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It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation.
Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates
as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow
molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react
only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions,
to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples
that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that
are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes
above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard
algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three
dimensions, is of the order of the reaction radius of a reacting pair of molecules.
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I. INTRODUCTION

Stochastic modeling has become a ubiquitous tool in the
study of biochemical reaction networks [1–5], as the traditional
approach of deterministic modeling has been shown to be
unsuitable for some systems where species are present in low
copy numbers or systems with spatial inhomogeneities [3,6].
Instead stochastic, spatially homogenous or inhomogeneous,
models are employed.

Stochastic modeling can be carried out on multiple different
scales. For processes occurring on the time scales typical of
living cells we consider three modeling scales: the spatially
homogeneous well-mixed scale, the mesoscopic spatially
heterogeneous scale, and the microscopic particle-tracking
scale. In this paper the focus is on spatially heterogeneous
modeling.

A prevalent model on the mesoscopic scale is the standard
reaction-diffusion master equation (RDME), in which diffu-
sion of individual molecules is modeled by discrete jumps
between voxels, while reactions occur at a given intensity once
molecules occupy the same voxel. The next subvolume method
(NSM) [7] is an efficient algorithm for generating single
trajectories of the system. The NSM has been implemented in
several software packages, including URDME [8], PyURDME
[9], STEPS [10], and MesoRD [11]. It is also available
as a part of larger simulation frameworks such as StochSS
(www.stochss.org) and E-Cell [12].

On the microscopic scale we model the molecules as hard
spheres moving by normal diffusion. We track the continuous
position of individual molecules, and molecules react with a
probability upon collision. This model is commonly referred
to as the Smoluchowski model [13], with the addition of a
Robin boundary condition at the reaction radius of a pair
of molecules. Algorithms aimed at accurately and efficiently
simulating the Smoluchowski model for general systems
have been implemented in E-Cell [12], Smoldyn [14], and
MCell [15].
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It has previously been shown that there is an inherent bound
of several reaction radii on the spatial accuracy of the standard
RDME compared to the Smoluchowski model [16,17]. It was
shown in [17] that by choosing correct mesoscopic reaction
rates, the standard RDME could be made accurate all the
way down to this lower bound. However, for mesh resolutions
below this lower bound, the accuracy deteriorates.

In this paper we generalize the standard RDME by allowing
molecules occupying neighboring voxels to react. Henceforth
we refer to this generalization as the generalized RDME. The
acronym RDME usually refers to the standard RDME, but to
minimize the possibility of confusion as to which of the algo-
rithms we are referring to, we adopt the acronym sRDME for
the standard RDME and gRDME for the generalized RDME.
Similar generalizations have been considered previously in
[18] and [19]. In [17], Isaacson discretizes the Doi model
[20] to obtain a convergent RDME. In [19], reaction rates
are derived for a spherical model and applied to the RDME
on a Cartesian mesh. In this paper we take a fundamentally
different approach. By deriving reaction rates to match certain
statistics of the Smoluchowski model, we arrive at analytical
expressions for the reaction rates and show that this approach
yields accurate results down to a fundamental lower limit on
the mesh size. This mesh size will be of the order of the reaction
radius of two molecules.

Importantly, we derive reaction rates under specific assump-
tions about the dynamics of dissociating molecules, and we
show with a simple example that not doing so may lead to
reaction rates that are inaccurate for certain systems. We thus
argue that it is crucial to take dissociations into account in the
derivation of reaction rates for the gRDME.

The outline of the paper is as follows. In Sec. II we review
the Smoluchowski model and the sRDME and how they are
connected through the mesoscopic reaction rates. In Sec. III
we describe the generalized algorithm and derive accurate
mesoscopic reaction rates as well as the lower limit on the mesh
size. Finally, in Sec. IV, we study two numerical examples,
demonstrating the accuracy of the gRDME and how it can
be used to simulate systems that are intractable with the
sRDME.
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II. BACKGROUND

A. Microscopic level

At this level of modeling we track the continuous position
of individual molecules, modeled by hard spheres and moving
by normal diffusion. Each species Si has a diffusion constant
Di and a radius of σi , called the reaction radius. Consider
two molecules, one of species S1 and one of species S2,
with positions x1n and x2n at time tn. The molecules can

react according to S1 + S2

ka

�
kd

S3, where S3 is some product.

The probability distribution function p(x1,x2,t |x1n,x2n,tn)
represents the probability that the positions of the molecules
are given by x1 and x2 at time t ; p then satisfies the
Smoluchowski equation

∂tp = D1�x1p + D2�x2p, (1)

with the reactive Robin boundary condition

K
∂px2−x1

∂n

∣∣∣∣
‖x2−x1‖=σ

= kap(‖x2 − x1‖ = σ,t), (2)

where D = D1 + D2, σ = σ1 + σ2 is the sum of the reaction
radii, ka is the microscopic reaction rate, and

K =
{

2πσD (2D),

4πσ 2D (3D).
(3)

The initial condition is given by

p(x2 − x1,tn) = δ((x2 − x1) − (x2n − x1n)), (4)

and since we assume that there is no outer boundary, we
enforce p(‖x2 − x1‖ → ∞,t) = 0.

It can be shown that with the change of variables

Y =
√

D2

D1
x1 +

√
D1

D2
x2, (5)

y = x2 − x1, (6)

we obtain two independent equations, where the equation for
Y describes free diffusion, while the equation for y becomes

∂tp(y,t) = D�yp(y,t), (7)

with the boundary condition

K
∂py

∂n

∣∣∣∣
‖y‖=σ

= kapy(‖y‖ = σ,t). (8)

The initial condition becomes py(y,tn) = δ(y − yn), and the
outer boundary condition is now py(‖y‖ → ∞,t) = 0. This
equation can be solved analytically in three dimensions
[21], but the solution is difficult and expensive to evaluate
numerically. Applying an operator split method to (7) and
(8) can significantly simplify the process of sampling new
positions from the probability density function [22].

An S3 molecule is assumed to dissociate according to
an exponential distribution with the mean kd . Following a
dissociation, the two products S1 and S2 are placed in contact
a distance of σ apart.

A system of more than two molecules is not amenable to
the direct approach of solving for the full probability density

function, due to the high dimensionality of the problem. A
common approach is instead to approximate the full problem
as a set of one- and two-body problems, by dividing the system
into subsets of single and pairs of molecules according to the
distances between them. We can obtain a good approximation
of the full problem by updating each subset independently
during short time steps �t . This algorithm is called the
Green’s function reaction dynamics (GFRD) [23,24], and all
microscale computations in this paper are carried out using a
variant of the GFRD algorithm [22].

B. Standard reaction-diffusion master equation

At the mesoscopic scale the simulation domain is dis-
cretized by N nonoverlapping voxels, and diffusion is modeled
as discrete jumps between the nodes of the voxels. The mesh
may be either a Cartesian mesh or an unstructured, tetrahedral
(three-dimensional; 3D), or triangular (two-dimensional; 2D)
mesh. A Cartesian mesh is suitable if the domain is simple, for
instance, a square or a cube, while an unstructured mesh has
advantages for complicated domains. The jump coefficients
between voxels are given by 2D/h2 in the case of a Cartesian
mesh, where h is the width of a voxel and D the diffusion rate of
the molecule. For an unstructured mesh, the jump coefficients
can be obtained from a finite-element discretization of the
diffusion equation [25]. Reactions occur with some intensity
when molecules occupy the same voxel.

Let p(x,t |xn,tn) be the probability that the system is found
in state x at time t , given that it was in state xn at time tn.
For brevity of notation, let p(x,t) = p(x,t |xn,tn). Let xi· and
x·j denote the ith row and the j th column of the N × S state
matrix x, respectively, where S is the number of species of the
system. The sRDME is given by

d

dt
p(x,t)

=
N∑

i=1

M∑
r=1

air (xi· − μir )p(x1·, . . . ,xi· − μir , . . . ,xN ·,t)

−
N∑

i=1

M∑
r=1

air (xi·)p(x,t)

+
S∑

j=1

N∑
i=1

N∑
k=1

djik(x·j−νijk)p(x·1, . . . ,x·j−νijk, . . . ,x·S,t)

−
S∑

j=1

N∑
i=1

N∑
k=1

dijk(x·j )p(x,t), (9)

where the propensity functions of the M chemical reactions are
denoted air (xi), μir are the stoichiometry vectors associated
with the reactions, dijk are the jump coefficients, and νijk are
stoichiometry vectors for diffusion events.

The sRDME is in general too high-dimensional to be
solved by direct approaches. An alternative approach is to
generate individual trajectories of the system with stochastic
simulations. The NSM [7] is an efficient algorithm frequently
used for that purpose.

013307-2



REACTION RATES FOR A GENERALIZED REACTION- . . . PHYSICAL REVIEW E 93, 013307 (2016)

C. Reaction rates for the standard reaction-diffusion
master equation

Consider a system of two molecules, one of species S1

and one of species S2, that react according to S1 + S2

ka

�
kd

S3,

where ka and kd are the microscopic reaction rates. Assume
that the molecules diffuse in a square (2D) or cube (3D)
with periodic boundary conditions. Without loss of generality,
assume that the S1 molecule is fixed at the origin and that
the S2 molecule diffuses freely at a diffusion rate D. The S2

molecule is initialized according to a uniform distribution.
Let τmeso(kmeso

a ,h) be the mean association time of the two
molecules on the mesoscopic scale, and let τmicro(ka) be the
mean association time on the microscopic scale. Under the
assumption that τmeso(kmeso

a ,h) = τmicro(ka) holds, it is shown
in [16] and [17] that the mesoscopic association rate is given
by

kmeso
a = ρ(d)(ka,h) = ka

hd

[
1 + ka

D
G(d)(h,σ )

]−1

, (10)

where d is the dimension,

G(d)(h,σ ) =
{

1
2π

ln
(
π− 1

2
h
σ

) − 1
4

(
3

2π
+ C2

)
(2D),

1
4πσ

− C3
6h

(3D),
(11)

and

Cd ≈
{

0.1951, d = 2,

1.5164, d = 3.
(12)

The microscopic parameters are σ , the sum of the reaction
radii of the molecules, D, the sum of the diffusion constants,
and ka , the microscopic reaction rate. To simplify the notation
somewhat, we let τ

ρ
meso(ka,h) := τmeso(ρ(d)(ka,h),h). For a

reversible reaction we match the mean binding time for
h > h∗

∞, where

h∗
∞ ≈

{√
π exp

( 3+2πC2
4

)
σ ≈ 5.1σ (2D),

2
3πC3σ ≈ 3.2σ (3D).

(13)

Let τ rebind
meso (kmeso

a ,h) and τ rebind
micro (ka) denote the average

rebinding times—that is, the average time until two molecules
react, given that they have just dissociated—on the meso-
scopic and microscopic scale, respectively. Again, to simplify
notation, we let τ

rebind,ρ
meso (ka,h) := τ rebind

meso (ρ(d)(ka,h),h). The
rebinding times can be written in terms of the average binding
times

τ rebind,ρ
meso (ka,h) = τρ

meso(ka,h) − τρ
meso(∞,h), (14)

τ rebind
micro (ka) = τmicro(ka) − τmicro(∞), (15)

where, for simplicity of notation, τ
ρ
meso(ka → ∞,h) and

τmicro(ka → ∞) are denoted τ
ρ
meso(∞,h) and τmicro(∞), respec-

tively. That (14) and (15) hold can be realized by considering
the following argument. Given a uniform initial distribution,
τmeso(∞) is the time until the molecules are in the same voxel
for the first time. By subtracting that time from the total binding
time, we obtain the rebinding time. A similar argument holds
for the microscopic case. We immediately see that because

τ
ρ
meso(ka,h) = τmicro(ka) holds, the rebinding times will match

if and only if τ
ρ
meso(∞,h) = τmicro(∞). This holds for h = h∗

∞,
and consequently,

τ rebind,ρ
meso (ka,h) > τ rebind

micro (ka) for h > h∗
∞, (16)

τ rebind,ρ
meso (ka,h) = τ rebind

micro (ka) for h = h∗
∞, (17)

τ rebind,ρ
meso (ka,h) < τ rebind

micro (ka) for h < h∗
∞. (18)

As a mesoscopic dissociation event is a combination of
microscopic dissociation and the diffusion required to get
well mixed in a voxel, we require that τ rebind

meso � τ rebind
micro hold.

For h < h∗
∞ we cannot match the mean binding time while

satisfying τ rebind
meso � τ rebind

micro , and the accuracy of the sRDME
consequently deteriorates with decreasing h. Thus, h∗

∞ is the
finest spatial resolution attainable with the sRDME.

For a given h > h∗
∞, we can compute the error in rebinding

time as∣∣τ rebind,ρ
meso (ka,h) − τ rebind

micro (ka)
∣∣ = |τmeso(∞,h) − τmicro(∞)|,

(19)

where the right-hand side thus is a measure of how well
resolved a system is. Details of the above theory are given
in [17].

III. THE GENERALIZED REACTION-DIFFUSION
MASTER EQUATION

In the sRDME, molecules react only when they occupy the
same voxel. In this section we extend this approach by allowing
molecules occupying neighboring voxels to react. To connect
the sRDME to the microscopic Smoluchowski model we
determined the rate at which molecules react when occupying
the same voxel. For the gRDME we need to obtain the rates
for molecules occupying the same voxel, but also the rates for
molecules occupying neighboring voxels. In [16] and [17] we
derive rates for the sRDME by matching the mean association
times on the two scales. To uniquely determine both of the
rates for the gRDME we need an additional constraint.

In Sec. III A we outline the algorithm, and in Sec. III B
we derive mesoscopic parameters by trying to match certain
statistics of the microscopic model to the corresponding
statistics on the mesoscopic scale. In Sec. III C we determine
the dissociation rate of a reversibly reacting pair of molecules,
and in Sec. III D we collect the results and summarize the
algorithm.

A. Generalized reactions

Consider a domain 	 discretized by a Cartesian mesh and a

single reversible reaction S1 + S2

ka

�
kd

S3. In the gRDME we

allow reactions between molecules occupying neighboring
voxels. Thus, if a molecule of species S1 occupies the same
voxel as a molecule of species S2, they react with an intensity
given by k0. If the molecules instead occupy neighboring
voxels they react with an intensity of k1, where two voxels
are neighbors if they share one side.

We can choose k0 and k1 freely, with the restriction that
the total intensity should be constant. Call the total intensity
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kmeso
a . Let d be the dimension. Then, since each voxel has 2d

neighbors, k0 and k1 must satisfy

k0 + 2dk1 = kmeso
a . (20)

Thus we can write

k0 = (1 − 2dr)kmeso
a , (21)

k1 = rkmeso
a , (22)

where 0 � r � 1/(2d).
Now assume that a molecule of species S3 dissociates. We

must determine where to place the two products S1 and S2.
It may seem natural to place them in the same voxel with
probability 1 − 2dr and in neighboring voxels with probability
2dr . While this arguably would yield the most accurate results
compared to microscopic simulations for a single reversible
reaction, we show below that this approach is unsuitable in
general.

First, consider the single irreversible dissociation given by

P
kdeg−→ S1 + S2. (23)

In this case the microscopic and mesoscopic rates will be the
same; thus kmeso

d = kdeg, and the products are placed in the
same voxel. Now consider that in addition to (23) we have
the following reactions:

S1
k∗→S∗

1 , (24)

S∗
1 + S2

ka

�
kd

S3. (25)

Again, (24) is an irreversible unimolecular reaction and thus
the mesoscopic and microscopic rates are the same. Now, if k∗
is large, the system (23)–(25) will be well approximated by

P
kdeg−→ S∗

1 + S2

ka

�
kd

S3. (26)

Had we derived rates for reaction (25) assuming that dissoci-
ating molecules are placed in neighboring voxels with some
probability, we can see that sequence (26) will be incorrectly
simulated, as S1 and S2 are placed in the same voxel with
probability 1 when P dissociates. Specifically, the rebinding
dynamics of S∗

1 and S2 will be incorrect, as the rebinding time
will depend on whether they were produced from a dissociating
S3 or a dissociating P .

To summarize:
(1) Reactive molecules occupying the same voxel react

with intensity (1 − 2dr)kmeso
a .

(2) Reactive molecules in neighboring voxels react with
intensity rkmeso

a .
(3) When a molecule dissociates, the products are placed

in the same voxel with probability 1.
The parameters r and kmeso

a now have to be determined from
the microscopic parameters ka , σ , and D.

B. Reaction rates

Consider the reversible reaction S1 + S2

ka

�
kd

S3. Assume

that the initial state of the system is given by one molecule

of species S1 and one molecule of species S2 in a square (2D)
or a cubic (3D) domain 	 of width L with periodic boundary
conditions. For simplicity, and without loss of generality,
assume that the S1 molecule is fixed at the origin while the
S2 molecule has a uniform initial distribution and a diffusion
rate D = D1 + D2. On the microscopic scale the S2 molecule
moves by continuous Brownian motion. On the mesoscopic
scale, 	 is subdivided into nonoverlapping squares or cubes
of width h. The S2 molecule thus jumps between voxels
with a total intensity of kj = 2dD/h2 in dimension d. Let
τmeso,r(kmeso

a ,h) denote the average time until the molecules
react on the mesoscopic scale in the gRDME.

For the sRDME, it was shown in [16] and [17] that by
enforcing the constraint τmeso = τmicro we obtain mesoscopic
reaction rates as given by (10). In addition, it was shown that
τ rebind

meso approaches τ rebind
micro from above as h → h∗

∞. Therefore it
seems reasonable to require that with the gRDME we obtain
an approximation of τ rebind

micro that is equal to or better than the
approximation we obtain with the sRDME. The first constraint
is therefore that the mean binding time agrees between the
mesoscopic and the microscopic scales,

τmeso,r
(
kmeso
a ,h

) = τmicro(ka), (27)

and the second constraint is that, given (27), kmeso
a and

r minimize the difference in the rebinding times at the
mesoscopic vs microscopic scale; that is, we want to minimize∣∣τ rebind

meso,r

(
kmeso
a ,h

) − τ rebind
micro (ka)

∣∣, (28)

under the assumption that (27) holds, where τmeso,r is the
average binding time (dependent on r and kmeso

a ) and where
τ rebind

meso,r is the average rebinding time in the gRDME. Note that
with (27) satisfied we have τmeso,0(kmeso

a ,h) = τmeso(kmeso
a ,h)

and τ rebind
meso,0(kmeso

a ,h) = τ rebind
meso (kmeso

a ,h).

1. Mean mesoscopic binding time

Again, assume that we have species S1 and S2, with one
molecule of each, and that the S1 molecule is fixed. The S2

molecule is initialized according to a uniform distribution and
diffuses at diffusion rate D.

We start by deriving the mesoscopic mean binding time. To
this end, let Mi

s denote the average number of diffusive jumps
required for the S2 molecule to reach a voxel at distance i

from the S1 molecule, where the distance between two voxels
is defined to be the smallest number of discrete jumps required
to move from one voxel to the other. Let the set of all voxels
at a distance i from the S1 molecule be denoted di (note that
d0 will then be a set of only one voxel; specifically, the voxel
occupied by the S1 molecule), let tj denote the average time
for a diffusive jump, and let τi denote the average time for the
S2 and the S1 molecule to react, given that the S2 molecule is
occupying a voxel at distance i from the S1 molecule. Thus,
tj = h2/(2dD), and

τmeso,r
(
kmeso
a ,h

) = M1
s tj + τ1. (29)

The first term, M1
s tj , represents the average time required for

the S2 molecule to reach d1. The second term, τ1, represents
the remaining time until the molecules react, given that the S2

molecule occupies a voxel in d1.
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a. Derivation of M1
s . In this section we show that

M1
s =

{
π−1N ln N + (C2 − 1)N + O(1) (2D),

(C3 − 1)N + O(
√

N ) (3D),
(30)

where C2 and C3 are defined in (12). Let Mj

i denote the average
number of steps required to diffuse from di to dj . We also show
that

M1
2 = N − 2

2d − 1
. (31)

To obtain (30) we first note that

M1
s = M0

s − M0
1 . (32)

In [27] it is shown that

M0
s =

{
π−1N ln N + C2N + O(1) (2D),

C3N + O(
√

N ) (3D).
(33)

Let M0
0 be the average number of steps required to return to d0,

given that we start in d0. The first jump of a molecule starting
in d0 always transfers the molecule to d1, so we find that

M0
1 = M0

0 − 1. (34)

We know that M0
0 = N , shown in [26]. By combining (32),

(33), and (34), we obtain (30).
To obtain (31) we note that we can write M0

0 as

M0
0 = 1 + 1

2d
+ 2d − 1

2d

(
M1

2 + M0
1

)
. (35)

To see that the above equality holds, start by considering a
molecule in d0. The first jump transfers the molecule to d1; the
second jump transfers it back to the origin with a probability
of 1/(2d) or to d2 with a probability of (2d − 1)/(2d). The
average number of steps required to reach d0 from d2 is given
by the average number of steps to reach d1 plus the average
number of steps to reach d0, given that the molecule starts in
d1. Now, solving (35) for M1

2 yields (31).
b. Derivation of τ1. To obtain τmeso,r for ka < ∞, it remains

to determine τ1. To that end, assume that the S2 molecule
occupies a voxel in d1 and that the intensity with which the
molecules react in d1 is given by 1/(rkmeso

a ). Then, to maintain
a total intensity of 1/kmeso

a , the molecules must react with an
intensity of 1/[(1 − 2dr)kmeso

a ] in d0. We require that r � 0
and that 0 � 1 − 2dr � 1. To simplify the notation we let
1/(rkmeso

a ) be denoted by p1 and 1/[(1 − 2dr)kmeso
a ] by p0.

Let t0
e and t1

e denote the average time until the next event
fires, given that the S2 molecule occupies a voxel in d0 or
d1, respectively. Then t0

e = 1/(p−1
0 + t−1

j ) and t1
e = 1/(p−1

1 +
t−1
j ).

By assumption, the S2 molecule initially occupies a voxel
in d1. The next event can either be (1) a diffusive jump,
with probability p1/(p1 + tj ), or (2) a reaction event with
probability tj /(p1 + tj ).

Now assume that the next event is a diffusion event. Then
(1.1) the molecule jumps to d2 with probability (2d − 1)/2d

or (1.2) the molecule jumps to d0 with probability 1/(2d).
Assume that the molecule jumps to d0. Then the next event
is (1.2.1) a reaction with probability tj /(p0 + tj ) or (1.2.2)
diffusion to d1 with probability p0/(p0 + tj ). Thus, if the

molecule is in state (1.2), the time until the molecules react is
given by

τ0 = tj

p0 + tj
t0
e + p0

p0 + tj

(
t0
e + τ1

) = t0
e + p0

p0 + tj
τ1. (36)

Now instead assume that the molecule is in state (1.1). The
molecules cannot react until the S2 molecule reaches d1, and
thus the average time until the molecules react is given by

τ2 = M1
2 tj + τ1 = N − 2

2d − 1
tj + τ1, (37)

where M1
2 is given by (31). To summarize:

The S2 molecule initially occupies a voxel in d1, and the S1

molecule is fixed in d0.
(1) The S2 molecule diffuses with probability p1/(p1 +

tj ).
(1.1) The S2 molecule jumps to d2 with probability

(2d − 1)/(2d). The average remaining time until the S1 and S2

molecules react is given by τ2.
(1.2) The S2 molecule jumps to d0 with probability 1/(2d).
(1.2.1) The S1 and S2 molecules react with probability

tj /(p0 + tj ).
(1.2.2) The S2 molecule diffuses to d1 with probability

p0/(p0 + tj ). The average remaining time until the S1 and S2

molecules react is given by τ1.
(2) The S1 and S2 molecules react with probability

tj /(p1 + tj ).
Putting it all together, we obtain

τ1 = tj

p1 + tj
t1
e + p1

p1 + tj

(
t1
e + 1

2d
τ0 + 2d − 1

2d
τ2

)
. (38)

By inserting (36) and (37) into (38) and solving for τ1 we
obtain

τ1 = (N + 2d − 1)p0 + (N + 2d − 2)tj
2d(p0 + tj ) + p1

p1 (39)

≈ p0 + tj

p0 + 2drtj

N

kmeso
a

, (40)

after some cumbersome but straightforward algebra, where
(40) follows by assuming N � 1.

c. Analytical expression for τmeso,r. Now, using (29), (30),
and (40) we find that

τmeso,r
(
kmeso
a ,h

)

≈
⎧⎨
⎩

[π−1N ln N + (C2 − 1)N ]tj + p0+tj
p0+4rtj

N
kmeso
a

(2D),

(C3 − 1)Ntj + p0+tj
p0+6rtj

N
kmeso
a

(3D).
(41)

d. Lower limit on the voxel size. It is of interest to know the
smallest voxel size h for which we can match the mesoscopic
mean binding time, τmeso,r, with the microscopic mean binding
time, τmicro. In [16,17] this problem was solved in the case of

the sRDME for a general reversible reaction S1 + S2
ka�
kd

S3.

Similar results in the case of the gRDME can be obtained for
the case of an irreversible reaction with ka → ∞. As we see
in Eqs. (74) and (75), the lower bound for ka → ∞ is in fact
a fundamental lower bound for the gRDME.

We now let h∗
ka,g

be the smallest voxel size for which we can
choose reaction rates such that τmeso,r(kmeso

a ,h) = τmicro(ka).
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It is easy to see that h∗
ka,g

exists; the average time until
two molecules on the mesoscopic scale occupy the same or
neighboring voxels diverges in two and three dimensions, thus
there must exist a smallest mesh size for which the mesoscopic
mean binding time can match the mean microscopic binding
time. We do not have analytical results for τmicro on a square
or a cube, but given that L � σ is satisfied, an excellent
approximation is provided by

τmicro(ka) =
{ 1+αF (λ)

ka
L2 (2D),

L3

kCK
(3D),

(42)

where

λ = π
1
2
σ

L
,

α = ka

2πD
,

F (λ) = ln(1/λ)

(1 − λ2)2
− 3 − λ2

4(1 − λ2)

(43)

and where kCK = 4πσDka/(4πσD + ka) is the classical
mesoscopic reaction rate, valid for large volumes, derived by
Collins and Kimball in [28]. The 2D expression was derived
in [19], following the approach devised in [29].

Since molecules are allowed to react with molecules
occupying neighboring voxels, we obtain

τ1 → 0 for ka → ∞, r > 0, (44)

and thus

τmeso,r → M1
s tj for ka → ∞, r > 0. (45)

We know M1
s from (30), and we have tj = h2/(2dD) by

definition. We now obtain h∗
ka,g

by solving

M1
s tj = τmicro(∞) (46)

for h.
In three dimensions, (46) becomes

(C3 − 1)L3

6Dh
= L3

4πσD
, (47)

since M1
s ∼ (C3 − 1)N for N � 1, and kCK → 4πσD as

ka → ∞. Solving (47) for h yields

h = 2
3 (C3 − 1)πσ ≈ 1.0815σ. (48)

In two dimensions, (46) becomes

h2

4D

[
π−1 L2

h2
ln

(
L2

h2

)
+ (C2 − 1)

L2

h2

]
= L2

ka

+ F (λ)

2πD
L2,

(49)

and for ka → ∞, we have

L2

ka

+ F (λ)

2πD
L2 → ln

(
π− 1

2
L
σ

) − 3
4

2πD
L2. (50)

In (50) we used that λ ≈ 0 for L � σ . Now (49) reduces to

π−1 ln

(
L

h

)
+ C2 − 1

2
= π−1 ln

(
π− 1

2
L

σ

)
− 3

4π
. (51)

We can rewrite the equation above to get

π−1 ln
(
π

1
2
σ

h

)
= 1 − C2

2
− 3

4π
. (52)

Solving for h yields

h = √
π exp

(
3 + 2π (C2 − 1)

4

)
σ ≈ 1.0599σ. (53)

To summarize, we find that

h∗
∞,g =

{√
π exp

( 3+2π(C2−1)
4

)
σ ≈ 1.0599σ (2D),

2
3 (C3 − 1)πσ ≈ 1.0815σ (3D).

(54)

2. Mean mesoscopic rebinding time

To satisfy the second constraint, (28), we need both the
microscopic and the mesoscopic mean rebinding times. The
microscopic rebinding time is derived in [17], as

τ rebind
micro = Ld

ka

. (55)

The mesoscopic rebinding time is simply given by

τ rebind
meso = τ0, (56)

as τ0 by definition is the time until an S1 and an S1 molecule
react, given that they start in the same voxel. We have already
derived τ0 in terms of τ1 in (36), and we thus obtain

τ rebind
meso,r ≈ t0

e + p0

p0 + 2drtj

N

kmeso
a

(57)

immediately from (39) and (40).

3. Solving for r and kmeso
a

We now want r and kmeso
a to satisfy constraints (27) and

(28). It will prove useful to divide the problem into two cases.

Case 1: h � h∗
∞. (58)

Case 2: h∗
∞ > h � h∗

∞,g. (59)

It turns out that in case 1 we get r = 0, effectively reducing
the generalized algorithm to the standard algorithm.

a. Case 1. We assume that r and kmeso
a have been chosen to

satisfy the first constraint, (27), and then show that for h � h∗
∞

we have

τ rebind
meso,r

(
kmeso
a ,h

)
� τ rebind,ρ

meso (ka,h). (60)

Since τ
rebind,ρ
meso (ka,h) � τ rebind

micro (ka), it immediately follows that
for h � h∗

∞, the gRDME and the sRDME agree.
We first note that we already know that

τmeso = M0
s tj + τ0, (61)

τmeso,r = M1
s tj + τ

g

1 , (62)

where τi , as previously defined, is the average time until the
molecules react, given that the S2 molecule is in di . The
superscript g indicates that it is the average time in the case of
the gRDME, and omission of the superscript indicates that it
is the average time in the case of the sRDME.
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We have assumed that (27) is satisfied, and consequently,

0 = τmeso − τmeso,r = (
M0

s − M1
s

)
tj + (

τ0 − τ
g

1

)
= Ntj + (

τ0 − τ
g

1

)
, (63)

where the second equality follows from (30) and (33). We
know that τ rebind

meso = τ0, so we get

τ rebind
meso = τ

g

1 − Ntj . (64)

Thus

τ rebind
meso,r � τ rebind

meso (65)

⇐⇒ τ
g

0 � τ
g

1 − Ntj (66)

⇐⇒ τ
g

1 − τ
g

0 � Ntj . (67)

We have already shown that

τ
g

0 = t0
e + p0

p0 + tj
τ

g

1 >
p0

p0 + tj
τ

g

1 , (68)

τ
g

1 ≈ p0 + tj

p0 + 2drtj

N

kmeso
a

. (69)

Now (67) becomes

p0 + tj

p0 + 2drtj

N

kmeso
a

− p0

p0 + tj

p0 + tj

p0 + 2drtj

N

kmeso
a

� Ntj (70)

⇐⇒ 1

p0 + 2drtj

1

kmeso
a

� 1. (71)

By definition, p0 = 1/(1 − 2dr)kmeso
a , so (71) becomes

1
1

(1−2dr)kmeso
a

+ 2drtj

1

kmeso
a

� 1 (72)

⇐⇒ 1 � (1 − 2dr)−1 + 2drtj k
meso
a . (73)

Since 1 − 2dr � 1, we have (1 − 2dr)−1 � 1, and
2drtj k

meso
a � 0 so (73) is satisfied for all r and kmeso

a . Thus
(65) holds for all r and kmeso

a .
What remains is to determine r and kmeso

a for h < h∗
∞.

b. Case 2. We proceed in two steps. First, we show that for
h = h∗

∞,g with τ1 � t0
e we have

τmeso,r
(
kmeso
a ,h

) ≈ τmicro(ka), (74)

τ rebind
meso,r

(
kmeso
a ,h

) ≈ τ rebind
micro (ka) (75)

for kmeso
a = ka/hd and 1 − 2dr = 0, and for h < h∗

∞,g

τ rebind
meso,r

(
kmeso
a ,h

)
� τ rebind

micro (ka). (76)

Note that we have already shown that we can satisfy (27)
at least down to h = h∗

∞,g . The assumption τ1 � t0
e means, in

words, that the average time until two molecules react, given
that they are one voxel apart, is much longer than the average
time until the first event, given that they occupy the same voxel.
Unless the microscopic reaction rate is very high, this should
be a reasonable assumption for most systems. The necessity of
this assumption is realized by considering two molecules in the
same voxel. Now, if the average microscopic rebinding time is
shorter than the average time until the first diffusion event on

the mesoscopic scale, we could not hope to find mesoscopic
rates that will yield a match between the mesoscopic rebinding
time and the microscopic rebinding time.

To show that (74) and (75) hold, we first note that we already
know that

τmeso,r
(
kmeso
a ,h

) = M1
s tj + τ1, (77)

and from assuming h = h∗
∞,g , it follows that

M1
s tj = τmicro(∞), (78)

and thus

τmeso,r
(
kmeso
a ,h∗

∞,g

) = τmicro(∞) + τ1. (79)

Equations (39) and (40) yield, for 1 − 2dr = 0 and kmeso
a =

ka/hd ,

τ1 = N

kmeso
a

= Nhd

ka

= Ld

ka

= τ rebind
micro (ka). (80)

We now have

τmeso,r

(
ka

hd
,h∗

∞,g

)
= τmicro(∞) + τ rebind

micro (ka) = τmicro(ka),

(81)

and thus (74) holds. Since we have assumed that τ1 � t0
e and

1 − 2dr = 0, we get

τ rebind
meso,r

(
ka

hd
,h∗

∞,g

)
= τ0 ≈ τ1 = τ rebind

micro (ka), (82)

and we have shown that (75) holds.
It remains to show (76). To this end, we simply note that

τmicro(ka) = τmeso,r = M1
s tj + τ1 > τmicro(∞) + τ1, (83)

since M1
s tj > τmicro(∞) for h < h∗

∞,g . Thus

τ rebind
micro = τmicro(ka) − τmicro(∞) > τ1 ≈ τ0 = τ rebind

meso,r, (84)

and (76) follows.
Second, we show that for h∗

∞,g < h < h∗
∞, still assuming

that τ1 � t0
e , we have

τmeso,r
(
kmeso
a ,h

) ≈ τmicro(ka), (85)

τ rebind
meso,r

(
kmeso
a ,h

) ≈ τ rebind
micro (ka) (86)

for

kmeso
a =

(
tjQ

2 + ka/hd

tjQ2 + Qka/hd

)
ka

hd
, (87)

r = DQ(Q − 1)

2dDQ2 + ka/hd−2
, (88)
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where

Q = Ntj

τmicro(∞) − τmeso,r(∞)

=

⎧⎪⎨
⎪⎩

[
2
π

ln
(

h
h∗∞,g

)]−1
(2D),[

(C3 − 1)
(

h
h∗∞,g

− 1
)]−1

(3D).
(89)

We show this by first noting that we already know that

τmeso,r
(
kmeso
a ,h

) = M1
s tj + τ1, (90)

τ rebind
micro (ka) = τmicro(ka) − τmicro(∞) = Nhd

ka

, (91)

τ rebind
meso,r

(
kmeso
a ,h

) = τ0 ≈ p0

p0 + 2drtj

N

kmeso
a

. (92)

Consequently, we satisfy (85) if

M1
s tj + τ1 = τmicro(ka), (93)

which, by (39) and (40), approximately holds if

p0 + tj

p0 + 2drtj

N

kmeso
a

= τmicro(ka) − M1
s tj . (94)

To satisfy (86), we must, by (91) and (92), satisfy

p0

p0 + 2drtj

N

kmeso
a

= τ rebind
micro (ka). (95)

Subtracting both the right-hand and the left-hand side of (95)
from (94), we obtain

tj

p0 + 2drtj

N

kmeso
a

= τmicro(ka) − M1
s tj − τ rebind

micro (ka). (96)

By definition, p0 = 1/(1 − 2dr)kmeso
a and tj = h2/(2dD), so

(96) yields, after some straightforward algebra,

kmeso
a =

(
(1 − 2dr)Ntj

τmicro(ka) − M1
s tj − τ rebind

micro (ka)
− 1

)
D

rh2(1−2dr)
.

(97)

Since τmeso,r(∞) = M1
s tj and τ rebind

micro (ka) = τmicro(ka) −
τmicro(∞), (97) becomes

kmeso
a = D

rh2

(
Ntj

τmicro(∞) − τmeso,r(∞)
− 1

1 − 2dr

)
(98)

= D

rh2

(
Q − 1

1 − 2dr

)
. (99)

With kmeso
a as in (99), we want to find r such that (95) is

satisfied. Since τ rebind
micro = Ld/ka = Nhd/ka , we obtain

p0

p0 + 2drtj

N

kmeso
a

= Nhd

ka

(100)

⇐⇒ 1

12drtjp
−1
0

1

kmeso
a

= hd

ka

(101)

⇐⇒ (
1 + 2drtjp

−1
0

)
kmeso
a = ka

hd
. (102)

Since tj = h2/2dD and p0 = 1/(1 − 2dr)ka , (102) becomes

rh2

D
(1 − 2dr)

(
kmeso
a

)2 + kmeso
a = ka

hd
. (103)

We expand the first term on the left-hand side to get

rh2

D
(1 − 2dr)

(
kmeso
a

)2

= D

rh2

[
(1 − 2dr)Q2 − 2Q + 1

1 − 2dr

]
. (104)

Thus

rh2

D
(1 − 2dr)

(
kmeso
a

)2 + kmeso
a = D

rh2
[(1 − 2dr)Q2 − Q],

(105)

and (103) becomes

D

rh2
[(1 − 2dr)Q2 − Q] = ka

hd
, (106)

yielding

r = DQ(Q − 1)

2dDQ2 + ka

hd

. (107)

Inserting r above into (99) yields (87).
It remains to show that kmeso

a > 0 and 0 < r < 1/(2d) hold
for kmeso

a and r given by (87) and (88). We first show that
Q > 1, from which r > 0 follows. Thus we should show that

Q = Ntj

τmicro(∞) − τmeso,r(∞)
> 1 (108)

holds. We start by showing that (108) holds in three dimen-
sions. By (30),

τmeso,r(∞,h) ≈ (C3 − 1)Ntj = (C3 − 1)
L3

h3

h2

2dD
(109)

for N � 1. We have already shown that

τmicro(∞) = τmeso,r(∞,h∗
∞,g) = (C3 − 1)

L3

(h∗∞,g)3
tj , (110)

so (108) becomes

Q =
L3

h3
h2

2dD

(C3 − 1) L3

(h∗∞,g)3

(h∗∞,g)2

2dD
− (C3 − 1)L3

h3
h2

2dD

=
1
h

(C3 − 1)
(

1
h∗∞,g

− 1
h

) > 1 (111)

⇐⇒ (C3 − 1)

(
h

h∗∞,g

− 1

)
< 1. (112)

Since h∗
∞/h∗

∞,g = C3/(C3 − 1), and by assumption, h < h∗
∞,

we obtain

(C3 − 1)

(
h

h∗∞,g

− 1

)
< (C3 − 1)

(
C3

C3 − 1
− 1

)
= 1.

(113)
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Thus Q > 1, and as a consequence, r > 0. In two dimensions
we have

τmeso,r(∞,h) = [π−1N ln N + (C2 − 1)N ]tj (114)

=
[
π−1 L2

h2
ln

L2

h2
+ (C2 − 1)

L2

h2

]
h2

2dD
(115)

= π−1 L2

2dD
ln

L2

h2
+ (C2 − 1)

L2

2dD
. (116)

In two dimensions, similarly to the 3D case, we have
τmicro(∞) = τmeso,r(∞,h∗

∞,g). Thus

Q =
L2

h2
h2

2dD[
π−1 L2

2dD
ln L2

(h∗∞,g )2 + (C2 − 1) L2

2dD

] − [
π−1 L2

2dD
ln L2

h2 + (C2 − 1) L2

2dD

] (117)

= 1

2π−1
(

ln L
h∗∞,g

− ln L
h

) = 1

2π−1 ln h
h∗∞,g

. (118)

Since, by assumption,

1 <
h

h∗∞,g

<
h∗

∞
h∗∞,g

(119)

and

h∗
∞

h∗∞,g

= exp

[
3 + 2πC2

4
− 3 + 2π (C2 − 1)

4

]
= exp

(π

2

)
,

(120)

we obtain

Q = 1

2π−1 ln h
h∗∞,g

>
1

2π−1 ln
(
exp π

2

) = 1. (121)

Thus Q > 1 holds in both two and three dimensions, and
we have r > 0. Note that with Q > 1, kmeso

a > 0 follows
immediately. It remains to show that r < 1/(2d). To this end,
we simply note that

r = DQ2 − DQ

2dDQ2 + ka

hd−2

=
(

DQ2 − DQ

DQ2 + ka

2dhd−2

)
1

2d
, (122)

where

DQ2 − DQ

DQ2 + ka

2dhd−2

< 1 (123)

holds, since Q > 1. Thus 0 < r < 1/(2d) and kmeso
a > 0 for

h∗
∞,g < h < h∗

∞.

C. Dissociation rates

Consider the same setup as before, with one S1 molecule
and one S2 molecule reacting reversibly according to S1 +
S2

ka

�
kd

S3. Above we have determined how to choose the

mesoscopic association rates, so what remains is to determine
the dissociation rate. This can be done completely analogously
to the case of the sRDME. We thus follow the approach in [17]
and conclude that we must have(

kmeso
d

)−1

τ rebind
meso,r + (

kmeso
d

)−1 = k−1
d

τ rebind
micro + k−1

d

(124)

to obtain a steady state on the mesoscopic scale that matches
the steady state of the microscopic scale. Thus it follows

immediately that for h∗
∞,g � h � h∗

∞, we should have

kmeso
d = kd, (125)

because τ rebind
meso,r(k

meso
a ,h) = τ rebind

micro (ka) holds.

D. Summary of the algorithm

Assume that we have a cubic (3D) or square (2D) domain
of width L, discretized by a Cartesian mesh with voxels of

width h. Consider a reversible reaction S1 + S2

ka

�
kd

S3, where

ka and kd are the microscopic reaction rates. Let D = D1 +
D2, where D1 and D2 are the diffusion rates of species S1 and
S2, respectively. Let σ = σ1 + σ2 be the reaction radius of an
S1 and an S2 molecule.

The critical mesh sizes are given by

h∗
∞ ≈

{
5.1σ (2D),

3.2σ (3D)
(126)

for the sRDME, and the critical mesh sizes for the gRDME
are given by

h∗
∞,g ≈

{
1.06σ (2D),

1.08σ (3D).
(127)

We now wish to simulate this system on the mesoscopic
scale with the gRDME. The results of this section can be
summarized as follows:

(1) For h � h∗
∞: The gRDME reduces to the sRDME.

Thus r = 0 and kmeso
a = ρ(d)(ka,h). Molecules react only when

occupying the same voxel. The dissociation rate is given by
kmeso
d = hdkdk

meso
a /ka , as shown in [17].

(2) For h∗
∞,g < h < h∗

∞: We match both the mean binding
time and the mean rebinding time of the S1 and S2 molecules
by choosing r and kmeso

a as in (87) and (88). Now molecules
react with an intensity of rkmeso

a when occupying neighboring
voxels and with an intensity of (1 − 2dr)kmeso

a when occupying
the same voxel. The dissociation rate is simply given by
kmeso
d = kd .

(3) For h < h∗
∞,g we can no longer match the

mean rebinding time, and the accuracy deteriorates with
decreasing h.
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FIG. 1. (a, b) Rebinding-time distributions in three dimensions. For the sRDME we have a good match between the microscopic and the
mesoscopic simulations for h ≈ h∗

∞, while the average rebinding time is underestimated for finer meshes. For the gRDME we see that
the microscopic and mesoscopic distributions agree well for h∗

∞,g < h < h∗
∞ down to spatial resolution almost of the order of the size of the

molecules, or a temporal resolution of approximately (h∗
∞,g)2/(2D). (c, d) Rebinding-time distributions in two dimensions. The conclusions

are the same as for the 3D case. Parameters in (a) and (b) are given by σ = 2 × 10−9 m, D = 2 × 10−12 m2 s−1, L = 5.145 × 10−7 m, and ka =
10−18 m3 s−1. Parameters in (c) and (d) are given by σ = 2 × 10−9 m2 s−1, D = 2 × 10−14 m2 s−1, L = 5.2 × 10−7 m, and ka = 10−12m2 s−1.

IV. NUMERICAL RESULTS

A. Rebinding-time distributions

Consider a system of two species, S1 and S2, with one
molecule of each. The S1 molecule is fixed at the origin,
while the S2 molecule diffuses freely in space. In [17]
it was shown that the sRDME matched the microscopic
rebinding-time distribution for a reversibly reacting pair down
to t∗ ∼ (h∗

∞)2/(2D). For t < t∗, the behavior is inevitably
going to be different, as the accuracy of the sRDME is
inherently limited by the spatial resolution.

With the gRDME, we can match both the average binding
times and the average rebinding times for h∗

∞ � h � h∗
∞,g ,

and thus we would hope that also the error in distribution will
be small at time scales of (h∗

∞,g)2/(2D) < t < (h∗
∞)2/(2D).

In Fig. 1 we compare the microscopic rebinding-time dis-
tribution (obtained using the microscopic algorithm described
in [22]) to the rebinding-time distribution for the gRDME. As
we can see, there is a good match down to a spatial resolution
of approximately σ . For the finest meshes, the behavior at
really short time scales is incorrect due to dissociating particles

starting in the same voxel but not reacting until they are in
neighboring voxels. This introduces an error of the order of
the voxel size, which will be of the order of the size of the
molecules.

B. Convergence of the generalized RDME

The dynamics of some systems is resolved only at a fine
spatial resolution. In particular, it has been shown that fast
rebinding events can affect, e.g., the response time of a MAPK
pathway [6]. We consider the system{

S1
kd→ S11 + S12

ka→ S2,

S2
kd→ S21 + S22

ka→ S3,
(128)

which has a behavior similar to that of the MAPK pathway of
[6]. Due to the possibility of fast rebinding events, the long-
term dynamics of the system is affected by spatial correlations
between newly produced molecules.

We start with an initial population of 100 S1 molecules, with
none of the other species present. The system is simulated
for 2 s, during which we sample the state of the system at
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FIG. 2. (a) Average number of S3 molecules as a function of time. As we can see, for a larger value of the voxel size h, we underestimate
the number of S3 molecules. For a very fine mesh, the number of S3 molecules is overestimated with the sRDME. Somewhere in between
we may obtain a good approximation compared to the microscopic results also with the sRDME, but then the concentration of other species
in the system will be incorrect. For simulations with the generalized algorithm, the average number of S3 molecules is underestimated for
coarse meshes, but as we refine the mesh, the dynamics approaches that of the microscopic simulations. (b) The total error, as defined in (129),
decreases to a mesh size of h1 for the gRDME, while the error for the sRDME first decreases slightly but then increases as we refine the mesh
further. We obtain an almost-perfect match between the microscopic simulations and the gRDME as h approaches h1 and all the way down to
h2,g . The average on the microscopic scale is based on 2000 trajectories, giving 95% confidence intervals of width less than 0.2% of the mean
for most time points, and the mesoscopic results are based on approximately 500 trajectories, giving 95% confidence intervals of width less
than 1.0% of the mean for most time points.

201 evenly distributed points between t = 0 and t = 2. We
simulate the system with both the sRDME and the gRDME,
for different voxel sizes. Let S = {S1,S11,S12,S2,S21,S22,S3}.
We define the error, E(h), to be

E(h) = 1

201

201∑
i=1

∑
S∈S

∣∣[S]meso
h,i − [S]micro

i

∣∣, (129)

where [S]micro
i is the average population of S at time ti , obtained

with the microscopic algorithm from [22], and where [S]meso
h,i

denotes the average population of S at time ti obtained at the
mesoscopic scale with voxel size h.

After a dissociation of either an S1 or an S2 molecule from
(128), the products can rebind quickly to produce an S2 or S3

molecule, respectively. On the microscopic scale, the products
are in contact after a dissociation event, and thus the spatial
correlation will be significant. At the mesoscopic scale, the
products are placed in the same voxel after a dissociation. If
the voxel size is large compared to the size of the molecules, the
spatial correlation will be less than on the microscale. Thus,
to simulate (128) accurately, we would expect a fine-mesh
resolution to be required.

Let σi be the reaction radius of molecule Si and σij the
reaction radius of molecule Sij . The parameters of the model
are given by

{
kd = 10 s−1,

ka = 10−19 m3 s−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 = 10−9 m,

σ11 = σ12 = 0.8 × 10−9 m,

σ2 = 2 × 10−9 m,

σ21 = σ22 = 1.8 × 10−9 m,

σ3 = 2.5 × 10−9 m.

(130)

For simplicity, we let all species have the same diffusion rate,
D = 10−12m2 s−1. The S1 molecules are initialized uniformly
in a cube of volume 10−18 m.

There is a critical lower bound on the mesh size associated
with each of the system’s bimolecular reaction events:{

h1 := h∗
∞(σ11 + σ12) ≈ 5.0815 × 10−9,

h2 := h∗
∞(σ21 + σ22) ≈ 1.1433 × 10−8.

(131)

We know that for h > h∗
∞, we are unable to match either the

mesoscopic mean association time or the mesoscopic mean
rebinding time to the corresponding microscopic quantities.
Thus, for h > max{h1,h2}, we will overestimate the rebinding
time for both reactions and, consequently, underestimate the
average S3 concentration.

For h2 > h > h1 the dynamics is less obvious; we are
underestimating the average rebinding time for the first
reaction but overestimating the average rebinding time for the
second. As shown in Fig. 2(b), the positive and negative errors
partly cancel out in this regime. At first the error decreases with
decreasing h, but as we approach h1, it starts to increase again.
The behavior of the sRDME is hard to predict, and a priori we
cannot be sure that a particular choice of h is suitable.

In contrast, we see that the gRDME has a more predictable
behavior, converging with decreasing h and yielding an almost-
perfect match for h < h1. The difference in behavior is due
to the gRDME’s matching the average rebinding time also
for h < h∗

∞, all the way down to h2,g := h∗
∞,g(σ21 + σ22) ≈

3.8934 × 10−9.
At the finest mesh sizes a diffusion event will move a

particle a distance of the order of the radius of the molecules.
Thus, for a dilute system such as the above, it is noteworthy that
an efficient microscopic method taking advantage of the large
distances between molecules will be significantly faster than
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the gRDME. For the problem above, the algorithm in [22] is
more than an order of magnitude faster than the gRDME at the
finest mesh sizes (one realization on the microscopic scale took
around 8 s, while a simulation with the gRDME at the finest
mesh size took around 150 s; note that both implementations
were crude and not optimized). However, in the case of a less
dilute system, we expect the gRDME to be more competitive.
The execution time on the microscopic scale increases almost
quadratically with the number of molecules but linearly with
the number of molecules on the mesoscopic scale. A possible
application of the gRDME is in hybrid methods, where part
of the system can be simulated at the coarser sRDME scale,
and only some parts of the system at the most fine-grained and
expensive gRDME scale.

V. SUMMARY

For the sRDME there is a lower bound on the mesh size, h∗
∞,

below which the accuracy deteriorates. For h > h∗
∞ we match

the mean binding time of two molecules with the mesoscopic
reaction rate given by ρ(d)(ka,h). For h = h∗

∞ we match both
the mean binding time and the mean rebinding time of the two
molecules.

Some systems display fine-grained dynamics, requiring
a fine spatial resolution to be simulated at the mesoscopic
scale. By generalizing the sRDME to allow reactions between

molecules in neighboring voxels, we obtain a lower bound on
the mesh size given by h∗

∞,g , where h∗
∞,g is of the order of

the reaction radius of a pair of molecules. We have derived
analytical expressions for the reaction rates and shown that
we match both the mean binding time and the mean rebinding
time for h∗

∞,g � h � h∗
∞. For h > h∗

∞, the gRDME and the
sRDME agree.

We have studied the accuracy of the gRDME in two
numerical examples. In the first example we show that we
not only match the mean rebinding time for h∗

∞,g � h � h∗
∞,

but also obtain a good match between the rebinding-time
distributions at the two scales. In the second example we
consider a system that cannot be accurately simulated with
the sRDME, as the mesh resolution required is below the
fundamental lower limit h∗

∞. We show that with the gRDME
we are able to simulate the system to a high accuracy, and
we show that we obtain convergence to the microscopic
simulations with decreasing mesh size h.
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