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Abstract—Trauma is one of the leading causes of death
in the U.S. and is ranked third among death causes across
all age groups. This paper presents a novel fuzzy rule-based
classification approach based on the concept of General Type-2
Fuzzy sets to predict mortality for trauma patients. In this
approach each rule in the rule-base has an IF and a THEN part
and parameters of the IF part (antecedents) are automatically
extracted using powerful general type-2 fuzzy clustering
algorithms which enables the model to deal with noisy and/or
missing data. To verify efficacy of the proposed model, it has
been implemented on several publicly available datasets. Finally,
it is used to predict mortality among patients having traumatic
injuries based on a large clinical dataset. Accuracy results
demonstrate superior capabilities of the proposed approach
compared to crisp and fuzzy classification methods in the
literature.

keywords- Trauma; mortality prediction; fuzzy rule-based
classification systems; clustering.

I. INTRODUCTION

More than 192000 deaths from injury take place in the
United States every year [1]. Trauma accounts for 30% of
all life years lost in the US. It is ranked first in causes of
death among age group 1-46, and third across all age groups.
The financial cost of trauma exceeds $585 billion a year
including both health care costs and loss of productivity [2].
Medical data analysis is an active field of research where one
of the important topics is to predict mortality. With regard
to mortality in trauma, several research studies have been
conducted using various mathematical data analysis techniques
[4]. Machine learning and data analysis methods provide the
crucial link to precision medicine treatments dynamically after
injury.
One of the major difficulties for analysis of clinical data is
sparsity. For many reasons, we have a large number of missing
values and the available values maybe noisy and occasionally
inaccurate. One of the most effective tools in dealing with
such datasets having large numbers of missing values is fuzzy
logic. Fuzzy Rule Based Classification Systems (FRBCSs) are
particularly effective. Some of the successful applications of
FRBCSs can be found in [3], [5], [6], [7], [8].
In this paper we present a novel approach in designing FRBCS
using General Type-II Fuzzy Sets (GT2 FSs). The proposed ap-
proach is easy to implement. Although most of the rule-based
fuzzy expert systems rely on predefined antecedent parameters
determined by experts, the proposed model is completely data-

driven. Our new approach has several advantages over the
current rule-based algorithms: 1) there is no need for expert
knowledge, so that the parameters of the rule-base can be
numerically extracted from the learning data; 2) the number
of rules required in the rule-base of the system decreases
remarkably which makes the system more agile; 3) there is
no need to tune the antecedent parameters.
The model begins with determining the near-optimal number
of clusters in each class using a novel Cluster Validity Index
(CVI) [17] which is based on General Type-2 Fuzzy Sets (GT2
FSs) and results in robust and flexible data partitions. Based on
the optimal cluster numbers determined, the General Type-2
Fuzzy C-Means (GT2FCM) clustering algorithm [14] is then
applied to each class, and cluster centers in each dimension
are then treated as the mean value of a Gaussian membership
function for each rule. The process of completing the rule-base
continues by computing the CF values of each rule. Finally,
the classification process is accomplished based on the highest
firing degree of the obtained rules. The model will be discussed
thoroughly in the incoming sections.
The main contributions of this paper can be summarized as
follows:

• Direct extraction of fuzzy rules without a need for
expert knowledge.

• Automated tuning of rule antecedents based on the
results obtained from GT2FCM.

• Reduction of the number of rules in the rule-base
through finding the near-optimal number of clusters
in each class.

The reminder of the paper is organized as follows: an overview
of the basic concepts used in this paper is given in Section 2. In
Section 3, the proposed methodology is described. Numerical
experiments are provided in Section 4.

II. AN OVERVIEW OF PRELIMINARY CONCEPTS

In this section we present an overview of the basic concepts
used in this paper. To do so, first the concept of GT2 FSs is
reviewed and its respective representation method being used
in this research is introduced. Fuzzy C-Means (FCM) and GT2
FCM clustering algorithms are then briefly reviewed to make
the reader familiar with the proposed framework. At the end
of this section, we discuss some basics of FRBCSs.
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A. General Type-2 Fuzzy Sets

A GT2 FS Ã is expressed on a universe of discourse using
its corresponding T2 membership function ([9][10]):∫

x∈X

∫
u∈Jx

µÃ(x, u)/(x, u)dxdu, Jx ⊆ [0, 1] (1)

where x is the primary variable value, Jx denotes an interval
between the lower and the upper membership functions, u
denotes the secondary variable, and µÃ(x, u) denotes the sec-
ondary membership function. Here,

∫ ∫
represents the union

over the entire possible values of x, u and µÃ(x, u) . Generally,
there are three widespread representations for GT2 FSs: the
Vertical Slice representation, the Wavy Slice representation,
and the α-plane representation [11]. Due to the practicality
and good performance of α-planes, we use this representation
scheme in this paper.

B. α-Plane Representation of General Type-2 Fuzzy Sets

An α-plane of a GT2 FS Ã is the union of the entire
primary memberships of Ã whose secondary grades are greater
than or equal to α (0≤ α ≤1). An α-plane of Ã is denoted by
Ãα [12]. In fact, α-planes are Interval Type-2 FSs (IT2 FSs)
themselves. Thus any mathematical formulation designed for
IT2 FSs can easily be used on each α-plane.

Ãα =

∫
∀x∈X

∫
∀u∈Jx

((x, u)|fx(u))dxdu ≥ α (2)

Consider the secondary membership function µÃ(x). An α-cut
on this membership function is denoted by SÃ(x|α) and can
be defined as follows [14]:

SÃ(x|α) = [sÃL(x|α), sÃR(x|α)] (3)

Each α-plane is bounded from above by its upper membership
function, µÃ(x|α), and from the bottom by its lower member-
ship function, µ

Ã
(x|α) [13]. The upper and lower membership

functions of a plane Ãα can be described in terms of α-cuts
as follows:

µÃ(x|α) =
∫
∀x∈X

sÃR(x|α)dx (4)

µ
Ã
(x|α) =

∫
∀x∈X

sÃL(x|α)dx (5)

C. Fuzzy C-Means (FCM) algorithm

Given a set of data instances X = [x1, x2, ..., xn] where
xi ∈ <d, FCM groups X into c clusters by minimizing the
following objective function [14]:

J(U, V ) =

c∑
k=1

n∑
i=1

umik||xi − vk||2 (6)

where c is the number of clusters, n is the number of data
points, m represents the fuzzifier coefficient, and uik denotes
the membership grade of xi to the cluster Ck with the centroid
vk. This optimization problem has the following constraint:

c∑
k=1

uik = 1, uik ≥ 0 (7)

By using Lagrange multipliers, the above optimization problem
is unconstrained. Then by setting the unknown parameters to
zero, the following alternative iterative equations are obtained
to compute the membership of the point i to the cluster k and
the center of the cluster k:

uik =
1

c∑
j=1

[ ||xi−vk||||xj−vk|| ]
2

m−1

(8)

and

vk =

n∑
i=1

uik
mxi

n∑
i=1

uikm
(9)

D. GT2 Fuzzy C-Means (FCM) algorithm

GT2FCM [14] is an enhancement of the well-known FCM
algorithm and employs GT2 FSs in order to capture higher
levels of flexibility and accuracy. In order to employ GT2 FSs,
GT2FCM utilizes the α-plane representation method. As noted
before, α-planes are IT2 FSs themselves. Therefore, IT2 FCM
can be implemented on each α-plane and then the obtained
results for the entire α-planes can be aggregated through a
process called type reduction.

GT2FCM considers the fuzzifier value m as a type-1 fuzzy
set. Then it decomposes the fuzzifier into several levels:

m =
⋃

α∈[0,1]

α/Sm(α) (10)

In the above equation, Sm(α) is the α-cut of the fuzzifier m
at the level α:

Sm(α) = [sLm(α), sRm(α)] (11)

Now, the degree of belonging of a data vector such as Xi to
the cluster center Vj can be expressed as a type-1 FS ũj(xi).
Summation of this secondary membership value over the entire
patterns gives the GT2 membership value for the cluster center
Vj :

ũj =
∑
xi∈X

ũj(xi) (12)

where
ũj(xi) =

⋃
α∈[0,1]

α/Sũj (xi|α) (13)

Finally, the α-plane of the GT2 membership function can
be obtained by summing the α-cuts over the entire available
patterns. The secondary membership values for each α-level
for each pattern are computed as follows:

ũj(α) =
∑
xi∈X

Sũj (xi|α) (14)

Sũj (xi|α) has a lower and upper bound of the form
[sLũj (xi|α), s

R
ũj
(xi|α)]. These lower and upper membership

values for the pattern xi at the level α can be computed as
follows [14]:
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Fig. 1. A schematic view of the GT2FCM algorithm based on iterative computations on each α-plane [14].

sLũj (xi|α) = min
(

1∑c
l=1(dij/dil)

2/(sLm(α)−1) ,

1∑c
l=1(dij/dil)

2/(sRm(α)−1)

) (15)

sRũj (xi|α) = max
(

1∑c
l=1(dij/dil)

2/(sLm(α)−1) ,

1∑c
l=1(dij/dil)

2/(sRm(α)−1)

) (16)

Using the obtained secondary membership values, left and
right centroid values of each α-plane are computed using the
Karnik-Mendel (KM) algorithm. The cluster center Vj can be
computed as follows [14]:

Vj =

∑K
i=1 yiCũj (yi)∑K
i=1 Cũj (yi)

(17)

where K denotes the discretization level of the primary domain
and yi is the position vector of the discretized steps. It is
obvious that K is determined by the number of α-planes. As
noted before, Cũj is the weighted composition of the interval
centroids of each α-plane [14]:

Cũj =
⋃
α/
[
cLũj (α), c

R
ũj (α)

]
(18)

Finally, the hard thresholding of the GT2FCM for a pattern xi
is accomplished via the following rule [14]:

IF (ũj(xi) > ũk(xi)), k = 1, . . . , c, k 6= j

THEN xi belongs to cluster j.
(19)

A schematic view of the GT2FCM algorithm is given in Figure
1.

E. Fuzzy rule-based classification systems

Fuzzy rule-based systems have long been used in control
problems as approximation measures of non-linear mappings
from input vectors to output values while both of them are
non-fuzzy. During the past decade these systems have been
employed for classification purposes. Consider a c-class data

classification problem. A typical fuzzy IF-THEN rule has the
following form [15]:

Rule Rj : If x1 is Aj1 and . . . xn is Ajn,
Then class is Cj j = 1, 2, . . . , N

(20)

where x = (x1, . . . , xn) is a n-dimensional vector, Aji is the
antecedent linguistic variable for the rule j in the dimension
i, Cj is the consequent class and N is the total number
of rules. In classic FRBCs, each dimension in the universe
of discourse is partitioned into several grids each having a
specific linguistic variable in the form of type-1 fuzzy sets.
One of the main challenges in dealing with FRBCSs is to
tune the antecedent parameters in order to achieve higher
accuracy rates. The literature is rich in this regard. However,
Ishibuchi and Yamamoto [16] have demonstrated that using
appropriate CFs for each rule yields similar results to the rule
bases with tuned antecedent variables. In fact, computing CFs
is much easier and less computationally expensive than tuning
the antecedent parameters. Hence we use these factors. In that
case, IF-THEN rules are of the following form where CFj is
a real number in the interval [0, 1].

Rule Rj ; If x1 is Aj1 and . . . xn is Ajn,
Then class is Cj with CFj j = 1, 2, . . . , N

(21)

CF is equivalent to the confidence of the fuzzy rule Aq ⇒ Cq
and is defined as follows [16]:

c(Aq ⇒ Cq) =

∑
xp∈ class Cq

µAq(xp)∑m
p=1 µAq(xp)

(22)

where µAq (xp) is the firing degree of the data vector xp in
the rule Aq which is calculated as the product of membership
values of that data vector in its entire dimensions. A schematic
view of a two dimensional two-class dataset is represented in
Figure 2. In this figure each dimension is represented by three
triangular linguistic membership functions. It is obvious that
the number of rules increases exponentially by an increase
in the number of dimensions. This is another challenge that
FRBCSs face. One of the main goals of this research is to
handle this problem with FRBCSs.
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Fig. 2. A schematic view of class boundaries in an FRBCS with nine rules
using three linguistic membership functions.

III. THE PROPOSED METHODOLOGY

The proposed methodology begins with determining the
near-optimal number of clusters in each class using a powerful
Cluster Validiy Index (CVI) proposed by Doostparast and
Zarandi [17]. This CVI is specifically designed for GT2FCM,
and is formed based on the concept of α-planes in order to
achieve the highest compatibility with the GT2FCM algorithm.
After finding the optimal number of clusters for the data
vectors in each class, the GT2FCM is applied on classes and
then the cluster centers are extracted for each class. Cluster
centers of each class are then used to construct the antecedent
part of the rules in the rule-base. The number of rules in
each class will be the same as the number of clusters within
that class. This approach is advantageous over the ordinary
FRBCSs identification procedures [16] since the number of
rules remains reasonable, while in the current approaches the
number of rules in the rule-base increases exponentially with
an increase in the number of dimensions.
In our proposed approach, cluster centers are extracted and
each cluster represents a rule. The cluster prototype values in
each dimension are directly used in the corresponding location
in the antecedent part of each rule. All the rules regarding each
class have the same consequent (THEN part of the rule) as
their respective class. To build the antecedent values of rules
we have utilized Gaussian membership functions in such a way
that the mean of the Gaussian membership function in each
dimension is the cluster prototype value in that dimension.
Based on our experiments, a standard deviation of 1 will
result in satisfactory classification output, so we use 1 as the
standard deviation of Gaussian membership functions in the
antecedents of rules. For each dimension in the antecedent
part of the rules, the membership function is computed using
the following formulation:

Aij = e
−
(
xj−mij
σij

)2
(23)

where Aij is the membership function in the antecedent part
of rule i for dimension j and mij (σij) is the mean (standard
deviation) value of the Gaussian membership function of rule
i for dimension j. The main advantage of this approach over
the currently used rule-generation mechanisms is that there
is no need to generate redundant rules to cover the universe

of discourse entirely. Hence, computational complexity is
reduced.
After generating the rule-base for each class, the entire parts
of the rule-base are aggregated in order to calculate the CF
values using (22). Although the optimal number of clusters
have been obtained in the initial stage, due to the randomness
of the GT2FCM for finding the initial cluster prototypes we
have applied a K-fold cross validation process. Also the entire
process is repeated N times. We consider N=30. During each
round of the cross-validation stage, a new rule-base is gener-
ated and its antecedent values, accompanied by their respective
CF values are computed. Then the system is implemented on
the validation dataset and validation accuracy is measured. This
process is repeated until the entire folds have been tested. The
proposed approach is graphically represented in Figure 3.

In order to demonstrate computational efficiency of the
proposed approach, in the next section we present results
of implementing the proposed approach on several datasets
including 5 publicly available datasets and a real clinical
dataset.

IV. EXPERIMENTAL RESULTS

In order to verify the performance of the proposed frame-
work, we have implemented this approach on several datasets
with different characteristics. In the following these datasets
are introduced:

1) Five publicly available datasets are used from the
University of California, Irvine, machine learning
repository [18]. These datasets include: Dermatology,
Wine, Iris, Heart, and Wisconsin. These datasets are
summarized in Table I.

2) A clinical dataset representing various static and time-
series data vectors. This is a real trauma patient
clinical dataset which was collected by the UCSF/San
Francisco General Hospital and Trauma center and
contains 1413 patients. This dataset consists of two
main parts: static and hour 0 measurements, time
dependent measurements on various time intervals.
In this study we use the first part. In this regard
the following information for each patient has been
used: toxicology screening results, demographic data,
co-morbidities, substance use history and time 0
physiologic and biologic (coagulation and inflamma-
tory markers) measurements. Hour 0 measurements
include basic measures such as temperature, blood
pressure, heart rate, respiratory rate, some blood
factors such as Factor V and VII, platelet count, and
protein C level. The output of this dataset is 28 day
mortality.
In order to clean the data, we have deleted features
having ≥35% missing values across all measure-
ments. Patients having ≥40% missing values across
all features were deleted. After cleaning the dataset
we arrived at a set consisting of 72 features and 720
patients. In this dataset around 30% of values are still
missing. Note that for the methods used in this paper
we have made imputations using the SVD method.
This dataset has two classes: patients who survived
and patients who died after four weeks. In the cleaned
data 78% of patients survived and the remaining died.
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Fig. 3. The overall work flow of the proposed approach.

TABLE I. SUMMARY OF THE DATASETS USED

Dataset #Classes #Features Dataset Size
Iris 3 4 150

Wine 3 13 178
Heart 2 6 270

Wisconsin 2 9 683
Dermatology 6 34 358
Clinical Data 2 72 720

To demonstrate the effectiveness of the proposed approach
compared to current techniques, we have performed exten-
sive experiments based on the following methods: IVTURS
[19], FARC-HD [20], FURIA [21], and Ordinary FRBCS
(OFRBCS). Note that these algorithms are based on ordinary
FRBCSs and their antecedent parts have been tuned with
various heuristic methods and none of them employ CF as
an alternative for antecedent tuning.
We used 80% of the dataset vectors for training and 20% for
testing the model. 10-fold cross validation was used in the
experiments. Computational results for these experiments have
been presented in Tables IV and V. For two class problems we
have also made computations using Support Vector Machines
(SVM), a feed-forward Artificial Neural Network (ANN) with
two hidden layers each layer having 10 neurons, and Logistic
Regression (LR) method. Classification results are presented
in Tables II and III.

TABLE II. ACCURACY RESULTS ON THE TRAINING SETS

Dataset The Proposed Approach SVM ANN LR
Heart 91.3 90.85 89.9 90.80

Wisconsin 97.3 97 95.8 96.85
Clinical Data 88.27 85.3 87.2 87.3

TABLE III. ACCURACY RESULTS ON THE TEST SETS

Dataset The Proposed Approach SVM ANN LR
Heart 85.2 84.6 84 85.0

Wisconsin 95.9 94.83 93.2 94.8
Clinical Data 86.4 81.5 83.2 84.1

TABLE VI. NUMBER OF GENERATED RULES FOR THE CLINICAL
DATASET BY THE FUZZY ALGORITHMS

Method #Rules in the rule-base
IVTURS 19

FARC-HD 21
FURIA 21

OFRBCS 34
The Proposed Approach 10

Our proposed approach results in fewer rules in the rule-
base. The final number of rules being generated by each of
the five fuzzy algorithms for the clinical data is summarized
in Table VI. According to the results presented in Tables II
and III, the proposed approach outperforms SVM and ANN.
Here accuracy is defined as the ratio of the number of correct
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TABLE IV. ACCURACY OF THE RESULTS ON THE TRAINING DATASETS

Dataset The Proposed Approach IVTURS FARC-HD FURIA OFRBCS
Iris 98.87 98.17 98.5 98.5 95.3

Wisconsin 97.3 98.5 98.76 98.83 97
Dermatology 100 99.86 100 98.88 95

Heart 91.3 93.61 94.63 89.72 78.2
Wine 99.4 99.30 99.86 99.58 97.3

Clinical Data 88.27 88 86.9 86 79

TABLE V. ACCURACY OF THE RESULTS ON THE TEST DATASETS

Dataset The Proposed Approach IVTURS FARC-HD FURIA OFRBCS
Iris 96.1 96 94 96 93.5

Wisconsin 95.9 96.44 96.63 96.61 95.1
Dermatology 95.3 94.42 89.94 93.86 91.1

Heart 85.2 88.15 89.44 78.15 75.3
Wine 96.8 97.19 96.62 93.78 89.7

Clinical Data 86.4 85.1 84.8 85.2 77

results (labels) to the total number of vectors being tested.
The difference between accuracy results is more obvious in
the clinical dataset where the number of features is much
larger than the two other datasets. Also, we can see that in
most cases SVM has demonstrated slightly better classification
performance than ANN.
In the other experiments which have been made between the
state-of-the-art FRBCSs, the proposed approach achieves the
highest accuracy rate in half of the datasets. Here accuracy
rate (in percent) for each method is defined as the number of
times that an underlying method has achieved the best accuracy
on each of the six datasets divided by the total number of
datasets (which is six here). These rates are presented in Tables
IV and V and accuracy percentage rates for each method are
visualized in Figure 4. For example, according to the Table
IV, the proposed approach achieves the highest accuracy rate
in the Iris, Dermatology, and Clinical data (shown in bold).
Therefore its accuracy rate is 50% (3÷6)
In the both training and test datasets, the proposed approach
has the highest accuracy rate of 50%. For the training set,
the FARC-HD algorithm also yields the same rate as our
method, while in the test set it shows a 33.34% accuracy
rate compared to 50% of our approach. The IVTURS model
does not achieve the highest rank in any of the datasets of
the training group, while it has a 16.67% accuracy rate in
the test datasets. A natural hypothesis before conducting the
experiments was that OFRBCSs will have the lowest ranking
among the participating methods. This hypothesis is proved
here and OFRBCS has accuracy rate of 0 in both training and
test groups for the entire datasets.
We have also provided the AUC (area under the ROC curve)
value accompanied by the True Positive (TP) and True Nega-
tive (TN) rates for each method on the test clinical data. The
positive class is assigned to patients who survived (TableVII).
It can be observed that our proposed method achieves the
highest AUC value among the methods being compared. Here
are some points. We expected to obtain larger (smaller) TP
(TN) values in non-fuzzy methods. SVM and ANN have a
better TP value compared to our method but their TN values
are the lowest among other methods. This can be due to low
number of Dead patients in the test data considering large
number of features. Efficiency of our method is demonstrated
here where it has the highest TN value.

TABLE VII. AUC VALUES FOR THE COMPARED METHODS ON THE
CLINICAL DATA

Method AUC True Positive Rate True Negative Rate
IVTURS 0.79 0.81 0.79
FURIA 0.78 0.89 0.72

FARC-HD 0.73 0.80 0.71
OFRBCS 0.69 0.74 0.66

SVM 0.83 0.87 0.77
ANN 0.825 0.86 0.66
LR 0.78 0.79 0.69

The Proposed Approach 0.87 0.841 0.857

Fig. 4. Accuracy rate of each method on the clinical data.

V. CONCLUSION

This paper presents a novel direct approach in designing
FRBCSs using the GT2FCM algorithm and its respective CVI
using the α-plane representation method. Compared to the
existing FRBCSs, which are based on complete coverage of
the universe of discourse through defining linguistic variables
for the entire dimensions (features), the proposed approach
determines the optimum number of clusters in each class,
both from a separability and compactness points of view.
This reduces the total number of rules to represent the whole
problem space. In each class, the number of optimal rules is
equal to the number of representing rules in that class. After
computing the optimal clusters in each class, antecedent vari-
ables for each dimension of the entire rules are extracted from
the computed clusters. In this paper, a Gaussian membership
function was considered as antecedent of the fuzzy rules since
it has shown its efficacy in handling real-world classification
problems compared to the traditional triangular or trapezoidal
membership functions. Another major difference between our
method and other available fuzzy rule-based models is its
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easy functionality. This is because the alternative approaches
spend a huge amount of time on tuning the parameters of
the antecedent part of each rule while the proposed algorithm
employs a certainty factor for each rule. The robustness and
computational speed of certainty factors have been verified
in the literature. On the other hand, antecedent parameters are
automatically tuned and there would be a need to re-tune them
since the antecedent parameters are the output of an optimized
clustering algorithm, themselves. The proposed algorithm has
been tested on five publicly available dataset and a real
clinical dataset consisting 72 clinical features and 720 samples.
Numerical results demonstrate that the proposed algorithm
outperforms non-fuzzy methods such as SVM, ANNs, and LR.
It also shows excellent classification accuracy compared to four
state-of-the-art FRBCSs with tuned antecedent parameters. Our
method achieved the best accuracy on the real clinical dataset
for both the training and test datasets with 88.27% and 86.4%
accuracy, respectively.
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