR
k19→ ∅ k19 = 0.462

R20 : MY
k20→ ∅ k20 = 0.462

R21 : R
k21→ ∅ k21 = 0.20

R22 : R2
k22→ ∅ k22 = 0.20

R23 : Y
k23→ ∅ k23 = 0.20

R24 : Y Iex
k24→ I k24 = 0.20

R25 : I2R2
k25→ 2I k25 = 0.20

The lac operon genetic switch has been widely studied since it was first discovered in 1960.
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Specifically, the positive feedback loop underlying the switch has garnered wide interest

among researchers because it is accountable for the all-or-none bistable response of the lac

operon. The key player in the positive feedback loop is LacY, which facilitates lactose

import.

In this example, we consider the rare event probability p(x0, θ
Ytot ; t) ≡ p(x0, 120; 0.5),

i.e. the probability that the total number of Y molecules reaches 120 before time 0.5 given

the initial condition x0 = [0 0 0 1 0 0 48177 0 0 0 0 0]. We computed dwSSA

and sdwSSA probability estimates for this system using the same simulation settings as in

the yeast polarization model (except that K = 4.5 × 107 for the dwSSA). The simulation

statistics and the optimal biasing parameters are listed in Table VI and the Appendix,

respectively.

The total simulation time in Table VI shows that the dwSSA takes approximately 4 days

to obtain an estimate of similar accuracy as the sdwSSA estimate, which required less than

2.5 days. We also note that the dwSSA multilevel CE method used three intermediate rare

events (E1 = 18, E2 = 65, and E3 = 117) to estimate its optimal biasing parameters, while

the multilevel CE method for the sdwSSA required only two (E1 = 18 and E2 = 60).

A close look at the optimal IS parameter values in Table VII reveals that many of

the 25 state-dependent biasing parameters are in agreement with the corresponding state-

independent dwSSA parameters. However, several sdwSSA parameters show differences that

are worthy of discussion. One group of parameters (e.g., γ̂∗1 and γ̂∗11) show the same biasing

directions in both the dwSSA and the sdwSSA but differ in their magnitudes. The sdwSSA

parameter values indicate that R1 and R11 require significantly more perturbation as they

become more likely to fire. In particular, the relative propensity range of R11 is made up of

several bins whose optimal IS parameter values are > 100. The optimal dwSSA parameter

for this reaction is 32.42, which is roughly equivalent to the average sdwSSA parameter

value taken over all R11 bins. In the dwSSA regime, setting γ11 ≥ 32.42 will over-perturb

R11 when it is not likely to fire; conversely, decreasing γ11 will under-perturb R11 when it

is likely to fire. Reactions R1 and R11 in the lac operon network are similar to reactions

R4, R5, and R6 in the yeast polarization model in that they show the greatest benefit from

using state-dependent biasing parameters.

A second group of parameters exhibit an opposite biasing scheme in the dwSSA versus

the sdwSSA. Reactions R5 and R19 are discouraged using optimal dwSSA parameters, yet
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they are encouraged in the sdwSSA. We note that both reactions utilize fewer than three

bins after undergoing merging. If R5 and R19 were important for accurately estimating

the rare event probability, we would expect them to require a greater number of relative

propensity bins containing monotonically varying parameter values. Thus, we hypothesize

that the probability estimate is relatively insensitive to the parameters of these two reactions.

To confirm this hypothesis, we recomputed parameter values for the dwSSA and sdwSSA

with different random number generator seeds. In the second set of dwSSA parameters,

γ5 changed from 0.88 to 1.81 and γ19 from 0.19 to 0.95. The corresponding second set of

sdwSSA parameters also showed high variability in their values. Thus, we conclude that

p̂(x0, θ
Ytot ; t) is not sensitive to γ5 and γ19 in both the dwSSA and sdwSSA.

V. CONCLUSION

We have developed a novel modification of the doubly weighted SSA (dwSSA)—the state-

dependent doubly weighted SSA (sdwSSA)—which yields an accurate estimate of a rare

event probability, even for systems where the relative propensities vary widely over time.

The sdwSSA is a natural extension of the dwSSA which reduces to the latter when βmax, the

maximum number of bins used to discretize relative propensity, is set to 1. Consequently,

the sdwSSA retains all benefits of the dwSSA while providing greater computational ef-

ficiency. It achieves this by automatically computing the optimal set of state-dependent

biasing parameters and subsequently using these parameters to accurately estimate a rare

event probability. Numerical results reported in Sec. IV demonstrate the improved accuracy

and efficiency of the method. For practical purposes, it is important that the sdwSSA not

only improves estimate accuracy but also adds minimal computation to the existing dwSSA

framework. We have achieved this requirement by (1) proposing a specific form for the

state-dependent biasing parameter that yields a closed-form solution when coupled with the

multilevel cross-entropy method, and (2) incorporating a dynamic binning strategy into the

cross-entropy framework that requires no additional realizations over the dwSSA.

The sdwSSA discretizes the relative propensity range of each reaction to arrive at a

closed-form expression of its biasing parameters. For each reaction, we interpret the βj state-

dependent biasing parameters as a step function, i.e. any relative propensity value between

ci−1
j and cij is assigned γji. While leaving the discretization scheme unchanged, a higher
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order interpolation could be subsequently used as an alternative approach for determining

the amount of perturbation for each reaction. Future work will focus on customizing the

binning strategy for individual reactions such that key reactions for a given rare event are

identified and their parameters computed using an optimal interpolation method.
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FIG. 1. Uncertainty vs βmax for the reversible isomerization process. For each βmax, four in-

dependent sdwSSA estimates are obtained. The two dotted red lines connect the minimum and

maximum uncertainties at each βmax value. The blue line corresponds to the uncertainty obtained

from K = 106 swSSA simulations, parameterized with the optimal IS parameters listed in Table

III. The four green lines represent uncertainties of dwSSA estimates.

FIG. 2. Uncertainty vs βmax for the yeast polarization model. For each βmax, four independent

instances of the CE-DB with KCE = 106 were executed, followed by four instances of the core

sdwSSA with K = 107. Each red dot corresponds to the uncertainty of sdwSSA estimates, and

two red lines connect the minimum and the maximum uncertainties in each βmax value. The four

green lines represent dwSSA uncertainties.

FIG. 3. Uncertainty vs βmax for the yeast polarization model. All data were generated using

the same simulation settings as in Fig. 2, except for the value of κmin. Panel (a) was generated

with κmin = 10, and panel (b) was generated with κmin = 30. Estimated uncertainties obtained

with κmin = 10 display significantly higher variability among the four ensembles than the estimates

obtained with κmin = 20 or κmin = 30. As the magnitude of the rare event probability is very small,

we suspect that greater numbers of firings are required in each bin to obtain reliable estimates of

the state-dependent IS parameters.
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TABLE I. List of input parameters for the core sdwSSA and the CE-DB

Parameter Default value Description

K 106 number of realizations used to compute p̂

KCE 105 number of realizations used to compute γ̂∗

ρ 0.01 fraction of trajectories in CE-DB

βmax 10 maximum number of reaction bins

κmin 20 minimum number of data points per bin

TABLE II. Results for the reversible isomerization model.

Method p̂(x0, θ
B; t) 68% uncertainty CE-DB time (s) Total time (s)

swSSA 1.190 ×10−5 0.002 ×10−5 NA 27

dwSSA 1.190 ×10−5 0.002 ×10−5 36 1.29 ×105

sdwSSA 1.193 ×10−5 0.002 ×10−5 22 30
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TABLE III. Importance sampling parameters for the reversible isomerization process.

Method Algorithmic parameters

swSSA γmax1 = 20, ρ0
1 = 0.5

dwSSA γ̂∗ = [1.301 0.719]

sdwSSA γ̂∗ = {[2.69, 1.74, 1.26, 1.11, 1.06, 1.03, 1.02, 1.02, 1.06, 1.00],

[1.01, 0.99, 0.97, 0.97, 0.95, 0.92, 0.83, 0.62, 0.40]},

c = {[0.30, 0.38, 0.46, 0.54, 0.61, 0.69, 0.77, 0.85, 0.92],

[0.15, 0.23, 0.31, 0.39, 0.46, 0.54, 0.62, 0.70]}

TABLE IV. Results for the yeast polarization model.

Method p̂(x0, θ
Gbg ; t) 68% uncertainty CE-DB time (s) Total time (s)

dwSSA 1.058× 10−11 0.010× 10−11 51 3116

sdwSSA 1.082× 10−11 0.010× 10−11 51 132
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TABLE V. Optimal IS parameters for the yeast polarization model.

j γ̂∗dwSSA γ̂∗sdwSSA

1 0.786 [0.729 1.216 0.971 0.889 2.137]

2 0.670 [0.939 0.766 0.790 0.988 0.418 0.778 0.151 0.945]

3 1.800 [1.477 1.631 1.785 1.899 1.929 1.903 1.839 1.826 1.863]

4 0.692 [0.366 0.455 0.465 0.547 0.620 0.612 1.194]

5 1.687 [1.042 3.455 4.743 3.136 2.237 1.659 1.380 1.277 1.222 1.186]

6 0.250 [0.356 0.368 0.343 0.325 0.284 0.246 0.237 0.184 0.148 0.121]

7 0.987 [1.001]

8 2.048 [2.064 2.072 2.029 1.796 2.413 2.446 2.443]

j c

1 [0.000259 0.00031 0.000362 0.000414]

2 [0.000822 0.0011 0.00137 0.00164 0.00192 0.00219 0.00246]

3 [0.115 0.172 0.23 0.287 0.344 0.402 0.459 0.517]

4 [0.00571 0.00857 0.0114 0.0143 0.0171 0.0200]

5 [0.069 0.138 0.207 0.276 0.345 0.414 0.483 0.552 0.621]

6 [0.0398 0.0796 0.119 0.159 0.199 0.239 0.279 0.318 0.358]

7 NA

8 [0.175 0.219 0.262 0.306 0.35 0.394 ]

TABLE VI. Results for the lac operon model.

Method p̂(x0, θ
Ytot ; t) 68% uncertainty CE-DB time (hours) Total time (hours)

dwSSA 3.75× 10−15 0.07× 10−15 9.33 97.36

sdwSSA 3.72× 10−15 0.07× 10−15 11.47 59.52
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Appendix A: Supplemental information on lac operon model

TABLE VII. Complete list of optimal IS parameters employed by the dwSSA and the sdwSSA in

the lac operon model.

Reaction index γ̂∗dwSSA γ̂∗sdwSSA

1 0.48 [0.41, 0.54, 0.23, 0.14]

2 0.82 [1.15, 0.79, 1.00, 0.78]

3 0.83 [0.81, 5.57]

4 1.66e-83 [1.80e-82]

5 0.88 [1.28, 1.35]

6 1.33 [0.21]

7 1.09 [0.094, 0.54, 1.33, 0.29, 0.58]

8 0.89 [0.63, 0.32]

9 0.95 [1.05, 0.98, 1.13, 1.10, 0.89, 1.09, 0.66, 0.91, 0.79, 1.21]

10 1.00 [1.09, 1.11, 1.07, 0.74, 0.88, 0.88]

11 32.42 [13.14, 22.35, 18.82, 36.02, 17.06, 93.93, 98.64, 127.5, 116.2, 122.3]

12 1.82e-86 [0.0019]

13 1.35 [1.36, 1.40, 1.40, 1.23, 1.30, 1.52, 0.72, 0.29]

14 1.00 [0.96, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.99]

15 0.95 [0.11, 0.46, 0.89, 0.91, 0.52, 0.38]

16 1.00 [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.99]

17 1.00 [1.00, 1.00, 1.01, 1.00, 1.00, 1.01, 1.00, 1.02, 1.02, 1.00]

18 1.00 [0.99, 1.00, 1.00, 0.99, 0.99, 1.00, 1.00, 1.00, 0.99, 0.99]

19 0.19 [3.97]

20 0.20 [0.028, 0.13, 0.17, 1.51, 0.66]

21 0.87 [0.057]

22 8.35e-86 [9.01e-85]

23 0.72 [0.80, 0.69, 0.88, 0.72, 0.61, 0.59, 0.34, 1.30, 0.38, 0.48]

24 0.44 [0.47, 1.13, 1.36, 0.42, 0.25, 0.41]

25 1.44e-87 [1.73e-86]
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TABLE VIII. End points of bins associated with the optimal sdwSSA IS parameters in Table VII.

Reaction index c

1 [3.29, 5.70, 8.11] ×10−7

2 [4.65, 9.31, 13.8] ×10−5

3 [0.0012]

4 NA

5 [0.011]

6 NA

7 [0.0031, 0.0063, 0.0093, 0.012]

8 [0.00013]

9 [1.63, 3.26, 4.90, 6.53, 8.17, 9.80, 11.4, 13.0, 14.7]×10−3

10 [0.057, 0.11, 0.17, 0.23, 0.29]

11 [1.13, 2.26, 3.38, 4.51, 5.64, 6.77, 7.89, 9.02, 10.2] ×10−6

12 NA

13 [0.00067, 0.0013, 0.0020, 0.0027, 0.0034, 0.0040, 0.0047]

14 [0.088, 0.18, 0.27, 0.35, 0.44, 0.53, 0.62, 0.71, 0.80]

15 [4.68, 6.24, 7.80, 9.36, 10.9] ×10−7

16 [0.19, 0.28, 0.37, 0.47, 0.56, 0.66, 0.75, 0.84]

17 [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90]

18 [0.05, 0.10, 0.15, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46]

19 NA

20 [1.03, 2.07, 3.10, 4.14] ×10−5

21 NA

22 NA

23 [2.82, 5.64 8.46, 11.2, 14.1, 16.9, 19.7, 22.5, 25.4]×10−5

24 [0.94, 1.24, 1.56, 1.87, 2.18] ×10−6

25 NA
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