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Abstract
The suprachiasmatic nucleus (SCN) is the master clock of the brain. It is a network of neurons that behave like
biological oscillators, capable of synchronizing and maintaining daily rhythms. The detailed structure of this network
is still unknown, and the role that the connectivity pattern plays in the networks ability to generate robust oscillations
has yet to be fully elucidated. In recent work, we used an information theory-based technique to infer the structure
of the functional network for synchronization, from bioluminescence reporter data. Here, we propose a computational
method to determine the directionality of the connections between the neurons. We find that most SCN neurons have
a similar number of incoming connections, but the number of outgoing connections per neuron varies widely, with the
most highly connected neurons residing preferentially in the core.
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Introduction

A majority of living organisms display internal rhythms
that oscillate with nearly 24 hour periods. These are called
circadian rhythms and control gene expression in cells, as
well as bodily processes and behavioral patterns in larger
organisms Dunlap (1999). The main pacemaker for this
process in mammals is the suprachiasmatic nucleus (SCN),
a neuronal network comprised of approximately 20,000
neurons, situated in the ventral hypothalamus Ralph et
al (1990). This neuron cluster acts to entrain the body’s
circadian rhythms with environmental light/dark cycles, as
well as to subsequently entrain peripheral physiological
functions Bass and Takahashi (2010). While individual
cells within this network display circadian oscillations, the
robust system properties and stability necessary to be useful
in a dynamic biological system do not emerge without
communication between the individual oscillators Liu et
al. (2007), Stelling et al. (2004). The cells communicate
and synchronize via neurotransmitters and neuropeptides.
The transcription-translation feedback loop that produces
oscillations within a single cell has been extensively studied
and modeled Leloup and Goldbeter (2003),To et al. (2007).
However, the network dynamics are dependent on the
topology of the SCN network as a whole.

Much work has been done to elucidate the mechanisms of
communication in the SCN Aton et al. (2005), DeWoskin
et al. (2015). The main mechanism focused on in this
paper is signaling via vasoactive intestinal polypeptide (VIP)
to achieve synchronization of the clock protein PERIOD2
(PER2) via CREB (cAMP response element-binding protein)
and the resulting synchronization of PER2 expression among
cells in the SCN. Additional work has been conducted
to explore the nature of the network structure. Several
potential topologies have been examined Cutler et al. (2003),

Vasalou et al. (2009), including nearest neighbor, Strogatz-
Watts, and exponential networks. Some models Gonze et
al. (2005) have also used a mean-field mechanism to attain
synchrony in the system. Data analysis techniques applied
to PER expression data using a bioluminescent reporter have
suggested that a small world network with an exponentially
distributed node degree provides a good fit to observed
network properties Abel et al. (2016). This type of network
is also consistent with what is known about the development
of neurons and their structure Cutler et al. (2003). There
are several modes of coupling amongst neurons in the
brain. These include synaptic connections, gap junctions, and
diffusing signals. Mechanisms such as diffusing signals do
not exhibit directionality, as they are diffusion mediated and
so transmitters simply move along concentration gradients.
Gap junctions more directly connect two cells, and allow
for rapid transmission of electrical signals and exchange of
small molecules. This direct connection goes both ways,
and therefore does not exhibit directionality. Connections
between the axons and dendrites, however, may exhibit
directionality. While it is possible for a neuron to both
send a signal to another neuron via its axons as well as
receive that second neurons signals at its own dendrites, it
is not a requirement. It is possible for a neuron to only
receive a signal in this manner, or only send it. Thus, neural
connections give rise to networks that are partially, though
not exclusively, directed. Recent research has focused on
which cells were connected, but not on the directionality
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of those connections. Since neurons do not necessarily
communicate bi-directionally, to further understand these
complex biological networks it is important that we know not
only whether or not two cells are connected, but also whether
the signal goes from cell A to cell B or vice versa.

Other works Abrahamson and Moore (2001) have
suggested an asymmetric distribution of nodes, with findings
that indicate two distinct regions in the SCN lobes: a
core and a shell. These works have found that the core
is the main driver of synchrony Welsh et al. (1995),
leading the PER oscillations while the shell lags slightly
behind. Previous studies Abel et al. (2016) of the network
connections of the SCN have also observed a higher number
of connections within and extending from the core region.
Furthermore, it is established Cagampang et al (1998)
that while a majority of neurons in the SCN, and nearly
all in the shell Kalamatianos et al. (2004) are capable
of receiving vasoactive intestinal polypeptide (VIP), the
putative coupling agent for synchronization Abel et al.
(2016), only approximately 20% are able to synthesize it
Kalamatianos et al. (2004).

Functional network structures for neurons have been
identified using techniques including mutual information,
transfer entropy, directed transfer functions, Granger
causality, and between-sample analysis of connectivity
(BSAC) Abel et al. (2016),Garofalo et al. (2009),Bettencourt
et al. (2007),Kaminski et al. (2001),Pourzanjani et al.
(2015),Fujita et al. (2010). However, each of these methods
has one of two issues. They are either inappropriate for
determining the directionality of connections, or the lack of
high frequency data and slow nature of the feedback loop
controlling the core SCN oscillator render the technique
not applicable. For example, high-frequency GABA signals
affect the firing of SCN neurons and have been mapped
previously Garofalo et al. (2009); however, fast scale GABA
is not thought to affect the core oscillator DeWoskin et al.
(2015), but rather it is primarily driven by slow-scale VIP,
resulting in the damping of high-frequency signals Fujita
et al. (2010), Webb et al. (2012). Additionally, while the
maximal information coefficient (MIC) has been used to
identify the functional connectivity of the SCN Abrahamson
and Moore (2001), it does not provide information regarding
the directionality of those connections.

This paper makes two primary research contributions.
First, we introduce a model-based methodology for inference
of directionality of network connections. Second, we
apply this methodology to infer the directionality of four
networks of SCN cells. By analyzing the resynchronization
data from four mouse SCN explants with knock-in
PERIOD2:Luciferase, we confirm that there are likely phase-
leading nodes that entrain others, and that these nodes
reside preferentially in the core. We find that the SCN
forms a directed network with an exponentially distributed
outgoing node degree, but a normally distributed incoming
node degree. This further supports the idea that driver
nodes are the primary controllers of the SCN phase. Based
on these findings, we suggest that this structure serves a
purpose of balancing the ability of the system to synchronize
and re-entrain quickly with the ability to maintain robust
oscillations that are not desynchronized by short time scale
perturbations.

Methodology and results

Data gathering
To collect the data for this experiment, four mouse SCNs
were sliced and cultured under a microscope. Images were
captured every hour and tracking software Abel et al.
(2016) was used to identify and ascribe bioluminescence
values to individual cells. The complete methodology is
detailed in the ”Biological Methods” section of Abel et
al. (2016). Tetrodotoxin (TTX), a neurotoxin that inhibits
intercellular signaling, was applied and left for six days. The
TTX was then washed from the system and the subsequent
resynchronization was observed for eight days. The hourly
data from the resynchronization portion of these experiments
was then used to infer the network structure. The full
dataset used to obtain results is publicly available online
at https://github.com/JohnAbel/scn-resynchronization-data-
2016.

Inference of directed connections between SCN
neurons

Basic concept
The basic concept for our method is as follows: given the
data, which consists of PER2 concentrations at 60 minute
intervals, and a simple model (we use a phase-amplitude
model from Garofalo et al. (2009)), minimize the difference
between the data and the model predictions as a function of
the directionality of the network connections between each
pair of neurons. Thus, we have

min(C)
∑
‖PER2t,i − P̂ER2t,i(C)‖ (1)

where C is the directed connectivity matrix and PER2t,i is
the observed value of PER2 at time t for cell i. P̂ER2t,i(C)
is the model-predicted value of PER2 at time t for cell i, and
is a function of the connections into cell i. The norm used is
the L2 norm.

The naive approach requires that we explore an
exponentially increasing number of network configurations
to be explored, needing to explore as many as 2n possible
network structures, where n is the number of nodes, and
run full simulations for each of them. This rapidly becomes
infeasible for large systems. For our networks of over 400
neurons, it would have taken more than a year to run all of
the necessary simulations on a single processor machine.

Instead, we propose a method that solves a least
squares problem, minimizing over the possible connection
directionalities while constraining the weights for each
connection to between 0 and 1. We begin by noting that the
derivative of the phase of an oscillating system is given by
the Velocity Response Curve (VRC) Garofalo et al. (2009),
Taylor et al. (2010), which is a cell-specific function of
the current phase and amplitude, and of the incoming VIP
to each cell, which depends on the network connections,
including their directionality. Using a forward Euler method
to obtain the phase at time t+ 1, given the phase at time t,
we obtain

φi,t+1 = φi,t + ∆t(1 + V RC(φi,t, Ai,t))
V IPin,i(t, C)

V IPin,i(t, C) + 12
.

(2)
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The new phase, given by the model, can be expressed
as a linear function of the connectivity matrix. Then, we
minimize the error between the observed phase and the
model predicted phase over the connections

min(C)
∑
‖φi − φ̂i(C)‖ (3)

Noting that, by multiplying through in equation 3 by the
denominator of the fraction, it is easy to see that the new
phase, given by the discretized model, can be expressed
as a linear function of the connectivity matrix. Thus this
minimization can be performed very efficiently via a linear
least squares solver.

In our specific implementation we instead solved for VIP
as a function of phase, and minimized the difference between
predicted and observed incoming VIP, again leading to a
linear least squares problem. A detailed desctiption may be
found in the Supplemental materials section.

It is important to note that there are two possible ways
in which the model can come into the optimization. One
could solve the ODE numerically, over the entire interval,
and minimize, over all possible connectivities, the distance
between the solution to this ODE and the data. Or, one
could re-initialize the ODE at each data point, using the data.
This introduces a complication, though, in that the phase-
amplitude model will need initial values at each time point
for both phase and amplitude, and both of these values will
need to be determined from the PER2 data. We found that
the second method, despite the complications of generating
the required the initial values from the data, was much more
robust.

In our inference of directionality, we began with the
functional networks inferred in Abel et al. (2016).

Model
This inference approach requires a model that, given the
data at time t and a proposed connectivity matrix C, can
produce an approximation to the PER2 concentration at
time t+ 1. Due to the fact that the data gathered was
limited to bioluminescent reporting of PER2, it seemed most
appropriate to use the simple phase-amplitude model as
established in Taylor et al. (2017) for the inference. The two
differential equations that govern each neuron in the model
are given by

dφi(t)

dt
= 1 + V RC(φi(t), Ai(t), ssi, τi)

γi(t)

γi(t) +K
, (4)

dAi(t)

dt
= −λ(Ai(t)− ssi) + κ

γi(t)

γi(t) +K
, (5)

where φi(t) is the phase of cell i, 1 represents the basal rate
of phase change per hour (for an oscillator with a period
of approximately 24 hours), V RC(φi(t), Ai(t), ssi, τi)
represents the Velocity Response Curve (VRC) as a function
of the phase, amplitude, steady state amplitude and period
of the cell, respectively, γi(t) is the incoming concentration
of VIP averaged across inputs, and K is an activation
threshold. Additionally, κ is the maximum growth rate of the
amplitude, and λ is the decay rate. The VRC for each cell
was determined using the equation

expβ(ssi −Ai(t))V RCintrinsic(φi(t), ssi, τi), (6)

where β is a parameter that scales the size of the VRC
depending on the cell amplitude, ssi is the uncoupled
amplitude of the cell, and V RCintrinsic is an emperical
curve shown in Webb et al. (2012) that gives a baseline VRC
for all cells. This equation makes it so that higher amplitude
cells respond less strongly to incoming signals.

The key feature of this model that allows it to work
with our limited data comes from the fact that the PER
concentration in each cell can be represented as an oscillator
with a varying phase and amplitude, making it useful for
predicting circadian behavior. Thus, the PER data can be
converted into a series of phases and amplitudes for each cell
and the response of the oscillators to external stimuli (VIP)
can be modeled using velocity response curves (VRCs). The
process for the conversion is outlined later in this Section.

The relaxation rate used in this model is λ = 0.39hr−1.
This value is comparable to values examined in Abraham et
al. (2010). It is within their definition of a rigid oscillator,
which rapidly proceeds to its limit cycle state, but is still
shown to produce a distribution of individual oscillators
that are entrained to within approximately two hours of
the system phase. When testing synthetic networks, values
for ssi were chosen from a normal distribution about 1
a.u. (arbitrary units) with a standard deviation of 0.2 a.u.,
similar to simulations in Abraham et al. (2010) and Schmal
et al. (2018). With amplitude expansion, this resulted in an
amplitude distribution with a mean of 5.5 a.u. and a standard
deviation of 1.23 at limit-cycle amplitudes. The observed
amplitude expansion in our simulations is similar to the
approximately 5 fold increase found in experimental data in
Schmal et al. (2018) for systems considered to have moderate
coupling strength.

One caveat is that the specific model chosen likely affects
the results. To be a candidate model for analyzing connection
directionality, a model must have both a way to relate
phase to neurotransmitter release and a relationship for how
neurotransmitter inputs affect phase velocity. The model
used in this paper has both. A family of VRCs tuned for this
system is used to relate VIP input to phase change, and the
model includes a prediction of VIP release based on a cells
phase. Changing these factors will have the largest effect on
the results.

Generation of phase and amplitude from the
data

To use the phase-amplitude model to make predictions and
infer network structure, it was necessary to obtain the phases
and amplitudes from the PER2 data at each time point. To
accomplish this, we made initial predictions of the phase and
amplitude using the model, and refined the predictions via a
minimization with regularization, as described below.

The phase values at peaks and troughs, as well as the
amplitude values at peaks, were directly calculated. These
points will henceforth be referred to as anchor points.
Initial guesses for the remaining phases and amplitudes were
generated assuming that each cell experiences a mean field
concentration of VIP stimulus, and Euler’s method was used
to generate values from one anchor point to the next. A
detailed explanation can be found in Supplement S1.
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The initial guess for a time series between two anchor
points was then refined by minimizing the l2-norm of the
residuals of the difference between the model-generated
concentration and the PER2 data for each time point
according to:

minφt,i,At,i

∑
t

γ1‖PER2t,i − P̂ER2t,i(φt,i, At,i)‖

+γ2‖φt,i − φt−1,i − t
dφt−1,i

dt
‖

+γ3‖At,i −At−1,i − t
dAt−1,i

dt
‖,

(7)

where dφt−1,i

dt and dAt−1,i

dt are calculated according to
equations 4 and 5, and γ1, γ2 and γ3 determine the relative
importance of the model fit, the phase regularization and the
amplitude regularization respectively.

The first regularization prevents the phase from deviating
too much from the model inferred value. This keeps the
phase within reasonable bounds from one time step to
the next (i.e., no jumps from π

2 to 5π
2 ). The second

regularization prevents extreme amplitude changes by
penalizing deviations away from the amplitude of the
previous time step plus an expected deviation dependent on
the mean VIP in the system. The phase and amplitude values
found using this method were then used to solve for the
incoming V IPin.

Results
The method was tested using synthetic networks generated
in silico. Directed networks were randomly generated, and
the reduced model was used to produce a corresponding set
of resynchronization data. The method described above was
then used on this test data, given an undirected version of the
network, to determine the success rate of the method. The
parameters used to produce the test data were varied from
those assumed during the inference, to test the robustness
of the method. Additionally, Gaussian noise with a standard
deviation of up to 50% of the mean amplitude of the
oscillations was added to the synthetic data to test its effect
on the accuracy of the inference. The results of the inference
were evaluated for accuracy (ACC), sensitivity (TPR), and
specificity (SPC) according to

ACC =
TP + TN

TP + TN + FP + FN
(8)

TPR =
TP

TP + FN
(9)

SPC =
TN

TN + FP
, (10)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives and FN
is the number of false negatives.

With Gaussian noise of 20% of the value of the mean
amplitude applied, the inference of connections in the
synthetic networks had an ACC of 82.6%, with a TPR of
88.5% and an SPC of 78.6%. With 10% noise those values
become a 91.1% ACC, a 93.4% TPR, and an 88.2% SPC.
When the anchor points were not used and the phase and
amplitude values for the entire time series were determined

using only the initial conditions, the robustness of the
method greatly decreased. The results of all of the trials are
summarized in the Supplemental material.

Initial results from Abel et al. (2016) suggested that
exploring the functional connectivity within SCNs revealed
networks with an exponential node degree. Our work
further supports this, finding an exponential node degree for
outgoing connections . However, we also observe a truncated
normally distributed node degree for incoming connections.
This result illuminates previous experimental research that
found that only approximately 20 percent of cells in the
SCN express VIP Kalamatianos et al. (2004), while almost
all SCN cells express the surface protein responsible for the
detection of VIP. It seems likely that the highly connected
nodes are VIP-ergic cells that drive the synchronization and
entrainment of the system.

Over 99% of identified SCN neurons were determined
to have three or fewer incoming connections. In contrast,
approximately 80% of SCN neurons have three or fewer
outgoing connections, while the remaining 20% are
relatively highly connected nodes of outgoing degree 4 or
larger. Among all cells, 60% have no outgoing connections
at all. This suggests that most cells have some input from
1-3 other nodes, while approximately 20% of the cells are
generating that input.

Discussion
In this work we have introduced a methodology for model-
based inference of network directionality, and then used it
to infer the directionality of the functional networks for
synchronization of SCN slices. In this paper we sought
the functional network structure for synchronization, which
occurs on a relatively long timescale and is known to be
driven mainly by neuropeptide mediated communication.
We note that this is different from short time scale
communication, which is important for other SCN functions,
such as the electrical coupling used for visual function in
Schmal et al. (2018).

The inference methodology is based on minimization of
the difference between simple, local models and the data,
over the time intervals for which the data was measured.
Although we had data for only one chemical species: PER2
concentration, we showed how to make use of another
optimization to obtain estimated time course information
for both period and phase. The inference was then carried
out simply and efficiently by solving a linear least squares
problem. We anticipate that our overall approach may be
extended to inference of directionality of more complex,
multivariable problems where data is available for only some
of the state variables, but strong correlations exist between
the known and unknown variables.

In Abel et al., potential connections were identified
between cells based on their phase progression as synchrony
was restored to a system that had been disrupted with TTX.
In this paper, we use those identified connections as the basis
of our network, and then use a model to determine their
direction. The directionality of the functional network for
synchronization that we infered from the slices revealed an
asymmetric network where most neurons had an incoming
node degree less than or equal to three, and the network
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Figure 1. Incoming (a) and outgoing (b) connections for SCN 1.
Nodes are sized and colored according to the number of
incoming and outgoing connections. The maximum outgoing
node degree for this SCN was found to be 10, with node
degrees over 5 occurring 20 times (n = 541), and the maximum
incoming node degree was found to be 7, with node degrees of
5 or more occurring only three times.

of outgoing connections was small world. Approximately
31.3% of those connections were found to be bi-directional,
while 68.7% were found to be directed.The neurons with a
higher degree of outgoing connections reside preferentially
in the core, which would be expected if the core entrains
the shell in synchronization Taylor et al. (2017). We suspect
that these may be the VIP-ergic nerurons as found in
Kalamatianos et al. (2004). Simulated networks with this
structure result in the highly sparsely connected nodes
becoming phase leaders while the more highly connected
nodes lag slightly behind. . This agrees with the findings of
Taylor et al. (2017) that found that core SCN neurons peaked
in expression after shell neurons.

The directionality found in this paper resembles the
structure of, for example, a corporation. Nearly all nodes
have a small number of incoming connections, but select
nodes have a much larger number of outgoing connections.
This structure suggests that the highly connected nodes
drive the resynchronization, while the redundancy of smaller

Figure 2. Cumulative incoming and outgoing node degree
distributions for the four SCN slices. The largest outgoing node
degree observed was 18, and the largest incoming node degree
was 8. Approximately 40% of cells were determined to have no
incoming connection and approximately 60% were determined
to have no outgoing connection. Of the cells with observed
incoming connections, only 1% had more than 3 incoming
connections. Of the cells that had observed outgoing
connections, 20% had more than 3 outgoing connections.

nodes likely contributes to the robustness of the system. By
having a large network with several sparsely connected nodes
that exert only a small influence on the overall system, as
opposed to a small network in which each node is highly
connected and important, random cell death is less likely
to disrupt the nodes that drive resynchronization Abel et al.
(2016).

Further investigation is necessary to determine the
evolutionary benefits such a network structure would confer.
Some key questions include whether or not the directed
network allows the system to save on the metabolic cost of
creating connections while still producing a robust circadian
network. Furthermore, it is possible that it also saves on the
cost of sending signaling peptides if the system is able to
achieve the same level of synchronization with fewer total
connections. It is also important to investigate the balance
that this structure strikes between being able to adapt to
changing external signals on a long time scale such as
seasonal lighting changes while maintaining the robustness
necessary to minimize short term perturbations such as
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lightning strikes and other natural light producing events. We
are currently pursuing these directions.
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Supplemental materials

Detailed methodology

Inference of phase and amplitude
Conversion of the known PER2 data into a phase and
amplitude was performed according to three major steps. The
first step was to determine where peaks and troughs occurred.
To do this we found the highest PER2 value in the first 28
hours, and set that as the first peak. Next, we chose the
lowest PER2 value in the next 20 hours as the subsequent
trough. We repeated searching each 20 hour interval for
the highest or lowest PER2 value to determine peaks and
troughs. Because the first peak found in this way is the first
peak at limit-cycle amplitude, we also perform a backwards
search. To identify all peaks, the backwards search identifies
local maxima that occur prior to the first limit cycle peak,
and set the phases of these to π

2 . The reason this may occur
multiple times in the first 24 hours is because some cells
are still transitioning from a short, free running period to
the synchronized circadian period. We note that the time
immediately after washout is the most informative in regards
to network structure.

Each peak was assigned a phase value of π
2 and used,

together with the relationship

P̂ER2(φi(t), Ai(t)) =
Ai(t)

2
+
Ai(t)

2
sinφi(t), (S.1)

which is the representation of PER2 in the model, to
calculate the corresponding amplitude value. Each trough
was assigned a phase value of 3π

2 . We then integrated the
differential equation model from each peak to the troughs
immediately before and after it using the forward Euler
method to create initial guesses for the phase and amplitude
values for all remaining time points. Because the incoming
VIP values were not known at this point, the mean value of
possible incoming VIP was used as an approximation. To
refine this initial guess, once the amplitude for the trough
values was inferred, those were then used as starting points
to repeat the integration back to the peaks. This resulted
in two sets of phase and amplitude values for each point.
These values were averaged according to the number of
time steps from a peak or trough (i.e. a point 1 time step
away from a peak and 3 steps away from a trough would
be weighted with one-quarter the value obtained via the
integration that was initialized at the peak and three-quarters

the value obtained via the integration that was initialized at
the trough). Finally, optimization of 6 was used to refine
the initial estimates. The first term minimizes the difference
between the model prediction of PER2 and the observed
PER2 values. The second and third terms are regularizations
to prevent overfitting. γ1, γ2 and γ3 are the weights for each
term, set at values of 0.6, 0.3, and 0.1, respectively.

Linearization and minimization
Due to the complex series of reactions that make up the core
circadian oscillator, the effect of VIP on the phase of the
system is non-linear. However, our model uses the concept of
a velocity response curve (VRC) to capture these dynamics.
The VRC is a curve that represents how the rate of the phase
progression of an oscillator will change based on an external
signal and is a function of the phase φi, amplitude Ai, steady
state amplitude ssi and periodτi of cell i, and K is the base
transcription rate. The VRC of rat neurons responding to
VIP stimulus has been studied and is an integral part of the
phase amplitude model. Using this we linearize the system
as follows:

We can rearrange equation 4 to give:

γi(t) =
(dφi(t)

dt − 1) ∗K
V RC(φi(t), Ai(t), ssi, τi) + 1− dφi(t)

dt

. (S.2)

By doing this, and substituting in

γi(t) =
∑
i

V IPout(t) ∗ Ci, (S.3)

together with the model approximation for VIP released as a
function of the amount of PER2 present,

V IPout,i(t) = 12
P̂ER2i(t)

4 + P̂ER2i(t)
, (S.4)

we obtain

∑
12

P̂ER2(t)

4 + P̂ER2(t)
∗ Ci =

(dφi(t)
dt − 1) ∗K

V RC(φi(t), Ai(t), ssi, τi) + 1− dφi(t)
dt

.

(S.5)

We use the forward Euler method to approximate the
derivative dφi(t)

dt , yielding

∑
12

P̂ER2t

4 + P̂ER2t
∗ Ci =

(
φi,t−φi,tprev

t−tprev − 1) ∗K

V RC(φi(t), Ai(t), ssi, τi) + 1− φi,t−φi,tprev

t−tprev

.

(S.6)

Denoting the LHS of equation (S.5) by V IPout ∗ Ci and
the RHS by V IPin,i the minimization can be written as

min
Ci

∑
i

‖V IPin,i(φi(t), Ai(t))− V IPout(P̂ER2(t)) ∗ Ci‖,

(S.7)
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where V IPout was calculated using the actual PER2
data, and V IPin was found using the model predictions
for phase and amplitude. Using this, we implemented
the minimization to produce a set of incoming
connections for each cell. The minimization was
implemented using the scipy.optimize.least squares
function for Python (documentation available at
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.least squares.html) with its default parameters,
with the solutions constrained between 0 and 1. The default
method for solving the least squares problem is the Trust
Region Reflective algorithm. Doing this for all cells solves
for the incoming and outgoing connections, resulting in a
directed connectivity matrix with weights between 0 and 1.
If a connection weight was found to be greater than 0.01,
that connection was deemed to exist.

Assessment of accuracy
To assess the accuracy of the algorithm we first generated 15
synthetic networks in silico. The networks were generated
to have an exponentially decaying node degree distribution
according to the Circle Network algorithm described in
Vasalou et al. (2009). These bidirectional networks had 20
nodes (corresponding to cells) and were initially to have
an average node degree of 4. To turn these networks into
directed networks for testing, each bidirectional connection
was given a one-in-three chance of either remaining
bidirectional, or becoming unidirectional in one of the two
directions.

The directed networks were then used together with
randomly generated initial conditions to produce model
PER2 values for each virtual cell based on the phase
amplitude model outlined in Webb et al. (2012). Using this
synthetic data, the techniques outlined in the ”Inference
of phase and amplitude” section of the Supplemental
materials were then implemented to re-determine the phase
and amplitude values for each cell, and the linearization
and minimization methods detailed in the Supplemental
materials were used to infer the network, beginning with the
undirected network.

To test the sensitivity of the algorithm, we ran tests where
we perturbed model parameters by 20% when generating
the synthetic data to examine the effects this had on the
inference accuracy. Additionally, to test the effects of noise
on the algorithm, Gaussian noise was added to the data after
generation, but before phase and amplitude determination.
The standard deviation of the noise applied was sized relative
to the average PER2 value of the pre-noise data. The results
of these tests are summarized in Table S1. The undirected
networks each had 140 possible connections. 15 trials were
performed for each test, resulting in 2100 total attempted
inferences per test. When infering the phase and amplitude
values, the data was fit to a sine curve to mimic the model.
The inference yielded excellent results (ACC = 0.846, SPC
= 0.786) even at relatively high levels of Gaussian noise
(σnoise = 0.2PER2avg), as shown in Table S1. It should
be noted that the infered functional networks are still only
functional models of the communication network involved
in the synchronization of PER2 expression. It is unlikely
that they capture all physical connections that exist between
neurons. For higher degree incoming nodes (kin > 4) the

Table S1. Test Results For Synthetic Network Inference With
Noise

Test TP FP TN FN ACC TPR SPC
σnoise = 0 89.5 4.8 40.9 4.8 0.931 0.949 0.895

σnoise = 0.1PER2avg 88.1 5.3 39.5 6.2 0.911 0.934 0.895
σnoise = 0.2PER2avg 83.5 9.5 34.9 10.8 0.846 0.885 0.786
σnoise = 0.3PER2avg 82.1 10.0 33.5 12.2 0.826 0.871 0.770
σnoise = 0.4PER2avg 78.3 13.0 29.7 16.0 0.771 0.830 0.696
σnoise = 0.5PER2avg 75.3 15.0 26.7 19.0 0.729 0.799 0.640

σnoise = 0.1PER2avg, kin > 4 64.1 5.6 15.5 30.2 0.690 0.680 0.735
β̂ = β · 101 65.9 8.7 17.3 28.4 0.594 0.699 0.665
β̂ = β · 10−1 70.0 8.9 21.4 24.3 0.653 0.742 0.706

confidence of the method decreases, as expressed in the table,
marked most noticeably by an increase in the number of false
negatives. This is likely due to the redundancy of some of the
inputs.

Experimental methods

Cell culture and bioluminescence recording
The SCNs used in this experiment were taken from
homozygous PER2::LUC mice. The mice were 7-d-old and
were kept in a 12-h:12-h light:dark cycle environment. All
methods comply with guidelines set forth by the National
Institutes of Health and were approved by the Washington
University Animal Studies Committee. Bilateral SCN from
300-m coronal sections of hypothalamus were cultured on
Millicell-CM membranes (Millipore) in 400 mL air-buffered
DMEM with two full-volume exchanges every 7 d. The
culture remained in vitro for 14 d and was subsequently
moved to the stage of an inverted microscope (Nikon TE2000
fitted with a 20x objective and a 0.5x coupler resulting in a
total of 10x magnification) inside a dark incubator (In Vivo
Scientific). We then incorporated 0.15 mM beetle luciferin
(BioThema) to the medium and imaged bioluminescence at
36C with an ultrasensitive CCD camera (Andor Ixon; 1 x
1 binning, 1-h exposure). 2.5 M TTX (Sigma) was then
applied to SCN cultures as described in [26].After 6 d, we
removed the TTX from the medium via three full-volume
exchanges of fresh medium. We resumed recording for 8-
12 d to monitor resynchronization of PER2::LUC rhythms.
After washes, bright field images were used to ensure culture
alignment and focus was consistent with prior images.

Prepared using sagej.cls



8 Journal Title XX(X)

Figure S1. Incoming (a) and outgoing (b) connections for SCN 2. Nodes are sized and colored according to the number of
incoming and outgoing connections.
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Figure S2. Incoming (a) and outgoing (b) connections for SCN 3. Nodes are sized and colored according to the number of
incoming and outgoing connections.

Prepared using sagej.cls



10 Journal Title XX(X)

Figure S3. Incoming (a) and outgoing (b) connections for SCN 4. Nodes are sized and colored according to the number of
incoming and outgoing connections.
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