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Abstract

In this paper we present a common framework for projection methods for the solution

of incompressible Navier-Stokes systems. We address through both analysis and numerical

experiments how the pressure update effects the temporal order and stability, and explain

some observations that have been reported in the literature. Based on this framework, we

propose an efficient procedure for obtaining second-order accuracy in time for the pressure,

which works with a variety of projection methods.

Keywords: Projection methods; Incompressible Navier-Stokes equations; Stability analysis; Order

analysis
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1 Introduction

Projection methods were first proposed by Chorin [8] and Temam [23] for solving incompressible

Navier-Stokes equations

∂u

∂t
+ ∇P = −(u · ∇)u +

1

Re
∇2u, (1a)

∇ · u = 0, (1b)

with boundary conditions

u|Γ = ub,

where u is the velocity, P is the pressure and Re is the Reynolds number. To solve this problem,

projection methods use a fractional step approach, in which an intermediate velocity is obtained

by solving the momentum equation (1a) without regard to the incompressibility constraint (1b),

and then a projection of the intermediate velocity onto the divergence-free space is performed to

obtain the corrected velocity that satisfies the incompressibility constraint. The difficulty in solving

Eq. (1) is that the pressure is coupled in the momentum equation, while the pressure itself does

not evolve according to a differential equation. Rather, its value is determined by enforcing the

incompressibility constraint. It has been observed that while the velocity can be reliably computed

to second order accuracy in time, the pressure is typically only first-order accurate in time [9].

Since the projection methods were first proposed, they have attracted a great deal of research

interest [4, 5, 19, 21, 6, 10, 7]. Over the past decades, numerous fractional-step, operator-splitting

projection methods and their analysis have emerged. An overview of projection methods can be

found in [7, 14]. An intermediate velocity u∗ is obtained by solving the momentum equation without

regard to the incompressibility constraint, using an approximate value q of the pressure. The

momentum equation is usually solved by implicit methods, such as the trapezoidal (Crank-Nicolson)

method [4, 5, 7], the backward differentiation formula (BDF) method [14] and the alternating
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direction implicit (ADI) method [21]. A projection is then performed on u∗ as follows

un+1 = u∗ − ∆t∇φn+1, (2)

∇ · un+1 = 0. (3)

Then the pressure is updated as

Pn+ 1

2

= q + φn+1. (4)

q usually is chosen to be the pressure at the previous time step, Pn− 1

2

, in an incremental scheme.

q can also be set to 0, where the method is referred to as the pressure-free method [19]. An

improved pressure-update formula, also known as the rotational pressure-correction formula, is

given in [31, 7, 28]:

Pn+ 1

2

= q + φn+1 −
∆t

2Re
∇2φn+1. (5)

Besides the above projection methods, there are also many other projection-type methods.

E and Liu [10] proposed the gauge method. By using an extrapolation in time, all variables can

be computed to second order accuracy. Liu et al. [22] proposed a continuous projection method.

Based on a local truncation error (LTE) analysis, they obtain a sufficient condition for the continuous

projection methods to be temporally second-order accurate for both the velocity and the pressure.

Dukowicz and Dvinsky [18] used an approximate factorization method to derive a projection method

which is second order for the velocity and first order for the pressure. One can also directly take

the divergence of Eq. (1a) and derive the so-called “pressure-Poisson” equation for the pressure

[15, 12]. However this requires a boundary condition for the pressure which usually is difficult to

obtain. One advantage of the projection methods is that they avoid the computation of a pressure

boundary condition.

Brown et al. [7] surveyed some of the projection methods and speculated on the effects of

boundary conditions and different pressure-update formulas on the order of accuracy. Because per-
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forming the projection exactly on a cell-centered grid can cause numerical difficulties, approximate

projection methods [2, 1] are often used instead. In these methods, the incompressibility constraint

is only approximately satisfied. However, the approximate projection methods are highly sensitive

to the grid structure and the method used and may be susceptible to instabilities [16]. A series of

numerical issues related to the analysis and implementation of projection methods are summarized

in [14].

In this paper we introduce a common framework for second order projection methods and

show by analysis how the form of the projection update and a parameter which appears in the

literature in the pressure update determine the order and stability properties of the method. We

propose a sufficient condition for the pressure to be temporally second-order accurate, which is easy

to implement and works with a variety of projection methods. The analysis successfully explains

some observations that have been reported in the literature and the analysis results are verified by

numerical experiments.

This paper is organized as follows. Two types of projection are introduced in Section 2. In

Section 3 a common framework for projection methods is presented and an analysis of order and

stability is performed for the second order projection methods. Some issues related to a class of

projection methods in the literature, stability properties of a new projection method and boundary

conditions we used are also discussed in this section. Numerical results are presented in Section 4,

and conclusions are given in Section 5.

2 DAE Systems and Projections

In this section we introduce the differential-algebraic equation (DAE) methodology and notation

that will be used in the analysis. Following the method of lines approach, the incompressible Navier-

Stokes equations can be formulated as a DAE system by semi-discretization in space. The spatial

discretization and associated boundary conditions will be discussed in the following. In this paper

we focus on the temporal analysis of the system. The order in this paper means the temporal order,
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if not explicitly noted. Since the convection term is usually computed explicitly, for simplicity, we

will neglect the convection term and consider the Stokes equation

du

dt
= Au −GP, (6a)

0 = Du, (6b)

with boundary conditions

u|Γ = ub,

where A denotes the discretized Laplacian ( 1
Re
∇2) operator matrix, and G and D denote the dis-

cretized gradient (∇) and divergence (∇·) operators respectively. Boundary conditions are included

in the matrices A, G and D, as described below.

Example for discretized boundary conditions

Consider a nx × ny staggered grid (e.g., 3 × 3 staggered grid shown in Figure 1), the DAE

system (6) can be written as

dui,j

dt
=

1

Re

(
ui+1,j + ui−1,j − 2ui,j

∆x2
+
ui,j+1 + ui,j−1 − 2ui,j

∆y2

)
−
Pi,j − Pi−1,j

∆x
, (7a)

dvi,j

dt
=

1

Re

(
vi+1,j + vi−1,j − 2vi,j

∆x2
+
vi,j+1 + vi,j−1 − 2vi,j

∆y2

)
−
Pi,j − Pi,j−1

∆y
, (7b)

0 =
ui+1,j − ui,j

∆x
+
vi,j+1 − vi,j

∆y
. (7c)

The boundary conditions for the velocity are given by the following equations

ui,j = ub(x = 0),
vi,j + vi−1,j

2
= vb(x = 0), for i = 1,

ui,j = ub(x = 1),
vi,j + vi−1,j

2
= vb(x = 1), for i = nx + 1,

ui,j + ui,j−1

2
= ub(y = 0), vi,j = vb(y = 0), for j = 1,

ui,j + ui,j−1

2
= ub(y = 1), vi,j = vb(y = 1), for j = ny + 1.

(8)
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Figure 1: Spatial discretization (staggered grid).

No boundary conditions for pressure are needed since they are interior points. For the grid shown

in Figure 1, we define the following velocity and pressure vectors for interior points only

u = [u2,1 u2,2 u2,3 u3,1 u3,2 u3,3 v1,2 v1,3 v2,2 v2,3 v3,2 v3,3]
T
, (9)

P = [P1,1 P1,2 P1,3 P2,1 P2,2 P2,3 P3,1 P3,2 P3,3]
T
. (10)

Using the boundary conditions (8), the matrices A, G and D can be written as

A =
[

A1 0
0 A2

]
, (11)

where

A1 =




−5 1 0 1 0 0
1 −4 1 0 1 0
0 1 −5 0 0 1
1 0 0 −5 1 0
0 1 0 1 −4 1
0 0 1 0 1 −5


 , A2 =




−5 1 1 0 0 0
1 −5 0 1 0 0
1 0 −4 1 1 0
0 1 1 −4 0 1
0 0 1 0 −5 1
0 0 0 1 1 −5


 , (12)
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and

G =




−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1



, (13)

D =




1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 −1 1 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
−1 0 0 1 0 0 0 0 1 0 0 0
0 −1 0 0 1 0 0 0 −1 1 0 0
0 0 −1 0 0 1 0 0 0 −1 0 0
0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 0 −1 1
0 0 0 0 0 −1 0 0 0 0 0 −1


 . (14)

It is known and observed here that D and G are self-adjoint; i.e.,

D +GT = 0. (15)

It is well known that DG is the discretized Laplacian operator matrix, but it is singular.

Actually it is the discretization of the following Poisson equation

∇2φ = 0, (16)

with boundary conditions

∂φ

∂n
= 0.

We see that the solution of the above equation is not unique. Any solution plus a constant also

satisfies the equation. This is corresponding to the singularity of matrix DG. We add an additional

constraint to make the solution unique:

∑

i,j

ψi,j = 0, (17)

where ψi,j stands for the discrete unknowns in the grid points. Eq. (17) is equivalent to replace the
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last row of DG with 1’s, denoted as

L = D̂G =




−2 1 0 1 0 0 0 0 0
1 −3 1 0 1 0 0 0 0
0 1 −2 0 0 1 0 0 0
1 0 0 −3 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −3 0 0 1
0 0 0 1 0 0 −2 1 0
0 0 0 0 1 0 1 −3 1
1 1 1 1 1 1 1 1 1


 , (18)

which is now invertible.

The underlying ODE

The mathematical structure of the DAE system (6) is referred to as Hessenberg index 2 [3].

In the DAE context, u is the differential variable and P is the algebraic variable. The pressure P

is further determined to be index 2, where the number of differentiations needed to determine the

time derivative of P as a function of u, P and t, is called the index of the DAE.

Defining Q = GL−1D, both Q and I − Q are projection operators, where I is the identity

matrix. It is observed that

D(I −Q) = 0, (19)

(I −Q)G = 0. (20)

Multiplying Eq. (6a) by D from the left and using Eq. (6b), P can be solved as

P = L−1DAu. (21)

Hence GP = QAu, and we obtain the underlying ODE

du

dt
= (I −Q)Au, (22)

which has the same solution as the DAE (6). Thus we can derive the analytical solution of the DAE

(6) as a Taylor series,
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u(tn+1)

= u(tn) + ∆t
du

dt

∣∣∣
tn

+
∆t2

2

d2u

dt2

∣∣∣
tn

+
∆t3

6

d3u

dt3

∣∣∣
tn

+ . . .

=

(
I + ∆t(I −Q)A+

∆t2

2
[(I −Q)A]2 +

∆t3

6
[(I −Q)A]3 + . . .

)
u(tn),

(23)

and the analytical solution for P (tn+1) is given by GP (tn+1) = QAu(tn+1).

The idea of the projection method is first to get an intermediate solution, u∗
n+1, by solving

the following equation,

du∗

dt
= Au∗ −Gq, (24)

where q is an approximation of P . A straightforward choice for q is the pressure at the previous

time step, Pn. Then a projection on u∗
n+1 is performed to get the solution un+1 which satisfies the

constraint (6b).

The first projection

To obtain the numerical solution un+1 from the intermediate solution u∗
n+1, the first projec-

tion is performed as follows

φ1 = L−1Du∗
n+1, (25)

un+1 = u∗
n+1 −Gφ1, (26)

or simply written as un+1 = (I −Q)u∗
n+1. The algebraic variable is updated as

P
(1)
n+1 = q + γ

φ1

∆t
, (27)

where ∆t is the time step-size and γ is a coefficient to be determined, which will be discussed

later. After the projection, un+1 satisfies the incompressibility constraint, i.e., Dun+1 = 0 as well

as Qun+1 = 0.
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The additional projection

To obtain a more accurate pressure, we can perform an additional projection. The additional

projection was first used in [32] to obtain a second-order approximation to the pressure. It involves

implementing a hidden constraint, which can be derived by differentiating the incompressibility

constraint (6b) with respect to time. This means f = du
dt

should also satisfy the constraint (6b).

Thus we have the following additional projection on f ,

φ2 = L−1Df∗n+1, (28)

fn+1 = f∗n+1 −Gφ2, (29)

or simply fn+1 = (I −Q)f∗n+1, where f∗n+1 = Aun+1 −GP
(1)
n+1. The algebraic variable is updated as

P
(2)
n+1 = P

(1)
n+1 + φ2. (30)

Since

Gφ2 = Qf∗n+1 = QAun+1 −GP
(1)
n+1, (31)

we have

GP
(2)
n+1 = GP

(1)
n+1 +Gφ2 = QAun+1, (32)

or

Q(Aun+1 −GP
(2)
n+1) = 0, (33)

which says that fn+1 = Aun+1 −GP
(2)
n+1 satisfies the incompressibility constraint.

Clearly the additional projection enforces the incompressibility constraint for the acceleration

f = du
dt

. And by doing that it brings the pressure to the same order of accuracy as the velocity

as shown in Eq. (32). However, incorporating the additional projection into the pressure update

in each time step may cause stability problems. Thus we use the additional projection as a post-

processing step for output only. We will discuss this issue in Section 3.6. The additional projection
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performed at the output is still a sufficient condition to obtain second-order accuracy in the pressure,

provided that the velocity is second-order accurate. The additional projection can also be used in

the initialization to obtain a consistent initial value for the pressure, starting from a consistent

initial velocity.

It is noted that Klein and collaborators [24, 20] also use two projections for enforcing the

incompressibility constraint when solving zero Froude number (incompressible) flow problems. How-

ever their two-projection method is quite different than our first and additional projection method.

Their first and second projection are used to enforce the constraint on a Marker-and-cell (MAC)

grid for advection velocity contribution and on the cell center for non-convective (e.g., pressure)

contribution, respectively. In contrast our first and additional projection are enforcing the incom-

pressibility constraint for the velocity and acceleration respectively. And the additional projection

is performed only at the output when a second pressure is desired.

3 Projection Methods

We choose q = Pn in the projection methods. We obtain the first-order forward Euler and backward

Euler projection methods when discretizing the time derivative in Eq. (24) using the forward

Euler and backward Euler methods, respectively. We will focus on the second order projection

methods, since they are the most often used. The methods below are all second order in the

velocity. Depending on the form of the pressure update and the parameter γ, the pressure is either

first-order or second-order accurate.

3.1 Second Order Projection Methods

3.1.1 Explicit Runge-Kutta second order method

It is possible to construct an explicit Runge-Kutta second order projection method by using the

second-order Runge-Kutta method to integrate the momentum equation (24). The intermediate
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solution is given by

u∗
n+1 = (I + ∆tA +

∆t2

2
A2)un − (∆t+

∆t2

2
A)GPn, (34)

and

un+1 = (I −Q)u∗
n+1,

Pn+1 = Pn + γ
φ1

∆t
.

Here, γ is a parameter which affects both order and stability, as will be discussed below.

3.1.2 Implicit trapezoidal method

We can also construct an implicit projection method by using the trapezoidal method to solve the

momentum equation. Then the ODE (24) is discretized to

u∗
n+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −GPn, (35)

for which the solution is given by

u∗
n+1 = (I −

1

2
∆tA)−1[(I +

1

2
∆tA)un − ∆tGPn], (36)

and

un+1 = (I −Q)u∗
n+1,

Pn+1 = Pn + γ
φ1

∆t
.

We refer to this projection method as PM1.

If we perform the additional projection at every step in addition to PM1, according to the
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analysis Eqs. (28)-(32), we obtain an “exact” pressure in the sense that P is proportional to u,

i.e., Eq. (32), which means P has the same order of accuracy as u. We refer to this method as

PM2. If we perform the additional projection only at the output in addition to PM1, we refer to

this method as PM1B.

3.1.3 Runge-Kutta-Chebyshev projection method

The Runge-Kutta-Chebyshev projection (RKCP) method is a second order explicit Runge-Kutta

type method, but with an extended stability region. It uses the Runge-Kutta-Chebyshev (RKC)

method [29, 27, 30] to solve the ODE (6a). For details of the RKCP method, the reader is referred

to [32].

The intermediate solution can be written as

u∗
n+1 = R(∆tA)un − (R(∆tA) − I)A−1GPn, (37)

where R is the stability polynomial of the RKC method. The solution is updated as

un+1 = (I −Q)u∗
n+1,

Pn+1 = Pn + γ
φ1

∆t
.

The method can be used with the additional projection (for output purposes only), to obtain a

second-order accurate pressure.

3.2 Common Framework

All of the above methods can be generalized to the following form. The intermediate solution is

given by

u∗
n+1 = R(∆tA)un − (R(∆tA) − I)A−1GPn, (38)
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where R(∆tA) is the stability function of the corresponding ODE integration method. The solu-

tions at the next step are updated as

un+1 = (I −Q)u∗
n+1,

Pn+1 = Pn + γ
φ1

∆t
.

(39)

Different choices of R(∆tA) yield different methods:

1. Forward Euler method, where R(∆tA) = I + ∆tA.

2. Backward Euler method, where R(∆tA) = (I − ∆tA)−1.

3. Explicit Runge-Kutta second order method, where R(∆tA) = I + ∆tA + ∆t2

2
A2.

4. Implicit trapezoidal method, where R(∆tA) = (I − 1
2
∆tA)−1(I + 1

2
∆tA).

5. Runge-Kutta-Chebyshev projection method, where R is the stability polynomial of the RKC

method.

For second order projection methods, R(∆tA) satisfies

R(∆tA) = I + ∆tA +
∆t2

2
A2 + O(∆t3). (40)

It follows that

(R(∆tA) − I)A−1 = ∆tI +
∆t2

2
A+O(∆t3). (41)

In the following stability and order analysis, we will concentrate on the second order methods,

since they are the main focus of this paper.
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3.3 Stability Analysis

In this section we analyze the zero-stability and the absolute stability properties of the method

consisting of (38) and (39).

Theorem 1. Consider the system (6). If the ODE method defined via R(∆tA) for du
dt

= Au, where

A is a symmetric matrix, is zero-stable, then the projection method (38)-(39) is zero-stable provided

that 0 < γ ≤ 2. Furthermore, if the ODE method is absolutely stable for ∆tA, then the projection

method (38)-(39) is absolutely stable provided that 0 < γ ≤ 2.

Proof. Using Eq. (38), the difference of the intermediate solutions, u∗
n+1 and u∗

n is written as

u∗
n+1 − u∗

n = R(∆tA)(un − un−1) − (R(∆tA) − I)A−1G(Pn − Pn−1). (42)

Since Pn − Pn−1 = γ φ1

∆t
, where φ1 = L−1Du∗

n, Eq. (42) is rewritten as

u∗
n+1 − u∗

n = R(∆tA)(I −Q)(u∗
n − u∗

n−1) + (I −R(∆tA))
γ

∆t
A−1Qu∗

n. (43)

Let u∗
n = vn + wn, where vn = (I −Q)u∗

n and wn = Qu∗
n. We rewrite Eq. (43) as

vn+1 + wn+1 − vn − wn = R(∆tA)(vn − vn−1) + (I − R(∆tA))
γ

∆t
A−1wn. (44)

Consider the following two recurrences:

vn+1 − vn = R(∆tA)(vn − vn−1), (45)

wn+1 =
(
I + (I −R(∆tA))

γ

∆t
A−1

)
wn. (46)

The propagation matrices for the recurrences (45) and (46) are R(∆tA) and I+(I−R(∆tA)) γ

∆t
A−1

respectively. Letting ∆t→ 0 in Eqs. (45) and (46) and considering Eqs. (40) and (41), zero-stability

is easily established. For absolute stability, let z = ∆tλA, where λA denotes an eigenvalue of A
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Numerical Method R(z) Stability region ‖R(z)‖ ≤ 1 1−R(z)
z

Forward Euler 1 + z ‖1 + z‖ ≤ 1 -1

Backward Euler (1 + z)−1 ‖1 − z‖ ≥ 1 −(1 − z)−1

Explicit RK2 1 + z + z2

2
‖1 + z + z2

2
‖ ≤ 1 −(1 + z

2
)

Implicit Trapezoidal (1 − z
2
)−1(1 + z

2
) Re(z) ≤ 0 −(1 − z

2
)−1

Table 1: Stability polynomials R(z)

which is real because A is symmetric. So we consider z to be real and negative. It can be shown

that for z in the stability region of the numerical ODE algorithm, i.e., ‖R(z)‖ ≤ 1, we always have

−1 ≤ 1−R(z)
z

≤ 0 for the methods, as illustrated in Table 1.

It is clear that in order to make the recurrence (46) stable, we must choose 0 < γ ≤ 2. Now

both recurrence (45) and recurrence (46) are stable. The sum of these two recurrences, Eq. (44), is

therefore stable.

3.4 Order of Accuracy

Theorem 2. Consider a projection method defined by Eqs. (38) and (39), where 0 < γ ≤ 2, R

satisfies Eq. (40), and the initial values are chosen to be consistent. Then the method is convergent

and second-order accurate in the velocities, and first-order accurate in the pressure. Furthermore,

if γ = 2, the pressure is second-order accurate.

Proof. Inserting Eqs. (40) and (41) into (38) and considering Qun = 0, we find that

Qu∗
n+1 = QR(∆tA)un −Q(R(∆tA) − I)A−1GPn

= ∆tQ(Aun −GPn) +
∆t2

2
QA(Aun −GPn) +O(∆t3), (47)
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and

(I −Q)u∗
n+1 = (I −Q)R(∆tA)un − (I −Q)(R(∆tA) − I)A−1GPn

= un + ∆t(I −Q)Aun +O(∆t2) − ∆t(I −Q)GPn +O(∆t2)

= un + ∆t(I −Q)Aun +O(∆t2).

(48)

Since

Aun+1 −GPn+1 = A(I −Q)u∗
n+1 −G(Pn + γ

φ1

∆t
)

= Aun + ∆tA(I −Q)Aun +O(∆t2) −GPn − γ
Gφ1

∆t
,

(49)

and

Gφ1

∆t
=

Qu∗
n+1

∆t

= Q(Aun −GPn) +
∆t

2
QA(Aun −GPn) +O(∆t2),

(50)

we have

Q(Aun+1 −GPn+1) = (1 − γ)Q(Aun −GPn)

+(1 −
γ

2
)∆tQA(I −Q)Aun

−
γ

2
∆tQAQ(Aun −GPn) +O(∆t2).

(51)

We obtain the following recurrence

yi+1 − αyi = ∆t · g(ui, Pi) +O(∆t2), i = 0, 1, . . . , n, (52)
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where

yi = Q(Aui −GPi),

g(ui, Pi) = (1 −
γ

2
)QA(I −Q)Aui

−
γ

2
QAQ(Aui −GPi),

α = 1 − γ.

Assuming ‖g(ui, Pi)‖ ≤ C1, for i = 0, 1, . . . , n, and ‖O(∆t2)‖ ≤ C2∆t
2, summation of the recur-

rence (52) multiplied by αn−i from i = 0 to i = n gives

‖yn+1 − αn+1y0‖ ≤
1 − αn+1

1 − α
C1∆t+

1 − αn+1

1 − α
C2∆t

2. (53)

Since 0 < γ ≤ 2, we have |α| = |1 − γ| ≤ 1. Assuming that the initial values for u and P are

consistent, we have y0 = 0. Thus we arrive at

Q(Aun −GPn) = yn = O(∆t), (54)

for any n, and

Qu∗
n+1 = O(∆t2), (55)

for any n, using Eq. (50). Eq. (54) establishes a global relationship between un and Pn. From Eq.

(54) we obtain

GPn = QAun +O(∆t). (56)

Thus P is globally at least first-order accurate, given that u is globally at least first-order accurate.

Using Eqs. (40) and (41), the numerical solution at time tn+1 is expanded as
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un+1 = (I −Q)u∗
n+1

= un + ∆t(I −Q)Aun +
∆t2

2
(I −Q)A2un

−∆t(I −Q)GPn −
∆t2

2
(I −Q)AGPn +O(∆t3)

= un + ∆t(I −Q)Aun +
∆t2

2
(I −Q)A2un

−
∆t2

2
(I −Q)AGPn +O(∆t3).

(57)

According to Eq. (54), we have GPn = QAun +O(∆t). Thus inequality (57) becomes

un+1 = un + ∆t(I −Q)Aun +
∆t2

2
[(I −Q)A]2un +O(∆t3). (58)

Comparing Eq. (58) to the analytical solution, Eq. (23), we see that u is locally second-order

accurate. The choice of γ does not affect the accuracy of u. Combined with the zero-stability

shown in the previous section, u is therefore second-order convergent.

We have shown that P is globally at least first-order accurate, given that u is globally at

least first-order accurate. P is globally second-order accurate when we start with a consistent initial

condition and choose γ = 2. When γ = 2, g(ui, Pi) in Eq. (52) is

g(ui, Pi) = −QAyi = O(∆t).

Thus ‖g(ui, Pi)‖ ≤ C1∆t, i = 0, 1, . . . , n. Eq. (53) becomes

‖yn+1 − αn+1y0‖ ≤
1 − αn+1

1 − α
C1∆t

2 +
1 − αn+1

1 − α
C2∆t

2, (59)

where α = 1 − γ = −1. We obtain yn = O(∆t2). Thus P is globally second-order accurate, given

that u is globally second-order accurate.

The fact that the coefficient γ can be any number between 0 and 2 was first discovered
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by Gresho [11, 13] and analyzed by Shen [25, 26] by demonstrating converged error estimates for

0 < γ ≤ 2. We derived the value of γ analytically and showed that the coefficient γ is independent

of the order of accuracy of u, but is restricted by the stability requirement. Furthermore, when

γ = 2, PM1 is second-order convergent for both u and P .

We can view the significance of γ from another point of view. For the projection method

PM1, the intermediate solution is solved by Eq. (35), and the projection step can be written as

un+1 − u∗
n+1

∆t
= −

Gφ1

∆t
. (60)

Adding the above equation with Eq. (35) gives

un+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −GPn −

Gφ1

∆t
. (61)

Eliminating φ1 yields

un+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −

(
(1 −

1

γ
)GPn +

1

γ
GP

(1)
n+1

)
. (62)

Clearly when γ = 1 it looks like a backward Euler method for the pressure. And when γ = 2 it looks

like a trapezoidal method. Technically γ can be any number, but it is suggested to be 0 < γ ≤ 2

by the previous stability analysis. When γ is not 2, we will get a first-order accurate pressure P
(1)
n+1.

But the second order accuracy can be easily recovered by performing the additional projection at

the output as shown in Section 2.

3.5 Discussion of a Class of Projection Methods

A class of projection methods [7, 4, 5] for solving the incompressible Navier-Stokes equations is

based on the following second-order, discrete form

un+1 − un

∆t
=

1

2
Aun+1 +

1

2
Aun −GPn+ 1

2

, (63)
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which uses the trapezoidal method for the time discretization. Relating to our notation from Eq.

(24), here q is set to be Pn− 1

2

. Thus the intermediate solution is given by

u∗
n+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −GPn− 1

2

. (64)

The pressure is updated as

Pn+ 1

2

= Pn− 1

2

+
φ1

∆t
. (65)

Alternatively, the pressure may be updated by

Pn+ 1

2

= Pn− 1

2

+
φ1

∆t
−

1

2
Aφ1, (66)

which allows the pressure to retain second order accuracy [31, 7]. The projection method based on

(66) is also known as the rotational pressure-correction scheme [28, 14].

A point to be noted is that the local truncation error of the trapezoidal method for Eq. (63)

is [3]

−
∆t2

12

d3u

dt3

∣∣∣
t
n+1

2

+O(∆t4). (67)

So we see the discrete equation (63) is second-order accurate for the velocity, but not necessarily

for the pressure. However taking the divergence of Eq. (63) will eliminate the O(∆t2) term in the

truncation error (67) and make it higher order O(∆t4), since d3
u

dt3
is supposed to be divergence-free.

Then the accurate pressure can be extracted from the resulting equation. Multiplying Eq. (63) by

Q from the left, we obtain

GPn+ 1

2

=
1

2
QAun+1 +

1

2
QAun. (68)

A local order analysis of the above equation based on the analytical solution (23), assuming the

velocities are accurate, reveals that the pressure is not locally second-order accurate. One can also

use the following form of discretization

un+1 − un

∆t
=

1

2
Aun+1 +

1

2
Aun −

1

2
(GPn+1 +GPn), (69)
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in which the pressure is locally consistent to second order accuracy. The pressure update formula

Eqs. (65) and (66) will be changed accordingly. We refer to the method of Eq. (63) with and

without the pressure correction term − 1
2
Aφ1 as PM4 and PM3 respectively. And we refer to the

method of Eq. (69) with and without the pressure correction term − 1
2
Aφ1 as PM4A and PM3A

respectively.

The improved pressure update formula can be derived as follows. Subtracting Eq. (63) from

Eq. (64) and considering u∗
n+1 = un+1 +Gφ1, we have

GPn+ 1

2

= GPn− 1

2

+
1

∆t
Gφ1 −

1

2
AGφ1. (70)

For Eq. (70) to be equivalent to Eq. (66), A and G must commute. We then multiply Eq. (70) by

D from the left. After removing the singularity of DG as shown in Section 2, the resulting D̂G is

invertible and then Eq. (66) follows. Alternatively we can derive from Eq. (70) that

(I −Q)AGφ1 = 0,

which implies that

AGφ1 = QAGφ1. (71)

The condition of Eq. (71) or the commutativity of A and G is satisfied in the continuum limit

of the incompressible Navier-Stokes equations, where A, corresponding to the Laplacian operator

∇2 commutes with G, corresponding to the gradient operator ∇. However, on a finite grid the

discretized Laplacian operator A does not strictly commute with the discretized gradient operator

G because of the spatial grid and the boundary conditions used. In this sense the rotational formula

(66) may not be second-order accurate for problems where A and G do not commute. An exception

is the case of periodic boundary conditions [17].

Brown et al. [7] have shown by normal mode analysis that the rotational projection methods

(PM4 and PM4A) are temporally second-order accurate for the pressure, and it was observed in
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numerical experiments [14, 22] that the pressure behaved as 1.6th order or 2nd order, depending on

the problem. The analytical second order accuracy was obtained based on the assumption that A

and G commute, which may not be strictly satisfied in practice. We speculate that this is the cause

of the order reduction and the second-order accuracy is not guaranteed for the rotational method.

Based on the condition that A and G commute, it is easy to show by local order analysis that

PM4 and PM4A are locally second-order accurate for the pressure, following the same approach of

Section 3.4. (See the Appendix for details.)

We can perform the additional projection for methods PM3 and PM4 at the output. These

methods are referred to as PM3B and PM4B. As shown in Table 2 and Section 4, they are second-

order accurate for the pressure. The specific projection methods that we consider here are summa-

rized in Table 2.

3.6 Stability of Method PM2

When we use PM2 (Section 3.1.2), we obtain an accurate P satisfying GPn = QAun. Thus we can

rewrite Eq. (38) as

u∗
n+1 = R(∆tA)un − (R(∆tA) − I)A−1QAun. (72)

It follows that

un+1 = T (∆tA)un, (73)

where

T (∆tA) = (I −Q)(R(∆tA) − (R(∆tA) − I)A−1QA). (74)

We see that T (∆tA) is the stability polynomial of the projection method PM2 and R(∆tA) is the

stability polynomial of the ODE method for solving the intermediate velocity. For the implicit

trapezoidal method, it is found that

T (∆tA) = (I −Q)(I −
1

2
∆tA)−1(I +

1

2
∆tA− ∆tQA). (75)
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Since A has negative eigenvalues, the term −∆tQA will make T (∆tA) less stable. For matrices

(11)-(18), we can calculate the spectral radius of R(∆tA), (I−Q)R(∆tA) and T (∆tA) for different

∆t. As shown in Figure 2, it is found that the spectral radius of T (∆tA) goes above 1 when ∆t

is greater than 6, meaning that the projection method PM2 does not preserve the unconditional

stability of the implicit trapezoidal method.

Figure 2: Stability shrinkage of PM2.

Remark

It is observed that PM2 preserves the stability in the special case where A and G commute.

This is due to the fact that when A and G commute, any polynomial of A (e.g., (R(∆tA) −

I)A−1) also commutes with G. Thus we have

(I −Q)(R(∆tA) − I)A−1GPn = (I −Q)G(R(∆tA) − I)A−1Pn = 0,

25



and Eq. (73) becomes

un+1 = (I −Q)R(∆tA)un, (76)

which has the same or smaller stability region as that of R(∆tA).

3.7 Boundary Conditions

In this section we discuss the treatment of boundary conditions. We have been given boundary

conditions for the velocity, u|Γ = ub. In the projection methods, since un+1 = u∗
n+1 − Gφ1, the

simplest choice of boundary conditions for the intermediate solution u∗ and projection correction

φ1 and φ2, respectively, is

u∗
n+1|Γ = ub, (77)

and

∂φ1

∂n

∣∣∣
Γ

= 0,
∂φ2

∂n

∣∣∣
Γ

= 0. (78)

The boundary condition on the pressure with one projection can be obtained from Eq. (39) as

∂Pn+1

∂n

∣∣∣
Γ

=
∂Pn

∂n

∣∣∣
Γ
, (79)

or

d

dt

(
∂P

∂n

) ∣∣
Γ

= 0. (80)

This boundary condition gives only first-order accurate pressure. However in the additional projec-

tion, we enforce the boundary condition for f = du
dt

,

f |Γ =
dub

dt
, (81)

which is (
1

Re
∇2u −∇P

) ∣∣∣
Γ

=
dub

dt
, (82)
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in the continuous case. We see that the boundary condition for the pressure is implicitly imple-

mented. For staggered grids the pressure variable is always in the interior of the domain and thus no

boundary conditions are needed. However for nonstaggered grids, we do need to know the pressure

value on the boundary. For example, in the nonstaggered grid discretization shown in Figure 3,

when we evaluate ∂P
∂x

at node (2,2) which is approximated by

P3,2 − P1,2

2∆x
, (83)

we do not know the value of P1,2. One option is to use the extrapolation P1,2 = 2P2,2−P3,2. Plugging

it into Eq. (83) gives

P3,2 − P1,2

2∆x
=
P3,2 − P2,2

∆x
, (84)

which is actually the first order approximation of ∂P
∂x

at node (2,2). The discretization of Eq. (6)

on nonstaggered grids is written as

dui,j

dt
=

1

Re

(
ui+1,j + ui−1,j − 2ui,j

∆x2
+
ui,j+1 + ui,j−1 − 2ui,j

∆y2

)
−
Pi+1,j − Pi−1,j

2∆x
, (85a)

dvi,j

dt
=

1

Re

(
vi+1,j + vi−1,j − 2vi,j

∆x2
+
vi,j+1 + vi,j−1 − 2vi,j

∆y2

)
−
Pi,j+1 − Pi,j−1

2∆y
, (85b)

0 =
ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y
. (85c)

The boundary conditions are given by

ui,j = ub(x = 0), vi,j = vb(x = 0), Pi,j = 2Pi+1,j − Pi+2,j, for i = 1,

ui,j = ub(x = 1), vi,j = vb(x = 1), Pi,j = 2Pi−1,j − Pi−2,j, for i = nx,

ui,j = ub(y = 0), vi,j = vb(y = 0), Pi,j = 2Pi,j+1 − Pi,j+2, for j = 1,

ui,j = ub(y = 1), vi,j = vb(y = 1), Pi,j = 2Pi,j−1 − Pi,j−2, for j = ny.

(86)

Similar to the analysis in Section 2, we evaluate the matrices for interior nodes only. With non-

staggered discretization (85) and (86), we found that D +GT 6= 0 and D(I −Q) 6= 0 which means
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that the projected velocity is not divergence free. Our stability and order analysis does not apply

in this case, because it is based on the properties of Eqs. (19) and (20). And it is observed by

numerical experiments that the above nonstaggered discretization causes an instability for method

PM1 when γ = 2. This is possibly due to the fact that the nonstaggered discretization generates

an expanded five-point stencil which produces a local decoupling of the mesh points and causes

additional numerical difficulties, as mentioned in [1].

However, if we define the new divergence matrix as

D̃ = −GT , (87)

then the properties Eqs. (19) and (20) are satisfied again. Numerical experiments show that for

this choice of discretized divergence matrix, PM1 with γ = 2 is stable and second-order accurate

for both velocity and pressure, as the analysis predicts. With this new “divergence” matrix, the

incompressibility is not strictly satisfied near the boundary. Thus the idea here is similar to the

approximate projection methods [2, 1] in that numerical difficulties are circumvented by relaxing

the incompressibility constraint in some way. We note that this modification of the divergence

matrix produces a local coupling of mesh points near the boundary.

4 Numerical Experiments

Following the analysis of [22], the numerical solution obtained by a method which is r-th order

accurate in time and s-th order accurate in space can be expressed as

ηn
i,j = η(xi, yj, t

n) + αn
i,j(∆t)

r + βn
i,j(∆x)

s + ε, (88)

where ηn
i,j is the numerical solution at (xi, yj, t

n), η(xi, yj, t
n) is the reference solution, αn

i,j(∆t)
r

represents the error associated with the temporal discretization, βn
i,j(∆x)

s represents the error asso-

ciated with the spatial discretization and ε is the round-off error. To check the temporal convergence,
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Figure 3: Spatial discretization (nonstaggered grid).

we fix the spatial grid and then compute a reference solution which is obtained using a very small

time step (∆t � 1) so that the term αn
i,j(∆t)

r can be ignored. The temporally accurate reference

solution is approximately

η̃n
i,j = η(xi, yj, t

n) + βn
i,j(∆x)

s + ε. (89)

Then ‖ηn − η̃n‖ ∼ (∆t)r. A plot of log(‖ηn − η̃n‖) vs log(∆t) gives the information of the order r.

Similarly, for the spatial convergence we fix the time step and compute the reference solution using

a very small ∆x. The spatially accurate reference solution is approximately

η̂n
i,j = η(xi, yj, t

n) + αn
i,j(∆t)

r + ε. (90)

Thus we have ‖ηn − η̂n‖ ∼ (∆x)s. A plot of log(‖ηn − η̂n‖) vs log(∆x) yields the order of spatial

convergence. In the following tests, all the temporally accurate reference solutions, u0 and P0, were

computed with ∆t = 1.0 × 10−5.

The first numerical example is a forced flow problem. In this forced flow problem, the exact

solution of the Navier-Stokes equations is given by
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u(x, y, t) = sin(t)sin2(πx)sin(2πy),

v(x, y, t) = −sin(t)sin(2πx)sin2(πy),

P (x, y, t) = sin(t)cos(πx)sin(πy),

(91)

with appropriate forcing terms added to the incompressible Navier-Stokes equations (1) to ensure

that (91) is the exact solution. We solved this problem in the domain [0, 1] × [0, 1] to the time

T = 1s with Reynolds number Re = 1. Dirichlet boundary conditions were applied for both u and

v.

The second numerical example is the driven cavity problem. In this test we solved the driven

cavity problem in the domain [0, 1] × [0, 1] to the time T = 1s with Reynolds number Re = 100.

Zero Dirichlet boundary conditions were applied for the velocities, except that on the top boundary

y = 1, the x-direction velocity u was set to 1. The initial velocity was set to 0 and the initial

pressure was corrected from the initial guess 0 by performing the additional projection so that the

initial pressure is consistent with the initial velocity.

All the tests have been completed on 64 × 64 staggered grids. We also did the tests on

nonstaggered grids for projection method PM1 and PM1B.

All the methods tested here give second-order accuracy for the velocity. As shown in Figure

4, PM1 with γ = 1 is first-order accurate for the pressure in general, while PM1 with γ = 2 gives

second-order accurate pressure. However method PM1B, i.e., PM1 plus an additional projection at

the output, is also second-order accurate for the pressure and is more robust with a smaller error

level for the pressure.

From Figure 5, we saw only first-order convergence for the pressure with methods PM3 and

PM4. In the modified version of PM3 and PM4, i.e., PM3A and PM4A, we observed 1.6th ∼ 1.7th

order convergence for the forced flow problem and 2nd order convergence for the driven cavity

problem. The methods PM3 and PM4 can be improved by performing the additional projection at

the output, which are methods PM3B and PM4B. They give no worse or better accuracy for the
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pressure.

The results of the temporal order of the pressure are summarized in Table 2. The orders of

the velocity are neglected in Table 2 since all of them are around 2 (±0.1). The results shown here

are consistent with the analysis. In short we recommend method PM1B for practical use, because

it gives second-order accuracy for both the velocity and the pressure and is very robust.

5 Conclusions

In this paper we explored two types of projection: the first projection on the velocity, and the

additional projection on the acceleration. These projections enforce the incompressibility constraint

and the hidden constraint (time derivative of the incompressibility constraint), respectively. We

proposed a common framework for projection methods based on the DAE structure Eq. (6) and we

performed an analysis of accuracy and stability. With the additional projection performed at the

output, we are able to get second-order accuracy for both velocity and pressure. The additional

projection can also be used in the initialization to get the consistent initial value for the pressure.

We addressed some issues related to the pressure update: how it affects the temporal order and

stability, and explained some observations about the pressure-update coefficient γ that have been

reported in the literature. We derived the conditions on the parameter γ and found that these

conditions represent a stability requirement.

In particular, we proposed the implicit trapezoidal projection method PM1B. In this method,

one projection of the velocity is performed per step and an additional projection is performed at

the output of the solution to get a second-order accurate pressure. This method, robust and easy

to implement, allows both the velocity and the pressure to be accurately calculated to second-order

accuracy. It does not require complex boundary conditions. Simple boundary conditions are used

for the intermediate velocity and the projection correction. We analyzed the order and stability

for PM1B and showed theoretically that it is second-order convergent for both the velocity and the

pressure, consistent with the numerical results we have obtained.
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Figure 4: Error plots for projection method PM1. Left (driven cavity problem on staggered grids):
top – PM1 with γ = 1; middle – PM1 with γ = 2; bottom – PM1B. Right (Force flow problem on
nonstaggered grids): top – PM1 with γ = 1; middle – PM1 with γ = 2; bottom – PM1B.
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Figure 5: Error plots for projection methods PM3 and PM4. Left (driven cavity problem on
staggered grids): top – PM3; middle – PM3A; bottom – PM3B. Right (Force flow problem on
staggered grids): top – PM4; middle – PM4A; bottom – PM4B.
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We also discussed a class of projection methods: the standard form and the rotational form,

i.e., PM3 and PM4, and their slightly modified versions PM3A and PM4A. While only first order

convergence for the pressure was observed for PM3 and PM4, 1.6th ∼ 2nd order convergence for

the pressure was observed for PM3A and PM4A, depending on the problem. The analysis as

well as numerical experiments suggests that the rotational pressure update formula (66) may not

be a sufficient condition for the pressure to be temporally second-order accurate. Although the

rotational form does help reduce the pressure error at the boundary as discovered in [14], in our

tests the rotational form exhibits the same order of accuracy as the standard form. We believe

this may be due to the noncommutativity of the discretized Laplacian operator and the discretized

gradient operator.

The additional projection, performed at the output, can be applied in all the projection

methods which give second-order accurate velocity but first-order accurate pressure, to improve the

pressure accuracy to be second order. As demonstrated by analysis and by numerical examples in

this paper, it works for methods PM1, PM3 and PM4.

We also explained the stability issues with the method PM2, in which both the first projection

and the additional projection are performed at each time step.
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Projection
Method

Description Grid
Theoretical
order of P 1

Observed order of P Preserve
the stability
of R(∆tA)

Forced flow Driven cavity
problem problem

PM1
q = Pn

Eq. (35)

Staggered
2, γ = 2

1, 0 < γ < 2
2.00, γ = 2
1.04, γ = 1

2.05, γ = 2
1.02, γ = 1

Yes, if
0 < γ ≤ 2

Nonstaggered
2, γ = 2

1, 0 < γ < 2
2.01, γ = 2
1.63, γ = 1

N/A
Yes, if

0 < γ ≤ 2

PM1B
PM1 +

additional projection
at output only

Staggered 2 2.00 2.00
Yes, if

0 < γ ≤ 2

Nonstaggered 2 2.00 1.99
Yes, if

0 < γ ≤ 2

PM2
PM1 +

additional projection
per step

Staggered 2 2.01 2.00 No

PM3
q = P

n−

1

2

Eqs. (64) and (65)
Staggered 1 1.03 1.02 Yes

PM3A
q = 1

2
(Pn−1 + Pn)

Eqs. (64) and (65)
Staggered 1 1.77 2.01 Yes

PM3B
PM3 (or PM3A) +
additional projection

at output only
Staggered 2 2.00 2.00 Yes

PM4
q = P

n−

1

2

Eqs. (64) and (66)
Staggered 1 1.02 1.02 Yes

PM4A
q = 1

2
(Pn−1 + Pn)

Eqs. (64) and (66)
Staggered 1 1.67 2.03 Yes

PM4B
PM4 (or PM4A) +
additional projection

at output only
Staggered 2 1.83 2.00 Yes

Table 2: Summary of projection methods

1The theoretical order of P is obtained based on the condition that A and G do not commute.
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Appendix

The discrete equation for the projection method PM4 is given by

un+1 − un

∆t
=

1

2
Aun+1 +

1

2
Aun −GPn+ 1

2

, (92)

the intermediate solution is given by

u∗
n+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −GPn− 1

2

, (93)

and the pressure is updated as

Pn+ 1

2

= Pn− 1

2

+
φ1

∆t
−

1

2
Aφ1. (94)

We assume un and Pn− 1

2

are accurate. So un is divergence free, i.e., Qun = 0, and GPn− 1

2

can be

written as

GPn− 1

2

= QAu(tn− 1

2

) = QAun −
∆t

2
QA(I −Q)Aun +

∆t2

8
QA [(I −Q)A]2 un +O(∆t3). (95)

From Eq. (93), u∗
n+1 can be solved as

u∗
n+1 =

[
I −

1

2
∆tA

]−1 [
(I +

1

2
∆tA)un − ∆tGPn− 1

2

]
. (96)

Since (
I −

1

2
∆tA

)−1

= I +
1

2
∆tA +

1

4
∆t2A2 +

1

8
∆t3A3 +O(∆t4), (97)

and (
I −

1

2
∆tA

)−1 (
I +

1

2
∆tA

)
= I + ∆tA +

1

2
∆t2A2 +

1

4
∆t3A3 +O(∆t4), (98)

Eq. (96) becomes
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u∗
n+1 = (I + ∆tA +

1

2
∆t2A2 +

1

4
∆t3A3)un

−(I +
1

2
∆tA +

1

4
∆t2A2)∆tGPn− 1

2

+O(∆t4).
(99)

Using Eq. (95), we can get

Gφ1

∆t
=

Qu∗
n+1

∆t

= ∆tQA(I −Q)Aun +
1

4
∆t2QA(I +Q)A(I −Q)Aun

−
1

8
∆t2QA [(I −Q)A]2 un +O(∆t3).

(100)

Therefore, adding Eqs. (95) and (100), we see that

GPn− 1

2

+
Gφ1

∆t

= QAun +
1

2
∆tQA(I −Q)Aun +

1

4
∆t2QA(I +Q)A(I −Q)Aun +O(∆t3)

(101)

is locally first-order accurate to the analytical solution GP (tn + 1
2
), which can be calculated from

Eq. (23).

Using the property that G and A commute, we have

GAφ1 = QGAφ1 = QAGφ1 = ∆t2QAQA(I −Q)Aun +O(∆t3). (102)

We then get

GPn− 1

2

+
Gφ1

∆t
−

1

2
GAφ1

= QAun +
1

2
∆tQA(I −Q)Aun +

1

4
∆t2QA [(I −Q)A]2 un +O(∆t3),

(103)

which is locally second-order accurate to GP (tn + 1
2
).
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The discrete equation for the projection method PM4A is given by

un+1 − un

∆t
=

1

2
Aun+1 +

1

2
Aun −

1

2
(GPn+1 +GPn), (104)

the intermediate solution is given by

u∗
n+1 − un

∆t
=

1

2
Au∗

n+1 +
1

2
Aun −

1

2
(GPn +GPn−1), (105)

and the pressure is updated as

1

2
(Pn+1 + Pn) =

1

2
(Pn + Pn−1) +

φ1

∆t
−

1

2
Aφ1, (106)

or

Pn+1 = Pn−1 +
2φ1

∆t
− Aφ1. (107)

Assuming un, Pn and Pn−1 are accurate, we have Qun = 0, GPn = QAun and

GPn−1 = QAu(tn−1) = QAun − ∆tQA(I −Q)Aun +
∆t2

2
QA [(I −Q)A]2 un +O(∆t3). (108)

From Eq. (105), u∗
n+1 is solved as

u∗
n+1 =

[
I −

1

2
∆tA

]−1 [
(I +

1

2
∆tA)un −

∆t

2
(GPn +GPn−1)

]
. (109)

Using Eqs. (97), (98) and (108), we can derive that

Gφ1

∆t
=

Qu∗
n+1

∆t

= ∆tQA(I −Q)Aun +
1

2
∆t2QAQA(I −Q)Aun +O(∆t3).

(110)

Similar to PM4, GPn−1 + 2Gφ1

∆t
is locally first-order accurate to the analytical solution GP (tn + 1),

and
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GPn−1 +
2Gφ1

∆t
−GAφ1

= QAun + ∆tQA(I −Q)Aun +
1

2
∆t2QA [(I −Q)A]2 un +O(∆t3)

(111)

is locally second-order accurate to GP (tn + 1).
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