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a b s t r a c t

Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase
with low volume fraction (mortar) are a promising pathway to produce stiff, high-
toughness composites. For certain ranges of constituent properties, including those of
some synthetic analogs to nacre, one can demonstrate that the deformation is dominated
by relative brick motions. This paper describes simulations of fracture that explicitly track
the motions of individual rigid bricks in an idealized microstructure; cohesive tractions
acting between the bricks introduce elastic, plastic and rupture behaviors. Results are
presented for the stresses and damage near macroscopic cracks with different brick or-
ientations relative to the loading orientation. The anisotropic macroscopic initiation
toughness is computed for small-scale yielding conditions and is shown to be in-
dependent of specimen geometry and loading configuration. The results are shown to be
in agreement with previously published experiments on synthetic nacre.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials consisting of aligned stiff platelets (or whiskers) bonded together with low volume fractions of a
ductile phase are a promising pathway to produce high-performance macroscopic properties. A well-known example is
nacre, commonly found on the inner layer of certain shelled species (e.g., snails and mollusks); its highly intricate, hier-
archical microstructure leads to performance that greatly exceeds ‘rule of mixtures’ estimates based on its mostly brittle
composition (Wegst and Ashby, 2004; Meyers et al., 2008; Barthelat et al., 2007). Similar to other natural composites (e.g.,
antler and bone), nacre has inspired many studies with the hope of developing synthetic analogs with improved perfor-
mance (Currey, 1977; Jackson et al., 1990; Kamat et al., 2000; Evans et al., 2001; Wang et al., 2001; Okumura and De Gennes,
2001; Menig et al., 2001; Vincent, 2003; Bouville et al., 2014; Deville et al., 2006). In essence, all of these microstructures
consist of an overlapping ‘brick and mortar’ structure shown schematically in Fig. 1. For natural nacre, the bricks are an
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Fig. 1. Schematic of (a) macroscopic specimen and loading, (b) brick parameters, and (c) unit cell used in analysis.
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idealization of small tablets of brittle calcium carbonate (aragonite), comprising nearly 95–99% of the microstructure vo-
lume fraction; the mortar is an idealization of a thin, organic layer of biopolymer (1–5% volume fraction). The resulting
macroscopic toughness is approximately 300 J/m2, nearly thirty times higher (in energy terms) than a bulk aragonite
monolith (Barthelat and Espinosa, 2007), an amplification yet to be reproduced by any man-made replica (Wegst and Ashby,
2004; Barthelat, 2007).

While nacre is an inspiring example of a ‘brick and mortar’ microstructure, the goal of the present work is to explore the
implications of microstructural features for synthetic analogs. For this reason, certain important phenomena of nacre, such
as asperity sliding (Katti et al., 2004; Evans et al., 2001) and bridging ligaments formed from the brittle phase (Meyers et al.,
2008; Song et al., 2003), are not considered here. Over the past decade, advanced processing techniques have increased the
potential for cost effective and efficient routes to processing nacre-like structures in bulk form (Finnemore et al., 2012;
Launey et al., 2009). Analogous to natural nacre, current synthetics utilize a large volume fraction of a hard, brittle material
to promote strength along with a ductile polymer to promote toughness. A notable example is the composite formed with
alumina (Al O2 3) as the brittle ‘brick’ phase and poly-methyl-methacrylate (PMMA) as the ductile ‘mortar’ phase (Munch
et al., 2008). Fundamental questions remain regarding how the microstructure (e.g., brick aspect ratio, overlap, and mortar
volume fraction) and constituent properties (e.g., brick strength, mortar yield and rupture strains) should be tailored to
optimize composite properties for these synthetics.

The strength and stiffness of ‘brick and mortar’ composites have been extensively modeled analytically for homogeneous
deformation, predominantly for loading in the long brick direction (Begley et al., 2012; Wilbrink et al., 2010; Kotha et al.,
2001; Jäger and Fratzl, 2000; Bertoldi et al., 2008; Barthelat and Rabiei, 2011; Jackson et al., 1988; Genet et al., 2014), as
shown in Fig. 1c. These works provide key insights into the impact of microstructural properties on macroscopic perfor-
mance. However, the response of these materials to non-uniform stress and deformation is much less characterized, re-
sulting in a less established quantitative understanding of the link between microstructure and the resulting anisotropy,
failure mechanisms, and macroscopic toughness. In this regard, work by Rabiei et al. (2010) offers insight into the various
failure mechanisms of brick-and-mortar structures along with the associated material strength under multiple loading
orientations. In separate work, the same authors developed an analytical model that accurately captures the toughening
behavior for a loading orientation parallel to the long brick direction (Barthelat and Rabiei, 2011). However, there are
currently no predictive models for the fracture initiation toughness in terms of the complex anisotropy of these structures,
or the transitions between associated failure mechanisms. This is largely due to the relative computational cost of fracture
simulations with different length scales for the process zone size, the brick size, and the specimen size.

The aim of the present work is to present an idealized, efficient model that captures the interplay between the material
anisotropy, loading direction, and initiation toughness. To simplify the analysis and reduce the computational cost of the
problem, the model idealizes the bricks as rigid and represents the mortar using cohesive laws. These significant as-
sumptions are naturally only valid for a certain range of constituent properties, which imply that the mortar compliance (as
dictated by its volume fraction and modulus) is far greater than that of the bricks. In a subsequent section, scaling laws
based on previous micromechanical models are used to explicitly quantify the range of properties for which this approx-
imation is valid. The idealization implies that the deformation in the material is completely described by the motion of the
bricks, which interact only with their nearest neighbors through cohesive laws. As a result, highly efficient and stable
computational schemes can be parallelized to a significant degree; this enables large-scale simulations involving damage
zones spanning thousands of bricks. Hence, the approach captures the non-uniform stress states ahead of a dominant flaw
as well as growth of the damage zone with high resolution. In turn, this offers new insight into the effect of microstructure on
the overall macroscopic composite properties.
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The present approach builds upon the many insights into nacreous microstructures generated previously using 2D and
3D finite element approaches, many of which incorporate cohesive laws similar those described here. These previous co-
hesive models have identified key aspects of the influence of microstructure on the composite stress–strain response (Bekah
et al., 2012; Tang et al., 2007; Barthelat et al., 2007) and crack propagation (An et al., 2014; Flores-Johnson et al., 2014;
Nguyen and Govindjee, 2006). The work presented here confirms many similar behaviors, and extends them by developing
an efficient numerical framework that enables extraction of the fracture initiation toughness as a function of orientation and
constituent properties. The efficiency of the current framework is an important advance, as it enables systematic studies of
features not previously considered, such as stochastic brick sizes and overlap (Zhang et al., 2010a; Lei et al., 2012) and
hierarchical brick arrangements (Zhang et al., 2010b).
2. Material model

Fig. 1b illustrates the idealized microstructure utilized in the present simulations; an overlapping array of comparatively
stiff bricks is bonded by thin, compliant mortar sections. We approximate the bricks as rigid (justified next) and implicitly
account for the behavior of the mortar using cohesive laws that dictate the tractions between bricks and the local rupture
properties. The mortar exhibits elastic perfectly plastic behavior up to a critical rupture strain. The mortar thickness is
treated as negligible in comparison to the brick dimensions, and appears only implicitly through the cohesive law. That is,
the rupture strain for the mortar is implicitly defined as a critical separation between bricks divided by the mortar thickness.

The present simulations involve bricks of equal size, although the formulation is general in the sense it can handle
arbitrary brick shapes and size distributions. The influence of statistical distributions in brick sizes is examined in a com-
panion paper by Pro et al. (2015). In the present simulations, we neglect the possibility of brick failures, although the
formulation could be adapted to account for this possibility by utilizing ‘bricks within bricks’, with internal cohesive laws
that are different from those describing the interaction between adjacent bricks. Given the significance of the rigid brick
approximation, we first detail in Section 2.1 the combinations of brick and mortar properties for which the approximation is
valid, using a micromechanical model for tension in the brick direction shown in Fig. 1c. The constitutive description of the
mortar is then described in Section 2.2. The governing equations and solution technique is described in Section 3.

2.1. Rigid brick approximation

Begley et al. (2012) described a micromechanical model that accounts for brick elongation when the composite is
subjected to axial tension, which identifies the key dimensionless parameters that define whether the rigid brick as-
sumption is valid. Loading in the long brick direction produces the most stringent limitations in system properties for the
rigid brick approximation; in this orientation, shear transfer between overlapping bricks leads to largest possible stresses
that act to elongate the bricks. The uniaxial response of the composite shown in Fig. 1c is analyzed assuming that (i) the
horizontal mortar sections experience pure shear and the vertical mortar sections experience pure tension, and (ii) the
bricks experience purely axial elongation. The resulting model yields an analytical solution for the displacement distribu-
tions in the bricks, which are entirely described by the following two dimensionless parameters:
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mortar thickness, h is the brick height, and w is the brick width. Here, the displacement fields from the Begley et al. (2012)
model are used to derive the elastic energy in the composite in terms of 1,2κ ; the rigid brick approximation (with 01,2κ ≈ )
neglects energetic contributions on the order of 1,2κ compared to unity.

In what follows, u x u x w( ) ( )/i i¯ = are the normalized displacement distributions in the bricks, with i indicating the relevant
brick (see Fig. 1c). For simplicity, we consider the case where the brick overlap is exactly one-half the brick width, i.e.
s w/2= . The strain energy in the bricks is given by
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where ϵo is the macroscopic applied strain imposed on the unit cell, u1¯ is the displacement distribution in one-half of the
brick, and the prime denotes differentiation with respect to x x w/¯ = . The dimensionless function f ( , )b 1 2κ κ can be directly
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where f ( , )s
1 2κ κ is another dimensionless function that can be recovered using the solution in Begley et al. (2012) and
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performing the above integral. The strain energy in the vertical mortar sections is given by
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where it should be noted that O O[ ] [ ]1 2
2κ κ= , such that second order terms on κ2 should be retained. The rigid brick ap-

proximation retains the first two terms and neglects the remainder: the above solution is easily confirmed by assuming a
priori that the bricks are rigid and solving for the energy in the mortar.

Note that if one uses the effective composite modulus defined as E ( , )c 1 2κ κ¯ in Begley et al. (2012) to compute the strain
energy in the composite via E(1/2)tot c o

2Π = ¯ ϵ , one obtains identical scaling, only with slightly different coefficients to the κ
terms (that are different functions of α). The slight discrepancy between pre-factors in Eq. (7) and those obtained from the
modulus definition in Begley et al. (2012) arises due to the fact that the mortar is assumed infinitesimal in comparison to
other dimensions. This condition is not imposed in the above derivation. It is also worth noting that if one computes the
average composite stress, i.e. Ec c oσ = ¯ ϵ , one determines that the errors in composite stress associated with the rigid brick
assumption are controlled by identical scaling factors.

The error terms (indicated by the κ terms above, which are neglected in the rigid brick approximation) are negative,
indicating that the energy and average composite stress in the rigid brick model are overestimates of those obtained when
the bricks are deformable. This is a consequence of the fact that allowing for brick deformation for a given level of imposed
strain would lower the energy by increasing the compliance. The opposite is true if tractions are prescribed: under those
conditions, the strain energy and stresses in the rigid brick model would be underestimates.

Using the above results, one can define the fractional error in energy associated with the rigid brick approximation as
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This estimate in the error associated with the rigid brick approximation is illustrated in Fig. 2, which depicts contours of
the error as a function of modulus ratio (E E/m b) and brick aspect ratio (w/h). In this plot, the thickness of the mortar (t) is
replaced with a suitable expression involving the mortar volume fraction, taken here to be f¼0.1. It is clear from the figure
that the present model only applies for modest aspect ratios, extremely compliant mortars (relative to that of the brick), and
volume fractions much larger than those seen for natural materials. However, for synthetic materials such as those in
Launey et al. (2009) and Munch et al. (2008), the present simulations would have errors on the order of 10–20%, which is
reasonable in light of the considerable reduction in complexity associated with the rigid brick approximation.

Additionally, in order to estimate the error in computed fracture toughness due to the rigid brick approximation (in
terms of the fractional error in energy), a set of supplementary simulations was also performed using deformable, constant
strain triangular elements. To limit the scope while providing a qualitative comparison, each brick was split on the diagonals
to create four triangular elements. The calculations showed that, in the limit that 01,2κ → , one recovers the result for fracture
toughness computed in the rigid brick simulations to within a few percent. As compliance is introduced into the bricks,
thereby increasing the fractional error in energy relative to the rigid simulations, the fractional error in the computed
toughness also increases. Though the deformable brick simulations were not fully resolved (i.e. with a larger number of
constant strain triangles in each brick), the fracture toughness from the rigid brick simulations was less than 5% higher than
the deformable brick simulations when considering fractional energy errors less than about 0.1. Therefore, the over-
estimation of energy from the rigid brick simulations can be higher than the overestimate in toughness. Thus, it can be
inferred that the rigid brick simulations presented here overestimate the fracture toughness as compared to simulations
with deformable bricks, likely with smaller errors than those associated with elastic strain energy described above.



Fig. 2. Contours of fractional error in energy associated with the rigid brick assumption.

J. William Pro et al. / J. Mech. Phys. Solids 80 (2015) 68–8572
2.2. Mortar properties: cohesive laws describing brick interactions

The constitutive description of the mortar material defines the cohesive tractions holding bricks together, and the work
required to rupture the interface between adjacent bricks. Here, we adopt a phenomenological elastic perfectly-plastic
description for the mortar: other constitutive descriptions can be substituted without changes to what follows. Rupture is
modeled by specifying that the mortar does not support tractions once a threshold rupture strain is exceeded, as shown in
Fig. 3. The mathematical description is given by
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where Tn is the normal traction acting on the bricks forming an interface, Δn is the normal separation between adjacent
bricks, Δt is the sliding separation between bricks, YΔ is the separation at which yielding occurs, and RΔ is the separation at
which rupture occurs. The shear traction acting between two adjacent bricks is given by
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The mortar thickness is implicitly accounted for by defining tnΔ = ϵ (with ϵ being the direct strain in the mortar) and ttΔ γ=
(with γ being the shear strain in the mortar). The (elastic) stiffness of the interfaces are k E t/n m= ¯ . (Naturally, one could
define different elastic interface stiffness values for shear and normal separations.) As illustrated in Fig. 3, the normal and
tangential behaviors are coupled, such that normal separation will alter the tangential tractions that can be maintained and
vice versa.

The above traction–displacement relationships are used to describe a non-linear elastic material, such that an efficient
energy minimization approach can be taken to solve for the deformation. Naturally, this leads to the non-physical behavior
that interfaces will ‘heal’ if they experience unloading prior to rupture. First and foremost, it should be emphasized that the
present manuscript applies only to crack initiation, not crack propagation. That is, the present manuscript considers only
behaviors that occur under monotonic loading of a pre-defined crack up until the point that the pre-crack just begins to
propagate. After initiation, when the crack begins to propagate, unloading effects in the damage zone are important and
potentially lead to R-curve behavior, as observed in nacreous materials and their synthetic analogs. As the present for-
mulation does not properly treat unloading (because it allows for full elastic recovery of damaged yet unloading interfaces),
it is strictly not suitable to solving for the R-curve behavior. Hence, we focus on predictions only of the initiation toughness:
this can be justified, even for a material that elastically recovers, simply because unloading effects are rather small during
monotonic loading prior to crack growth (McMeeking, 1977). One way of considering the present simulations is that they
apply deformation plasticity theory to compute the level of applied load required to reach a critical opening (rupture strain)
at the tip of a monotonically loaded pre-crack. To properly simulate R-curve behavior, the present model would have to be
adapted to account for energy dissipation that occurs when the mortar is damaged but not yet ruptured. The corresponding
form of the cohesive law is given by
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This potential function yields the above cohesive laws through the definitions T /n nϕ Δ= ∂ ∂ and T /t tϕ Δ= ∂ ∂ . Note that the work
of separation Γi is controlled by the parameters kn (the interface stiffness), YΔ (the elastic limit of the interface) and RΔ (the
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critical displacement for rupture). The work of separation of the interfaces, which is defined here as the intrinsic toughness
of the material, is given by

T k d k( , 0, , , ) (10)i n n Y R n n n Y R
0

∫Γ Δ Δ Δ Δ Δ Δ= =
∞

The objective of the present work is to determine the macroscopic toughness of the bulk material relative to this interface
toughness, as a function of brick aspect ratio and loading orientation. The extraction of macroscopic toughness via simu-
lations is described in the next section.
3. Governing equations and simulation approach

3.1. Governing equations

For any non-linear elastic material, the global energy minima correspond to the different states of static equilibrium;
here, this implies that solutions are defined by finding the brick positions and rotations that minimize the potential energy
contained in the cohesive zones. Since the bricks are treated as rigid, the only kinematic expressions needed for the for-
mulation are those that translate global brick positions and orientations into the brick face separations. That is, for
neighboring bricks i and j, the interface separations are computed as

s f x x s f x x( ) ( , , , ); ( ) ( , , , ) (11)n n i i j j t t i i j jΔ θ θ Δ θ θ= =

where x is the position of the brick, θ is the global orientation of the element, and s is a coordinate along the interface that is
determined from the shape of the brick and the global position. The functions ft n, are easily defined using vector mechanics.
The system's energy is computed by numerically integrating the cohesive potential given above along all interfaces in the
model:

x s s dS[{ }, { }] [ ( ), ( )]
(12)

N N
k

M

S
n t∫∑Φ θ ϕ Δ Δ=

where x{ }N is a vector list of all brick positions, { }Nθ is a vector list of all brick rotations, with N being the number of bricks,
and M being the number of interfaces. The number of global degrees of freedom is N3 , and the number of energy con-
tributions is M . Note that overlapping bricks create multiple interface segments, with openings that are defined by different
sets of bricks: each of these interface segments are addressed individually. In the present simulations, numerical integration
is used and is based on the opening displacements at the ends of the interface segment being addressed. In this paper, we
consider only loading scenarios corresponding to displacement control: for applied tractions, the potential energy of the
system should be amended to include contributions due to the work done by applied forces.

3.2. Monte Carlo minimization

While non-linear equilibrium equations can be derived from the above energy potential (corresponding to the sum of
forces and moments on each brick) and solved using traditional methods, a direct search algorithm is adapted here to
minimize the total system energy. The method has two significant advantages: first, it is highly robust and insensitive to
large discrepancies in local stiffness associated with the emergence of cracks. Second, the ‘nearest neighbor’ connectivity of
the system allows for parallel energy computations. The model and solution method are similar to Monte Carlo strategies
commonly used in atomistic simulations (Allen and Tildesley, 1987). These methods are well established in many areas of
physical modeling as a means to minimize energies and to explore ensemble properties (Binder and Heermann, 2010) and
can be generalized for higher dimensional functions of continuous variables (Corana et al., 1987). In essence, the technique
involves moving a given brick while holding the neighbors fixed, and computing the associated change in energy.

Brick motions that lower the energy are always accepted, and a small fraction of brick motions that raise the energy are
accepted with the probability P E Eexp[ / ]o= − Δ , where EΔ is the energy associated with the brick motion and Eo is a scaling
factor that is analogous to kT in simulations of physical annealing. This variant of Monte Carlo minimization is often referred
to as ‘simulated annealing’, with the annealing temperature (T) dictating the probability of accepting an energy raising brick
motion (Corana et al., 1987; Ingber, 1993). Complete details of the computational scheme are given in Lim et al. (2015).
While displacements could be applied in a single step and the energy minimized, here the prescribed boundary conditions
are applied incrementally and the energy is minimized for each (fictitious) time step. This has the advantage of capturing
the evolution of damage as the applied displacements are increased.

Further, it can be used to dramatically speed up convergence as follows: after several convergent load steps, the bricks
are moved to new positions (prior to any Monte Carlo minimization), based on linear extrapolation of previous solutions to
the new values of applied displacements. This significantly reduces the number of Monte Carlo iterations required to
minimize the energy, by avoiding the need to migrate brick positions to their new equilibrium position using small Monte
Carlo perturbations (Lim et al., 2015). This heuristic approach is motivated by linear elasticity; as will be illustrated, only a
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small portion of the entire sample (i.e. the region near the crack tip) experiences non-linear cohesive behavior, with the vast
majority exhibiting linear elastic response. Hence, brick motions that are based on a linear extrapolation of previous so-
lutions (imposed prior to the minimization step) are accurate for vast majority of the bricks.

Although direct search algorithms can circumvent several numerical stability issues resulting from potentially unreliable
derivatives in gradient based schemes (Conn et al., 2009), they are by nature computationally expensive. Furthermore, this
computational cost can increase significantly for systems with large numbers of degrees of freedom. However, direct search
schemes can be highly amenable to parallelization (Lim et al., 2015). In the present parallelization scheme, the complete set
of bricks is separated into sub-sets of non-adjacent bricks using a graph coloring algorithm (Gonzalez, 2007), which occurs
just once during the initialization phase of the analysis. The individual groups (colors) of non-adjacent bricks are then sent
to separate processor threads, and the calculation of energy changes associated with individual brick motions is performed
in parallel while avoiding the simultaneous motion of adjacent bricks. This leads to a dramatic speedup over a corre-
sponding sequential version; full details of the parallelization algorithm and performance relative to sequential computing
are given in Lim et al. (2015).

For the results described here, around 200,000 bricks are used in a single simulation with 50 loading increments. At each
load increment, the energy convergence was measured by automatically computing the variance and R-squared values from
a statistical sample of energy values over the Monte Carlo cycle history and compared to threshold tolerance parameters
(Lim et al., 2015). These convergence parameters were set by trial and error such that the overall system energy did not
change by more than a fraction of a percent upon switching to a more restrictive set of convergence parameters. For a
typical set of convergence parameters (R-squared and variance threshold values of .02 and .002, respectively, over a sliding
window of 3000 cycles), around 20–30,000 Monte Carlo perturbations (each representing a complete set of brick trial
motions) were required in the elastic regime, and around 60–70,000 Monte Carlo perturbations were required in the elastic/
plastic and full fracture regime.

3.3. Virtual tests

Results are presented for two types of virtual tests: (i) a rectangular panel subjected to simple tension, and (ii) a square
panel with a pre-defined macroscopic edge crack subjected to a combination of bending and tension. In the tension tests,
the panel is loaded by moving the top row of bricks with a spatially uniform normal displacement. The average composite
stress is then computed from the derivative of the global energy with respect to the macroscopic strain, defined as the
applied displacement divided by the height of the specimen. The modulus is then computed from the second derivative of
the global energy with respect to macroscopic strain. The reported strength corresponds to the peak stress obtained as the
applied displacement is increased from zero to the point the panel ruptures.

For fracture simulations, a pre-crack is defined by zeroing the interface potential for all interfaces intersecting a straight
line emanating from the left edge, as shown in Fig. 1. The specimen is loaded by applying a rotation θapp to the top and
bottom faces of the panel. At the top of the panel (with x¼0 at the left edge of the specimen), this corresponds to
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with equal magnitude displacements at the bottom of the panel in the opposite direction. This loading condition corre-
sponds to bending superposed with a small level of tension. (Note that the anisotropy of the material makes it difficult to
identify a pure bending state a priori.)

The macroscopic energy release rate is computed numerically, by running purely elastic simulations for various crack
lengths, and calculating the macroscopic energy release rate as G a a( )/Φ= − ∂ ∂ , where a is the crack length. (Purely elastic
simulations are run by setting the cohesive yield stress to a large number that is not reached anywhere in the simulation). In
the present simulations where yielding and rupture are allowed to occur, the size of the damage zone (where interface
separations exceed YΔ ) is kept small relative to the size of the specimen, such that small-scale yielding conditions prevail. In
these situations, the macroscopic driving force for crack growth is dictated by the elastic field surrounding the crack tip. The
initiation fracture toughness is calculated by determining the value of the applied displacement needed to advance a pre-
crack past a range of 1–5 bricks (i.e. rupturing the cohesive zones between multiple bricks), and computing the value of G
corresponding to this applied displacement. The small range of crack advance that defines fracture initiation represents the
error bars in Fig. 12a. As illustrated, this error was less than the size of the plot data point itself in most cases.

It is worth noting that the present approach of computing the macroscopic energy release rate (using purely elastic
calculations involving different crack lengths) is somewhat unusual in the study of microstructural effects. An attractive
alternative, applicable only to small-scale yielding, is to define a disk of material surrounding the crack and apply asymptotic
displacements along the outer boundary that are defined in terms of applied crack tip stress intensity factors (or energy
release rate) and the anisotropic elastic constants (Pardoen and Hutchinson, 2003; Zavattieri et al., 2008). This was not done
in the present work because the asymptotic crack tip fields for the current material idealization have not yet been developed
and are complicated by the presence of an internal length-scale not present in conventional continuum descriptions. Fur-
thermore, the present approach is required in cases that do not invoke small-scale yielding, which is suggested by some
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fracture experiments (Launey et al., 2009) and is the focus of on-going simulations.
4. Results and discussion

4.1. Modulus and strength (without macroscopic pre-cracks)

The uniaxial elastic modulus and macroscopic strength of a uniform panel of bricks is shown in Fig. 4a as a function of
brick orientation relative to the loading direction. A uniform panel of 105 bricks is loaded by displacing the bricks at one end
of the specimen by a prescribed amount while holding the other edge fixed; in these and all results presented here, the brick
overlap is taken to be s w/2= . The results illustrate that the modulus and strength of the material loaded transverse to the
brick direction (0° orientation) is simply that expected from an elementary analysis of a two phase laminate loaded normal
to the direction of the laminate. That is, the modulus is simply the brick height (h) multiplied by the cohesive stiffness (kn),
while the strength is simply the peak strength in the cohesive law. As the orientation of the applied stress is brought in
coincidence with the long brick direction, the effective modulus and strength increase due to shear transfer to the bricks; in
the limit of 90° loading (parallel to the brick direction), one obtains the enhanced properties predicted by micromechanical
models presented elsewhere for rigid bricks (Begley et al., 2012; Bertoldi et al., 2008; Ji and Gao, 2004). As shown in Fig. 4,
the enhancement in both modulus and strength is a strong function of brick aspect ratio (w h/ ), as previously predicted. We
note that the transition between these two limits involves brick rotations, which have not been included in previous models.
Also note that there is a small error (3% at most) in the zero degree modulus calculations when compared to the theoretical
results. It was determined that this error was due to a non-zero Monte Carlo temperature used as a simulation parameter.
The error was reduced to less than half of a percent with a lower Monte Carlo temperature, at the expense of added
computational time.

4.2. Crack tip behavior: stresses and damage

Fig. 5 shows the stresses ahead of a macroscopic crack acting normal to the crack plane (s22), for a purely elastic solid in
which interface yielding and rupture is prevented. The total number of bricks is 2.3 105∼ × , with the brick height (h) defined
as one unit and all other length-scales defined relative to that size. In Fig. 5, note the scale bar indicating the length scale of
two hundred twenty bricks in the 90° orientation: in the 0° orientation, this same scale bar spans roughly thirty bricks
(along the w brick dimension). The stresses shown in Fig. 5 (and all subsequent figures) represent the average volumetric
brick stresses due to surrounding interfacial tractions, computed via the surface integral:
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Fig. 5. Direct stress (s22) contours near crack tip for elastic specimen with 0 , 45 , 67.5bθ = ° ° °, and 90°, with
w h h W H a W N/ 7, / , / 1, / 0.33, 225,000Y b0Δ= = ∞ = = ≈ , shown at 5�magnification. Contour range is set such that the minimum and maximum color
bands represent the same absolute (unscaled) stress range as in Fig. 6. Frames are taken at the same loading value as fracture simulations in Figs. 6–8, e.g.,
G Gc≈ even though rupture is not allowed. Rendered using OpenGL 4 on a single Nvidia GTX580 graphics processing unit with full-screen anti-aliasing. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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where xj(s) are the components of the position vector, Ti(s) are the components of the traction vector, and n is the total
number of interfaces surrounding the brick (which for a regular array of bricks is six for all interior bricks). The level of
applied displacements in Fig. 5 corresponds to those that would cause crack advance for a set of cohesive rupture properties
considered later, even though yielding is not permitted. The stress fields are analogous to those obtained for conventional
anisotropic elastic materials (assuming a homogeneous distribution of properties). The size of the region ahead of the crack
that sees large stresses is a strong function of orientation, due to load transfer between bricks.

Note that there are small stress jumps from one brick to the next, as evidenced by the somewhat roughened appearance
of the contours. This is due to the fact that a very minute proportion of energy raising brick motions are actually allowed in
the final displacement configuration, which results from a non-zero annealing temperature. It has been verified via si-
mulation that as the global temperature is reduced, the contours appear much smoother, as less energy raising motions are
allowed by the brick energy acceptance criteria. These variations in brick stresses have a negligible impact on the resulting
fracture behavior; hence, eliminating them increases computational cost without much benefit.



Fig. 6. Direct stress (s22) contours near crack tip for a full fracture specimen with 0 , 45 , 67.5bθ = ° ° °, and 90°, with
w h h W H a W N/ 7, / 0.01, / 31.42, / 1, / 0.33, 225,000Y R Y b0Δ Δ Δ= = = = = ≈ , shown at 5�magnification. Brick stresses scaled by cohesive interface strength,

kn Y0σ Δ= . Frames are taken immediately prior to fracture initiation, e.g., G Gc≈ . (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Figs. 6 and 7 show stress contours at the crack tip (s22 and s12, respectively), for the exact same applied displacements as
shown in Fig. 5, only now with a full elastic–plastic-rupture cohesive description. In these figures, h/ 0.01YΔ = and

h/ 31.42RΔ = , and the applied displacements correspond to those just at the threshold of crack advance for this set of
properties. The impact of cohesive properties is discussed later. By comparison with the elastic results in Fig. 5, one can see the
impact of interface yielding on altering the distribution of stresses ahead of the crack tip. Specifically, one observes the for-
mation of strong discontinuities in the brick stresses at angles that correspond to lines running through the mid-point of brick
sides to the mid-point of brick ends. To provide additional perspective regarding the extent of damage, Fig. 8 shows contours
where the bricks are colored by the number of interfaces on the brick perimeter that have exceeded their yield strain.

Fig. 9 shows a log–log plot of the average brick stresses along the horizontal plane ahead of the crack tip, for cases with
two different brick aspect ratios. Two features of the stress distribution are immediately apparent: the stress fields exhibit a
plateau in the damage region, and they exhibit distributions outside the damage region that are close to the classic r1/
distributions from elasticity theory. This behavior is consistent with the notion of small-scale yielding being controlled by a
dominant elastic field. Note that for the smaller aspect ratio bricks (w h/ 3.5= ) and 90° orientation, there is an intermediate
zone (between the ‘plastic zone’ and the ‘elastic zone’) where the stresses are less singular than r1/ : the source of this



Fig. 7. Shear stress (s12) contours near crack tip for a full fracture specimen with 0 , 45 , 67.5bθ = ° ° °, and 90°, with
w h h W H a W N/ 7, / 0.01, / 31.42, / 1, / 0.33, 225,000Y R Y b0Δ Δ Δ= = = = = ≈ , shown at 5�magnification. Brick stresses scaled by cohesive interface strength,

kn Y0σ Δ= . G Gc≈ . (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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behavior has yet to be elucidated. The scaling of the damage region (effectively a plastic zone size) with system parameters
is discussed in the next section.

4.3. Toughness as a function of microstructure

The energy release rates (G) computed for purely elastic specimens subjected to the loading given in Fig. 1 are shown in
Fig. 10a as a function of orientation and crack length. The results in the main figure are normalized by the square of the
applied displacement parameter; conversely, the inset illustrates that the energy release varies with the square of the
applied displacement parameter θapp when the brick size and interface stiffness are used to normalize G. Fig. 10b shows the
macroscopic initiation fracture toughness that is inferred from simulations that allow for interface rupture, using the critical
value of applied displacements that leads to complete rupture of at least five bricks and the elastic results shown in Fig. 10a.
Error bars in Fig. 10b represent the error due to size of the discrete loading steps (increments in applied displacement) and
discrete advances in crack length, and are smaller than the plotting points in this case. The fact that a consistent toughness is
obtained as a function of crack length validates the interpretation that the inferred toughness is a material property and is
independent of specimen geometry. Indeed, additional calculations not shown here for pure remote tension of an



Fig. 8. Damage distribution near crack tip for full fracture specimen with 0 , 45 , 67.5bθ = ° ° °, and 90°, and
w h h W H a W N/ 7, / 0.01, / 31.42, / 1, / 0.33, 225,000Y R Y b0Δ Δ Δ= = = = = ≈ , shown at 5�magnification. Colors represent number of adjacent yielded in-
terfaces, e.g., i ave Y,Δ Δ| | ≥ . G Gc≈ . (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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edge-cracked panel yield the same numbers as shown in Fig. 10b. This specimen-independence is a consequence of the fact
that small-scale yielding conditions are enforced, by choosing panel dimensions that are much larger than damage zones
near the macroscopically defined pre-crack.

Fig. 11a shows the inferred toughness for the 90° orientation as a function of the mortar rupture strain (recall that
tR RΔϵ = , for fixed yield strain YΔ ). The corresponding size of the damage zone is shown in Fig. 11b, using an effective plastic

zone radius rp. It can be shown that the size of the damage zone in bricks (r h/p ) scales directly with the ductility of the
interface, measured by ratio of the cohesive rupture separation ( RΔ ) to the critical separation ( )YΔ :
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This linear scaling with /R YΔ Δ is analogous to that obtained for plastic zone sizes in isotropic elastic materials under the
assumption that yielding occurs where the elastic fields exceed the yield stress of the material. In Fig. 11b, note that at large
values of interface ductility and large aspect ratios, the scaling of the plastic zone appears to change slightly, growing faster
than the expected linear relationship.
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The results in Fig. 11 illustrate the consequences of the number of bricks in the damage zone (Np), as controlled by /R YΔ Δ :
as the interface ductility is increased, the behavior within the plastic zone is resolved over a larger number of bricks, and the
toughness asymptotes to a constant value for / 20 30R YΔ Δ ≈ − , which corresponds to plastic zones that are approximately
one hundred bricks wide in linear dimension. It should be noted that the unscaled value of the composite initiation
toughness (Gc) increases linearly with interface ductility, since the intrinsic toughness Γi of the interfaces also increases
linearly with the interface ductility.

The key feature of Fig. 11a is that the relative increase of the macroscopic toughness to that of the interfaces becomes
constant in the limit of large interface ductility. This is a consequence of the fact that the behavior in the fracture process
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zone is controlled by a transition region between the crack tip and the far field elastic results, which is fully resolved in the
sense that the number of bricks in this zone is immaterial. This can be viewed as the ‘small microstructure’ limit, wherein
the bricks are small enough to not individually influence the fracture behavior. In this limit, the initiation fracture toughness
is controlled by behaviors that span hundreds of bricks. Put another way, at low values of interface ductility, the number of
bricks in the region controlling the fracture process is rather limited and one observes fracture prior to the development of
widespread ‘plasticity’.

Finally, Fig. 12 illustrates the initiation toughness of the material for cracks with various orientation angles relative to that
of the bricks. These results reflect the ‘limit’ toughness, i.e. that obtained for a rupture strain large enough to ensure that the
damage zone encompasses enough bricks to resolve the behavior in the plastic zone. As one might expect, the toughness of
the material for cracks that are aligned with the bricks is identical to that of just the interface; in this orientation, the
microstructure bears no benefit. However, as the orientation mismatch between the crack and brick microstructure in-
creases, toughness increases dramatically due to crack bridging. The initiation toughness for cracks running transverse to
the microstructural direction is 5–10 times higher than the intrinsic toughness Γi, or work to failure of the mortar material.
Note that for shorter bricks the benefit of alignment is only pronounced only at crack orientations very close to perpen-
dicular to the brick direction. While the range of beneficial orientations increases with brick aspect ratio, there is never-
theless a strong dependence on brick orientation as seen in Fig. 12a.

The simulations make no a priori assumption about the direction of crack growth, and one observes several transitions in
the angles between the microstructure, the orientation of the pre-crack, and the crack growth direction. As illustrated in
Fig. 12b, four different failure mechanisms can be identified from the simulation results: splitting, angle splitting, stairway,
and columnar. These agree with previously documented failure mechanisms (Rabiei et al., 2010). For small orientation
differences between microstructure and pre-crack, the cracks advance along the long faces of the bricks, with essentially no
benefit from the microstructure. For larger differences, the crack first turns and advances in a staircase pattern, with the
macroscopic direction of crack advance essentially dictated by the angle formed by a line running between the midpoints of
the brick sides. For purely perpendicular mismatch between the crack and the brick direction, one observes crack paths that
are essentially straight, such that bridging ahead of the dominant crack produces significant enhancements in toughness.

While the toughness of synthetic nacres has not yet been measured as a function of pre-crack orientation, measurements
of the R-curves for crack growth in the direction perpendicular to the bricks enable a comparison of theory and experiment.
In the Al2O3/PMMA composites in Munch et al. (2008), the initiation toughness is about 700 J/m2 (This value is obtained by
converting the published values of Kc to Gc using the measured composite modulus). While the cohesive properties of the
mortar were not measured, to a first approximation we can assume that the intrinsic toughness of the mortar materials is
comparable to that of bulk PMMA, taken here to be 300 J/m2 (Choi and Salem, 1993). This implies that the experimental
measurement of G /c iΓ is in the neighborhood of 2–3. This is significantly smaller than that shown in Fig. 12a, i.e.G / 5 10c iΓ ∼ – ,
however, in the present simulations, all bricks are perfectly aligned and have the exact same shape and size. Real materials,



Fig. 12. (a) Macroscopic fracture initiation toughness for all brick orientations and aspect ratios and (b) simulated failure mechanisms, with
h W H a W N/ 0.01, / 31.42, / 1, / 0.33, 225, 000Y R Y b0Δ Δ Δ= = = = ≈ . Colors contours in (b) represent the total interface energy surrounding a brick (Φb)

scaled by the maximum allowable elastic energy of all those interfaces Φ0, where w h k( ) n Y0 2Φ Δ= + . (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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either biological or synthetic, will exhibit a stochastic distribution of brick sizes and overlap, which can have a profound
impact on the predicted properties (Zhang et al., 2010a; Lei et al., 2012). We recently have begun to conduct simulations
with Gaussian distributions of brick sizes throughout the microstructure; this leads to widely spaced regions of aligned
vertical interfaces in the short direction of the bricks, which appear to act as defects. Our preliminary simulations to be
published indicate that even small variations in brick sizes and mortar properties can lead to significant reductions in
strength and toughness, on the order of 50% in some instances. This suggests that local microstructural features have a large
impact on observed toughness. That is, small regions where brick ends are aligned, rather than staggered, can have a large
impact on predicted toughness.

It is interesting to note, however, that the measured R-curve behaviors for synthetic nacre-like composites show sig-
nificant increase in toughness beyond initiation. It is possible that the R-curve behavior will be less sensitive to local defects,
due to the fact that larger material volumes are sampled as the crack extends. Additional simulations of local microstructural
defects and R-curve behavior are needed to fully understand these effects; this would require that the simulation approach
be adapted to account for inelastic unloading of damaged interfaces.
5. Concluding remarks

The present work presents a computational framework to predict the impact of brick shape and alignment on the
relationship between macroscopic toughness and inelastic behaviors between bricks, i.e. the work-to-failure of the interface
between bricks. The method is highly flexible with regard to handling bricks of different shapes and distributions, and
creates interesting opportunities to explore the effect of material hierarchy (Zhang et al., 2010b). For example, one could use
the current approach to study ‘bricks within bricks’, i.e. smaller patterned features within bricks, with different cohesive
laws inside and between ‘macro-’ and ‘micro-'scale bricks. The efficiency and robustness of the present approach implies
considerable advantages over finite element models of such studies of material hierarchy. Implementation of the model and
direct search minimization algorithm within a GPU platform results in an efficient framework that can be used to conduct
broad parameter studies to guide future materials development.

The framework is currently limited to microstructures for which the bricks can be treated as rigid, which limits its
application to synthetic materials whose modulus mismatch between mortar and bricks is large and whose volume fraction
of mortar (as manifest as mortar thickness) is about 5–10%. Nevertheless, the simulations demonstrate that one obtains
anisotropic elastic fields that control the energy dissipated in the fracture process zone, and that the corresponding
toughness enhancement is a strong function of orientation. For such materials, the simulations show strong agreement
between the predicted gain in macroscopic toughness and that observed from experiments, at least for the 90° loading
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orientation. Future work is needed to incorporate different unloading behaviors to predict R-curve behavior, as well as the
impact of brick deformation (including failure).
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