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Abstract
Segmentation based image analysis techniques are routinely employed for
quantitative analysis of complex microstructures containing two or more
phases. The primary advantage of these approaches is that spatial information
on the distribution of phases is retained, enabling subjective judgements of the
quality of the segmentation and subsequent analysis process. The downside is
that computing micrograph segmentations with data from morphologically
complex microstructures gathered with error-prone detectors is challenging
and, if no special care is taken, the artifacts of the segmentation will make any
subsequent analysis and conclusions uncertain. In this paper we demonstrate,
using a two phase nickel-base superalloy microstructure as a model system, a
new methodology for analysis of precipitate shapes using a segmentation-free
approach based on the histogram of oriented gradients feature descriptor, a
classic tool in image analysis. The benefits of this methodology for analysis of
microstructure in two and three-dimensions are demonstrated.

Keywords: microstructure analysis, rafting, feature descriptor

(Some figures may appear in colour only in the online journal)

1. Introduction

The strong driving force for development of rigorous property models for structural materials
motivates quantitative analysis of microstructure across a spectrum of alloy systems [1]. Since
most engineering materials are multiphase in character, it is usually essential to isolate
individual phases for analysis of size, shape and/or distribution in order to input this infor-
mation into property models. The process for quantifying microstructure typically involves
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collection of 2D or 3D data on a pixel by pixel basis, followed by a segmentation operation to
isolate individual phases within the microstructure. Shape metrics such as volumes, surface
areas, or statistical moments [2, 3]) of the resulting precipitates are used to quantify the
analysis. These metrics are chosen in part because of their similarity with quantitative
microstructure analysis that has been performed manually [4, 5]. The conjecture is that if
enough micrographs can be captured and enough precipitates can be characterized, the shape
statistics will yield good feature descriptors that can then be used in whatever classification or
regression tasks that need to be addressed.

The examples in this paper are of nickel-based superalloys. For these alloys, it is
desirable to develop heat treatment cycles to adjust precipitate shapes for optimization of
mechanical properties [4]. A unique feature of this class of alloys is the tendency for the
precipitates to undergo directional coarsening during the application of external stresses at
elevated temperatures [6], a process known as ‘rafting’. In both cases, measuring the shape of
the microstructural precipitates can provide important insights on alloy design and mechanical
properties.

The problem with this measurement is that the segmentations are rarely trivial. Especially
across data sets, but even within datasets, it can be very difficult to parameterize a seg-
mentation algorithm to produce consistent results. Because the segmentation parameterization
can strongly influence the shape statistics and because producing high quality segmentation
often requires extensive fine tuning of segmentation parameters, it is difficult to argue that the
resultant shape statistics are unbiased (with regards to the segmentation). The artifacts an
automated segmentation of a γ–g¢ microstructure might produce depend on the imaging
modality, but typically include:

1. A large number of single pixel γ or g¢ precipitates appear due to detector noise in the
original image.

2. Individual precipitates are merged into one large precipitate because the original image
does not have high enough resolution for them to be segmented without high level
material-specific knowledge.

Figure 1. An example backscattered electron micrograph showing γ matrix (light) and
g¢ precipitates (dark). A, B, and ¢B highlight regions where the presence of a precipitate
is uncertain. A shows four precipitates that have been incorrectly merged by the
segmentation algorithm. B and ¢B highlight areas where maybe there is a precipitate
and maybe there is not. In both cases the segmentation algorithm must make a decision
between these two extremes.
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Figure 1 shows an example image with the first two types of defects. These issues are not
unique to superalloy microstructures, and techniques can be developed to address them [7–
10], though it is still very difficult to make them robust, particularly across data sets. The
simpler solution, if the information needed and the associated analysis allows, is to employ
image analysis approaches that do not rely on segmentation.

The goal of this paper is to highlight how a tool from computer vision, the histogram of
oriented gradients (HOGs) feature detector, can be used to solve a wide variety of relevant
classification and measurement problems robustly with respect to the difficulties enumerated
above. HOG feature detectors have a long, rich history of application in computer vision [11–
13], but to the best of our knowledge have not been used in the study of microstructure.

This paper is organized as follows. In section 2 we describe related work and in section 3
we outline computation of a HOG feature descriptor. In section 4 we demonstrate the
effectiveness of the HOG feature descriptor on a number of relevant microstructure char-
acterization problems, where microstructural information is available in both 2D and 3D.

2. Related work

There is an extensive existing literature on microstructure analysis including understanding
how composition affects microstructure [6, 14], understanding how processing steps affect
microstructure [15], and understanding how precipitate shape properties affect strength [4],
etc. Most of these papers use segmentation based characterization techniques, be they mea-
suring simple areas, aspect ratios, and perimeters [5] or more complicated metrics [2, 3].

There are many similarities between microstructure analysis and the classic problem of
shape analysis [16, 17]. Shape analysis in general involves taking outlines of objects and
using this information, for example in simple object recognition [17] or pose estimation [16].
A frequent limitation in this process was, much like for the microstructures, obtaining the
outlines of the objects. Outlining is simply a segmentation, albeit the images are usually much
more complicated than a superalloy microstructure micrograph. This field took a leap forward
as techniques were developed to solve the motivating problems directly (pose estimation,
object recognition, etc), without first doing a segmentation. Even though the idea of a seg-
mentation as a blackbox step in shape analysis seemed reasonable, it was limiting. These
changes were fueled by the introduction the scale-invariant feature transforms (SIFTs) [18]
for sparse keypoint identification, the repopularization of HOG descriptors by Dalal and
Triggs [19], and, more currently, work in neural networks [20]. The inspiration to our current
work was the success that shape analysis enjoyed with these segmentation-free feature
descriptors. There are, however, reconstruction-based imaging techniques that can directly
lead to easier to segment datasets [21, 22] as compared to the simple micrographs used here.

Several other microstructure characterization techniques that do not involve segmentation
have recently been employed, including N-point statistics [23, 24] and SIFT [25]. What, given
the established application of N-point statistics and SIFT in microstructure analysis do HOG
descriptors provide? Basically, while a quantitative, segmentation-free feature vector is
desired, it is also desirable that the feature vectors be easily interpretable by lab scientists. The
strength of a segmentation is that the data it produces (the outlines of the precipitates) is easy
to directly interpret and understand. Our goal has been to develop a technique that makes both
of these scenarios possible: quantitative analysis similar to the N-point statistics and SIFT
features, and qualitative analysis similar to that done with segmentations. HOG descriptors, as
used here, fill that gap. Their computation, interpretation, and analysis are straightforward.
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3. Methods

Computation of the HOG feature descriptor itself is straightforward. This technique is suitable
for either standard scanning or tunneling electron microscope micrographs. The HOG feature
detector is relatively coarse, and so the micrograph only needs to be of modest size, practi-
cally somewhere between 200×200 and 1000×1000 pixels. First, an approximate gradient
at every point in the image is computed. This is most easily done by applying a light Gaussian
blur (just a few pixel radii) to the image and taking finite differences to obtain the gradients.
The Gaussian kernel should be large enough to remove the largest detector noise, but not so
large that it blurs any important features. Finally, the values of the gradient are summed into a
histogram of gradient angles weighted by gradient magnitudes.

For image F with Gaussian kernel G, the gradient at each point, fij, is given by
 *( )G F ij. fij is a vector with magnitude ∣ ∣fij and angle fij. To build the histogram over
angles, if each bin center is denoted as qk with radius δ, then the value of the histogram W at
that bin center is given by

åq =
q d - <

( ) ∣ ∣ ( )
∣ ∣

W f . 1k
f

ij

ij k

4. The HOG feature detector

4.1. Comparison of microstructures

As stated before, a valuable feature of HOGs is the relative ease of their computation as
compared to segmentations. Figure 2 shows the comparison of two superalloy microstructures
from Fährmann [14].

As shown in figure 2, the HOG feature descriptor has peaks pointing in the normal
directions of the facets in the top sample of figure 2. This is because the histogram

Figure 2. Plot of the HOG feature descriptors (on the left) of transmission electron
microscope micrographs of two superalloy samples [14]. As can be seen, the
precipitates in the top micrograph are more square than the precipitates in the bottom
micrograph. A two pixel blur was used in computing the gradients here.
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accumulates the magnitudes of gradients, so that where the gradient is large, large values are
accumulated. In these superalloy micrographs, the gradients are large at the edges of pre-
cipitates. The precipitates in the bottom sample are more spherical, and the HOG feature
descriptor reflects this.

The simplest way to use the HOG as a quantitative descriptor instead of qualitative
descriptor is to look at the magnitude of the FFT of the HOG feature descriptor and compare
the relative amount of energy in different harmonics of the microstructure. The first nine bins
of the absolute value of the FFTs of the HOG feature descriptors from figure 2 are shown in
table 1.

We can compare how circular the precipitates in the two microstructures are by com-
paring the amount of energy in bin zero of the magnitude of the FFT to all of the other non-
zero bins, and we can compare how square the precipitates in the two microstructures are by
comparing the energy in every fourth non-zero frequency bin (four and eight highlighted in
cyan) to the energy in every other non-zero frequency bin. A similar calculation can be
performed for 2 Hz energies and all the harmonics. This can detect rafting in microstructures.
These three numbers are a quick way to distill microstructure information and compare
images in a rotation invariant way. The calculations for the materials from figure 2 are shown
in table 2.

It is conceivable that the HOG feature descriptor could be employed to assess elastic
anisotropy in a single sample as well, though this is not investigated in this paper.

There are limits to what information the HOG feature descriptor can extract from a
microstructure. For instance, if the cuboidal precipitates in the top sample of figure 2 were not
globally aligned with each other, then the HOG feature descriptor for that would appear more
uniform like that of the bottom sample. This could happen, for example, if the microstructure
is from a polycrystalline sample.

The HOG feature descriptor also does not directly reveal information about scale. For
instance, it does not say that precipitates in the top sample are on average larger or smaller
than the ones in the bottom sample.

Table 1. Magnitudes of the energies in the bins of the normalized HOG feature vector.
As can be seen, the circular microstructure has more energy allocated in its zero bin
(highlighted in dark gray), and the square microstructure has more energy in the fourth
and eighth bin (highlighted in light gray).

∣ ∣FFT of HOG feature descriptors for figure 2

Square (top) 59 0.46 0.70 0.65 13 1.3 0.70 0.19 2.7
Circle (bottom) 88 1.4 2.9 0.29 2.2 0.32 0.29 0.57 0.18
Index 0 1 2 3 4 5 6 7 8

Table 2. These are the HOG scores for figure 2. As can be seen, the Circle score is
much higher for the circular microstructure, and the Square score is much higher for the
square microstructure.

HOG scores for figure 2

Circle (0 Hz
signal)

Square (4 Hz
harmonics)

Layering (2 Hz
harmonics)

Square (top) 20 0.95 0.97
Circle (bottom) 460 0.29 0.80
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Taking a step back, even though the microstructures in figure 2 appear to be simple
squares and circles, the microstructure samples themselves are 3D objects. It is possible, for
instance, that if the top sample was cut on an angle the HOG plot would have more or less
peaks due to symmetry and the sectioning plane.

4.2. Detection of rafting

The merits of HOG feature descriptors are easily demonstrated in the context of nickel-based
superalloys for rafting, a unique tendency in this class of alloys for the precipitates to
directionally coarsen during application of stresses at elevated temperatures [6]. Figure 3
shows two samples of Rene N5, one unrafted (top) and one rafted (bottom) along with plots
of their HOG feature vectors. Table 3 shows the FFT-based scores for the rafted micro-
structure. The biggest change in score from the top (unrafted) microstructure to the bottom
(rafted) one is the amount of energy in 4 Hz harmonics. The top microstructure has a large
fraction of energy there, and the bottom microstructure has basically none.

Figure 3. Plot of the HOG feature descriptors of BSE micrographs of a microstructure
before (top) and after (bottom) rafting. The rafting is very clear in the HOG feature
vector plots. A one pixel blur was used in computing the gradients.

Table 3. These are the simple HOG scores for figure 3. In these two samples, the
biggest difference is that the Square score is much higher for the unrafted sample. For
the rafted sample, the Square score is lowered but the Layering score remains high.

Simple HOG Scores for figure 3

Circle (0 Hz
signal)

Square (4 Hz
harmonics)

Layering (2 Hz
harmonics)

Base (top) 4.4 0.69 0.91
Rafted (bottom) 9.4 0.044 0.98
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4.3. Analysis of 3D transformations

HOG descriptors easily transfer to 3D datasets as well. While not as extensively deployed as
their 2D counterparts, these feature detectors have found practical use in video datasets for
action recognition (two spatial dimensions and one time dimension) [26]. Again, in this
application, they enable microstructure analysis without segmentation.

Segmentation in 3D datasets can be quite difficult. All of the same problems with 2D data
remain, except now visually verifying segmentations is more involved (requiring either
volume rendering or a careful use of contour plots).

A 3D HOG is simply a histogram across two-dimensions. For visualization, it is usually
desirable to adjust the values in the histogram to account for some bins covering a larger area
on the sphere than others so that the values in the histogram are given per-area rather than just
as a total sum. This adjustment is used in figure 4 to show a 3D microstructure along with its
HOGs plot. As shown in figure 4, there are six distinct peaks corresponding to the 6 faces of
the cube-shaped precipitates. Importantly, unlike the 2D analysis, which would return a
different shape based on the sectioning plane, the 3D analysis would identify a cube shape
regardless of sectioning plane. The clarity of the 3D HOG plot in figure 4 demonstrates the
robustness of these feature detectors to noise.

Figure 4. On the left is the 3D HOG descriptor for a 3D BSE dataset (volume rendered
on the right) of Rene N4 dataset collected with the Tribeam system [27]. It is the full
3D dataset associated with the image in figure 1, which provides evidence that the
HOG descriptor produces easily interpretable results even in the face of large amounts
of noise (considerable effort was made to smooth the dataset for the volume rendering).

Figure 5. A is the base microstructure, B is timestep two in the rafting process, and C is
timestep eight. The data is from the simulations of Wang et al [29].
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In analogy to the FFTs, it is possible to use rotation invariant spherical harmonics [28] as
feature vectors for analysis of 3D microstructures. Figure 5 along with table 4 show the results
on a simulated coarsening experiment done by Wang [29]. The first descriptor in table 4
(‘Cube’) comes from looking at every fourth non-zero frequency bin of the rotation invarient
spherical harmonics, and second descriptor (‘Sphere’) comes from looking at the energy in
the zeroth bin compared to everything else. The ‘Cube’ score remains relatively stable
compared to the ‘Sphere’ score which drops precipitously. This can be explained by thinking
about the precipitate edge curvature remaining constant while the edge lengths increase. The
precipitates are cuboids through the whole process, they are just becoming less and less
spherical as the microstructure coarsens.

Another simpler way to quantify 3D microstructure is to look at the mass moments of
inertia of the HOG feature descriptor itself (computed as if the HOG were a thin-shelled
spherical object with mass given by the value at each histogram point).

For a cubic microstructure, there are six peaks in the HOG feature descriptor and three
equivalent primary axis of rotation in the spherical HOG object. For a microstructure rafted
into a columnar structure, there are only four strong peaks in the HOG feature detector, and
likewise two equivalent axes of rotation with large moments of inertia and a third with a
smaller moment. For a microstructure rafted into a layer by layer structure, the HOG feature
detector has only two strong peaks and there is a single large moment of inertia and two
smaller ones for the spherical HOG object. Figure 6 shows volume renderings of these two
types of rafting that come from simulations done by Wang [29]. Table 5 shows the moment
analysis of these experiments which reflects the behavior described above (data also from
Wang [29]).

4.4. Effects of sample drift

Other than shot noise, sample drift is another important source of error in scan based imaging
techniques. These distortions are most significant with analysis techniques that depend on
feature correlations between images, long microscope exposure times, and high magnifica-
tions. For a detailed discussion of distortions in scanning electron microscopy, see [30, 31].
For the HOG descriptors used in this paper though, it is hoped that these issues can be largely
avoided. First, the descriptors here are not useful for spatially correlating images. Secondly, if
image acquisition can be done rapidly relative to the scale of the images acquired, then drift
should be minimal. Images collected with faster acquisition times have more shot noise, but

Figure 6. A is the base microstructure, B is the result of rafting to columns, and C is the
result of rafting to layers. The data is from the simulations of Wang et al [29].
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the scale of the Gaussian filter in the derivative approximation of the HOG can be adjusted to
accommodate for this noise.

If drift cannot be avoided, naturally the HOGs will be affected. To study the types of
error that would appear in the HOG descriptors in the presence of drift, the TEM micrographs
in figure 2, the BSE micrographs in figure 3, and the simulated data set in figure 5 were all
subjected to artificial drift. In the case of the TEM and BSE micrographs, this corresponds
directly with sample drift in the microscope. In the case of the 3D simulated data, which is
nothing but a stack of 2D slices, this corresponds more closely with errors in registering a 3D
stack of images.

Table 4. The Cube and Sphere scores for these microstructures are computed similarly
to the Circle and Square scores from tables 2 and 3.

Coarsening experiment

Timestep Cube Sphere

1 0.71 21.2
2 0.85 7.4
3 0.87 4.0
4 0.87 2.7
5 0.86 2.0
6 0.84 1.6
7 0.83 1.3
8 0.82 1.1
9 0.82 1.0
10 0.81 0.9

Table 5. Moments of the 3D HOG feature descriptor treated as a thin-shell object with
density given by the value of the HOG (at each step the total mass of this object is
scaled to one). In the columnar rafting experiment, the moments slowly transform from
all being equal to two smaller moments (m1 and m2) and one large one (m3). In the
layered rafting experiment, the moments slowly transform from being similar to one
smaller moment (m1) and two larger ones (m2 and m3).

Moments for HOGs of rafted microstructures

Columnar rafting
(P-type)

Layered-by-layer raft-
ing (N-type)

Time m1 m2 m3 m1 m2 m3

1 0.743 0.745 0.800 0.723 0.784 0.787
2 0.731 0.733 0.823 0.688 0.802 0.804
3 0.721 0.724 0.841 0.656 0.818 0.820
...
t 0.669 0.671 0.928 0.325 0.949 0.952
t+1 0.661 0.664 0.939 0.308 0.954 0.956
t+2 0.657 0.659 0.945 0.297 0.957 0.959
t+3 0.654 0.655 0.950 0.288 0.969 0.961
t+4 0.651 0.653 0.953 0.282 0.960 0.962
t+5 0.650 0.651 0.955 0.277 0.962 0.963
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For the micrographs in figures 2 and 3, a sequence of shearing distortions were applied
that shifted the bottom of the micrograph horizontally some distance with respect to the top.
This was done for a range of distortions between zero and five percent of the total width of the
images. These experiments were repeated for a vertical shearing distortion of the same length
in pixels as the horizontal distortion. For each distortion, the feature descriptors given in
tables 2 and 3 were recomputed. The maximum relative error in each of the three feature
descriptors with respect to the features computed with the undistorted data was 35% for the
Square feature, 9.0% for the Layering feature, and 23% for the Circle feature. We would
expect that classifiers based on HOG descriptors should be able to handle these errors, as the
values of the feature descriptors that discriminate between images are frequently a factor of
five or more different (as is indeed the case in tables 2 and 3).

For the 3D simulated data set in figure 5, a similar set of shear distortions (up to five
percent) were tested. For the columnar microstructure, the distortion direction was chosen to
be perpendicular to the length of the columns (so the columns leaned to one side) and for the
layered microstructure the distortion direction was chosen in the normal direction of the layers
(so the layers were no longer level). For each level of distortion, the moments given in table 5
were recomputed. The maximum relative error in each of the three moments with respect to
the moments of the undistorted data was 8.2% for the smallest moment, 2.5% for the middle
moment, and 1.6% for the largest moment. Similarly to the 2D case, these errors do not
change the conclusions of the analysis of table 5 (the errors in the largest moments are most
important, and they are smallest).

5. Conclusion

This paper demonstrates that in many types of basic microstructure analysis it is possible to
employ an HOGs feature vector in place of difficult to compute segmentation statistics. While
the HOG has limitations, it is easy to compute and is more robust to common noise sources in
electron microscopy techniques and can be applied in a number of interesting applications in
both 2D and 3D datasets.
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