
Time Dependent Solution for Acceleration of

Tau-Leaping

Jin Fua,∗, Sheng Wua, Linda R. Petzolda

aDepartment of Computer Science, University of California, Santa Barbara

Abstract

The tau-leaping method is often effective for speeding up discrete stochastic

simulation of chemically reacting systems. However, when fast reactions are

involved, the speed-up for this method can be quite limited. One way to ad-

dress this is to apply a stochastic quasi-steady state assumption. However we

must to be careful when using this assumption. If the fast subsystem cannot

reach a steady distribution fast enough, the quasi-steady-state assumption

will propagate error into the simulation. To avoid these errors, we propose

to use the time dependent solution rather than the quasi-steady-state. Gen-

erally speaking, the time dependent solution is not easy to derive for an

arbitrary network. However, for some common motifs we do have time de-

pendent solutions. We derive the time dependent solutions for these motifs,

and then show how they can be used with tau-leaping to achieve substantial

speed-ups, including for a realistic model of blood coagulation. Although the

method is complicated, we have automated it.

∗Corresponding author
Email addresses: iamfujin@hotmail.com (Jin Fu), sheng@cs.ucsb.edu (Sheng

Wu), petzold@cs.ucsb.edu (Linda R. Petzold)

Preprint submitted to Journal of Computational Physics October 25, 2012

1. Introduction

Ordinary differential equation (ODE) models are widely used in the sim-

ulation of chemical systems where all chemical species are present with large

population. For the simulation of biochemical systems inside a living cell,

however, the population of some chemical species may be so small that

stochastic fluctuations become important [1, 2, 3]. For these systems, a

discrete stochastic model is more appropriate. The stochastic simulation al-

gorithm (SSA) [4, 5] is commonly used to simulate such a system. The SSA

is exact, in the sense that each simulation is a realization of the Chemical

Master Equation [5]. As the number of stochastic realizations goes to infin-

ity, their statistics approach the probability density vectors (PDVs) which

are the solutions to the Chemical Master Equation.

Typically, a great many (hundreds of thousands to millions) of simulations

are required to get a good approximation to the PDVs. At the same time,

each realization can be quite expensive because SSA, as an exact algorithm,

requires the simulation of every reaction event in the system, which may

include some very fast reactions. Tau-leaping [6] was developed to speed

up the simulations. Tau-leaping is an approximate algorithm that can for

many systems take time steps that are considerably larger than the time to

the next reaction (i.e. the SSA timestep). It accomplishes this by allowing

multiple reaction events to fire during a timestep as long as these reactions do

not change the system dramatically, i.e. the change of each species during a

step is small compared with its population. The stepsize for tau-leaping can

become constrained, however, for systems with fast reactions that involve at

least one species that is present in very small population [7].

2

One way to accelerate both SSA and tau-leaping for such stiff systems

is to make use of a quasi-steady-state assumption. The quasi-steady-state

assumption is a widely used strategy to handle systems that have different

time scales, for both ODE [8] and SSA models [9, 10, 11]. The essence of this

strategy is to divide the system into fast and slow subsystems. If the fast

subsystem can reach a quasi-steady-state in a very short time, then we can

use the quasi-steady-state as an approximation of the fast variables during

a step of the slow subsystem. One can also apply the quasi-steady-state

assumption in tau-leaping [7]. However, we must to be careful when using

this assumption. If the fast subsystem cannot reach a steady distribution

rapidly enough, the quasi-steady-state assumption will propagate error into

the simulation.

To avoid these errors, we can use the time dependent solution rather than

the quasi-steady-state. The idea of using the time dependent solution to

speed up a discrete stochastic simulation has been applied via a splitting

method in [12]. That method first partitions the reactions into subgroups

such that some of them have analytical solutions, which can be used to

directly sample the state of the subsystem at any given time if reactions

outside the subsystem keep silent. Then the method advances the system

by advancing each subsystem separately in a given order with some stepsize.

Since it can directly sample the state without sampling individual reaction

events for those subsystems that have analytical solutions, it is more efficient

than SSA if these subsystems contain many reaction events. However, it

does not handle non-catalytic bimolecular reactions with the time dependent

solution, or provide a stepsize selection strategy. The adaptive tau-leaping

3

method addresses these two issues. It approximates the number of firings for

bimolecular reactions for each step [6] and it also has an adaptive stepsize

selection algorithm [13]. Here we will apply the time dependent solution

in a tau-leaping framework. Thus the analytical solution can be used to

approximatie bimolecular reactions such as S1 + S2 → something within a

tolerance. It will inherit the adaptive stepsize selection method naturally as

well.

Generally speaking, the time dependent solution is not easy to derive

for an arbitrary network motif. However, for some common motifs we do

have time dependent solutions. These solutions can be used to improve the

performance of tau-leaping for some widely used models like the enzyme-

substrate model.

The remainder of this paper is organized as follows. In Section 2, we

provide a brief introduction to tau-leaping with adaptive timestep selection.

In Section 3 we derive the time dependent solution for some common network

motifs. We begin with a simple example to demonstrate the tau-leaping

algorithm using the time dependent solution. Then we extend the algorithm

to more general cases. Numerical experiments are provided in Section 4,

including application of the method to a realistic model of blood coagulation,

and the algorithm is briefly summarized in Section 5. Detailed mathematical

derivations are provided in the supplementary material.

2. Tau-Leaping

Consider a system ofN species {S1, . . . , SN} andM reactions {R1, . . . , RM}.
The state vector of the system is X = {x1, . . . , xN} which is the population

4

of each of the species. The probability that reaction Ri fires in an infinitesi-

mal interval dt is given by ai(X)dt, where ai(X) is the propensity function

of Ri. Tau-leaping advances the system in small steps; it assumes that the

state vector X changes so little in each step that the propensity functions

{a1, . . . , aM} can be treated as constants. Thus the number of firings in each

reaction channel Ri is a Poisson random number with parameter ai(X)τ ,

where τ is the stepsize. To advance the system, we need only to sample

these Poisson random numbers and update the state vector X.

Yang et al. [13] suggest a strategy to determine the stepsize. The idea

is that it should be chosen so that the mean and standard deviation of the

change of each species is small compared to its population. Denoting the

population change of species Si as ∆xi, the stepsize as τ , and the number

of firings of each reaction during a step as r1 (τ) , . . . , rM (τ), tau leaping

computes

∆xi =

M
∑

j=1

νijrj (τ) ,

where νij is the stoichiometry of species Si in reaction Rj . Assuming that

the reaction firings are independent during a step, the mean and variance of

∆xi are given by

E∆xi =

M
∑

j=1

νijE (rj (τ)) , Var (∆xi) =

M
∑

j=1

ν2
ijVar (rj (τ)) .

Keeping E∆xi and
√
Var∆xi small (relative to the tolerance ǫ) compared

5

with xi requires [13]

E∆xi ≤ max

(

ǫ

gi
xi, 1

)

,
√

Var (∆xi) ≤ max

(

ǫ

gi
xi, 1

)

, (1)

where gi is a constant that depends on the highest order of the reactions

which involve Si as a reactant. Solving the above inequalities yields the

upper bound on τ , which we will denote by τi, for which species Si can

be expected to change by less than the prescribed tolerance. The adaptive

tau-leaping algorithm chooses the smallest τi as its stepsize.

τ = min
1≤i≤N

τi (2)

Over a step of size τ , tau-leaping approximates the population of every species

as a constant. Thus ri (τ) is a Poisson random variable

ri (τ) ∼ P (aiτ) .

Solving (1) for τi gives

τi ≤
max

(

ǫ
gi
xi, 1

)

∑M

j=1
νijaj

, τi ≤
max

(

ǫ2

g2i
x2
i , 1

)

∑M

j=1
ν2
ijaj

⇒τi = min





max
(

ǫ
gi
xi, 1

)

∑M

j=1
νijaj

,
max

(

ǫ2

g2i
x2
i , 1

)

∑M

j=1
ν2
ijaj



 , (3)

and substituting this into (2) yields the tau-leaping stepsize.

It is easy to see that tau-leaping can be substantially more efficient than

SSA. However, this is only the case when it can use a stepsize over which

6

many reaction firings would have taken place. However, if some species Si

is changing rapidly, then the change in that species may be constraining the

stepsize. On each timestep, the species that is constraining the stepsize is

the one for which τi is smallest. Thus we propose to use the time dependent

solution described in the next section to solve for that species in place of

standard tau-leaping (provided that it occurs in one of the common network

motifs for which we have a time dependent solution).

Using the time dependent solution is a natural way to remove the stepsize

constraint from the limiting species. This idea can also be extended to cases

where several species require a very small stepsize. Though a general solution

for arbitrary motifs may not be easy to find, we do have the solution for some

common motifs. The results will be shown in the next section.

3. Tau-leaping using the time dependent solution

The time dependent solution makes use of the exact analytical solution of

common reaction motifs to increase the speed of tau-leaping. The splitting

method [12] also uses the analytical solution of monomolecular, catalytic

bimolecular, and autocatalytic reactions. It separates these reactions from

the system to form subsystems that can be simulated using their analytical

solutions. The time dependent solution improves on the splitting method in

the following two ways.

• Applicability to non-catalytic bimolecular reactions.

In order to use the analytical solution for a bimolecular reaction, the

splitting method requires that one of its reactants has zero stoichiome-

try (i.e. catalytic bimolecular reaction). The time dependent solution

7

removes this requirement by observing that if one of the reactants of

a non-catalytic bimolecular reaction has a slow relative rate of change,

we should be able to allow it to use the analytical solution to within

some tolerance.

This change brings new requirements to the system partition strategy.

In the splitting method the subsystems are determined by the stoi-

chiometry. Thus it can partition the system at the very beginning and

use it throughout the simulation. However, if we allow the subsystems

to include non-catalytic bimolecular reactions, the stoichiometry ma-

trix will not be sufficient to determine the partitioning of the system.

We also need the information of the dynamically changing reaction

rates. Thus the time dependent solution includes a scheme for dynamic

partitioning.

• Adaptive stepsize selection

An operator bounding analysis for the splitting method was given in

[12]. For simulation purposes, it would be ideal if the analysis can gen-

erate an algorithm to adaptively select the stepsize. Here, since our

partition will be more complex and our implementation of the time

dependent solution is in the tau-leaping framework, making use of the

adaptive stepsize selection strategy from tau-leaping [13] is a more nat-

ural and easy option for our method.

In this section we will demonstrate the use of the time dependent solution

using the tau-leaping method. We begin with a simple example.

8

Figure 1: Motif I, I denotes the set of reactions that generate S1, and O denotes the set
of reactions that consume S1.

3.1. Using the time dependent solution of one species

Let us take a look at one species in particular, say S1. There are reactions

which either generate or consume S1, as shown in Figure 1. We will refer to

the motif illustrated in Figure 1 as Motif I in the following sections.

If for any reaction in the system, its reactants involve at most one S1

molecule and its products also involve at most one S1 molecule, then we can

find the analytical solution for the population of S1, under the assumption

that the populations of other species can be considered as constants. This

assumption is reasonable as long as we use a stepsize that can be accepted

by those other species. Let I be the set of reactions that generate S1, and

O be the set of reactions that consume S1. Denote the total propensity that

an S1 will be generated as

aI
△
=

∑

Ri∈I

ai,

and the total rate that S1 will be consumed as

cO
△
=

∑

Ri∈O

c̃i,

where c̃i = ai/x1.

9

The time dependent population of S1 can be written as (see Appendix A in

the supplementary material)

x1(t) ∼ B
(

x1(0), e−cOt
)

+ P
(

aI
cO

(

1− e−cOt
)

)

(4)

∼ B
(

x1(0), e−cOt
)

+ B
(

rI ,
1

cOt

(

1− e−cOt
)

)

, (5)

where x1(0) is the initial value of x1 at the beginning of the step, and rI is

the input to S1, i.e. the total number of firings for reactions in I. B(n, p) is

a binomial random number with parameters n, p. P (λ) is a Poisson random

number with parameter λ. The two random variables in (4) and (5) are

independent.

The corresponding output from S1, i.e. the total number of firings in O,

is given by

rO(t)
△
=

∑

Ri∈O

ri(t) = x1(0) + rI − x1(t)

∼ B
(

x1(0), 1− e−cOt
)

+ B
(

rI , 1− 1

cOt

(

1− e−cOt
)

)

. (6)

To simulate the number of firings in each reaction channel Ri ∈ O, we dis-

tribute rO using the multinomial distribution according to the rate c̃i of each

reaction Ri

{ri : Ri ∈ O} ∼ M
(

rO,
c̃i
cO

: Ri ∈ O

)

(7)

10

or equivalently (see Appendix C in the supplementary material),

ri(t) ∼ B
(

x1(0),
c̃i
cO

(

1− e−cOt
)

)

+ P
(

c̃i
cO

(

aIt−
aI
cO

(

1− e−cOt
)

))

. (8)

Here M (n, p1, . . . , pn) is a multinomial random variable with parameters n

and p1, . . . , pn.

Now we apply this time dependent solution to accelerate tau-leaping for the

simple example.

S0

c1−⇀↽−
c2

S1
c3−→ S2.

When the population of S0 is much greater than the population of S1, S1 will

be the species that limits the tau-leaping stepsize. Using the time dependent

solution of S1 we arrive at the following algorithm.

1. Use (3) to compute the acceptable stepsizes τi for every species (in this

case S0 and S1. There is no need to compute S2 because it is a pure

product and it never changes any propensity function).

2. Find the smallest τi (Here we assume τ1 < τ0 for demonstration pur-

poses, so I = {R1} , O = {R2, R3}).

3. Recompute the stepsize. In this example we need to recompute τ0 for

S0. We do this because the original τ0 was based on the assumption

that x1 is a constant during the step. Since this is no longer the case,

we need to reevaluate τ0. To do this, we still try to bound the mean

and variance of ∆x0 using (1). The only change is that the number

of firings of R2 is no longer a Poisson random variable. Instead, we

11

have formula (8) for r2, so both E (r2) and Var (r2) can be obtained

explicitly and used to compute the new value for τ0. (Here we need to

solve a nonlinear algebraic equation since E (r2) and Var (r2) contain

e−cOt terms. Newton iteration is a good option because the explicit

formulas of the equations are known).

4. Sample the number of firings in all reaction channels except those be-

longing to O (Sample r1 (τ) in the example). These reactions do not

depend on the species for which we use the time dependent solution

(S1 in the example), so the original strategy in tau-leaping still works.

Reactions in I are sampled in this step so that we know the value of

rI .

5. Sample rO using (6) and distribute it into each channel in O using (7).

(Now r2 and r3 have been sampled).

6. Update the system and start the next step, or terminate if the end time

of the simulation has been reached.

In some reacting systems, there can be reactions that use S1 as a catalyst.

For example, suppose that we add the following reaction R4 to the above

system

R4 : S1
c4−→ S1 + S3.

This reaction cannot be sampled using a Poisson random number P (c4x1 (0) τ)

in the previous framework, since S1 may undergo a big change during the

step. This reaction does not belong to O, since it does not consume S1. It

needs to be treated as a different case.

12

The value of r4 during a step is given by

r4 ∼ P
(
∫ τ

0

c4x1 (t) dt

)

.

Since we cannot compute the integral exactly, we will need to make an ap-

proximation. A natural choice is to use the mean value E (x1(t)) instead of

the exact random number xi (t), which yields

r4 ≈ P
(

c4

∫ τ

0

E (x1 (t)) dt

)

. (9)

This value is capable of being sampled, since we can derive the formula for

E (x1) from (4). Thus we have a formula for the integral expression. This

approximation can capture the mean value of r4 accurately but its variance is

smaller than the exact value of Var (r4) (see Appendix B in the supplementary

material). This is because E (x1(t)) averages x1(t), thus it loses the specific

information of the trajectory. To recover the variance, we need to include

this information in the approximation. Since in Step 5 of the algorithm

x1(τ) is sampled (more precisely, we sample rO, however we can get x1 (τ)

by x1(τ) = x1(0)+ rI − rO(τ)), it would be advantageous if we could include

this information in the approximation. This yields another approximation

formula:

r4 ≈ P
(

c4

∫ τ

0

(

E (x1 (t)) +
t

τ
(x1 (τ)− E (x1 (τ)))

)

dt

)

∼ P
(

c4

(
∫ τ

0

E (x1 (t)) dt+
τ

2
(x1 (τ)− E (x1 (τ)))

))

. (10)

The interpolation of the difference between x1 (t) and E (x1 (t)) at the end

13

Figure 2: Motif II, Ii denotes the set of reactions that generate Si without consuming Sj ;
Oi denotes the set of reactions that consume Si without generating Sj; Rij denotes the
set of reactions that consume Si and generate Sj at the same time, i, j = 1, 2, i 6= j.

time of the step has been added into the integrand. Numerical experiments

(Section 4) demonstrate that (10) gives a much better approximation of the

variance Var (r4).

Armed with the strategy of using the time dependent solution for one

species, we can move on to the more general case where we use the time

dependent solution of several species.

3.2. Using the time dependent solution of several species

In many cases there are several species that are limiting the stepsize. They

may be linked with each other via the reactions in which they participate.

Consider, for example, the motif shown in Figure 2. We will refer to this

motif as Motif II in the following sections.

A popular model that uses this motif is the enzyme substrate system,

E + S
c1
⇌
c2

ES
c3→ E + P,

where S has a huge population while E and ES are present in small pop-

14

Figure 3: E and ES are within the scope of Motif II, R4 is the input reaction for E, and
R5 and R6 are the output reactions for E and ES respectively. R1 converts E to ES, R2

and R3 convert ES to E.

ulations. Let τE , τS and τES denote the stepsizes for E, S and ES given

by (3). It is obvious that τE , τES ≪ τS. Thus if we want to accelerate the

simulation, we need to use the time dependent solution for both E and ES.

In general, the population of the enzyme is dynamic rather than constant.

It can be produced and consumed by other reactions. For example, consider

adding the following set of reactions into the enzyme substrate system:

R4 : φ
a4−→ E, R5 : E

c5−→ φ, R6 : ES
c6−→ φ.

This model is still within the scope of Motif II (see Figure 3). The good news

is that we have the analytical solution for the time dependent solution of E

and ES for the previous system during a stepsize of τS (which implies that

S can be treated as constant).

Before giving the formula, we define some notation. Let IE = {R4} be the

set of reactions that generate E while not consuming ES, OE = {R5} be the

set of reactions that consume E while not producing ES, OES = {R6} be the

15

set of reactions that consume ES while not producing E, RE,ES = {R1} be

the set of reactions that consume E and generate ES, and RES,E = {R2, R3}
be the set of reactions that consume ES and generate E.

Similar to the previous example, we have

aEI =
∑

Ri∈IE

ai = a4, rEI =
∑

Ri∈IE

ri = r4

cE,ES =
∑

Ri∈RE,ES

c̃i = c1xS

cES,E =
∑

Ri∈RES,E

c̃i = c2 + c3

cEO =
∑

Ri∈OE

c̃i = c5, cES
O =

∑

Ri∈OES

c̃i = c6 (11)

and

rEO =
∑

Ri∈OE

ri = r5, rES
O =

∑

Ri∈OES

ri = r6. (12)

Here rEO and rES
O are the total number of firings for reactions in OE and OES.

Using the notation above, the time dependent solution of this system can

be written as

(

xE(t), xES(t), rEO(t), rES
O (t)

)

∼ M
(

xE (0) , pE1 (t), pE2 (t), pEO1(t), pEO2(t)
)

+M
(

xES (0) , pES
1 (t), pES

2 (t), pES
O1 (t), pES

O2 (t)
)

+M
(

rEI ,
λ1(t)

aEI t
,
λ2(t)

aEI t

λO1(t)

aEI t

λO2(t)

aEI t

)

, (13)

where the formulas for each parameter are given in Appendix A in the sup-

16

Figure 4: General motif

plementary material (see (A28) in Appendix A).

This result can be extended from two species to n species Ŝ = {S1, . . . , Sn}
when the following condition holds:

Condition (∗): For any reaction R that can change the population of a species

in Ŝ, one firing of R consumes at most one molecule in Ŝ, and produces at

most one molecule in Ŝ.

A diagram of this general motif is given in Figure 4.

Now the definitions in (11) and (12) can be extended for any 1 ≤ i 6= j ≤ n

as follows:

aiI
△
=

∑

Rk∈Ii

ak, riI
△
=

∑

Rk∈Ii

rk, cij
△
=

∑

Rk∈Rij

c̃k, ciO
△
=

∑

Rk∈Oi

c̃k, riO
△
=

∑

Rk∈Oi

rk.

17

The time dependent solution for this general motif is given by

(x (t) , rO (t)) ∼
n

∑

i=1

M
(

xi (0) , pi (t) , pi
O (t)

)

+

n
∑

i=1

M
(

riI ,
1

aiIt
λi,

1

aiIt
λi

O

)

. (14)

where the formulas for each parameter are given in Appendix A in the sup-

plementary material.

Now that we have the time dependent solution for our motifs, it is time

to outline the steps of employing the time dependent solution in tau-leaping,

using the enzyme substrate (E-S) system as an example.

1. Use (3) to compute the acceptable stepsizes τi for every species (in

the E-S example we compute the stepsizes for E, S and ES). For

demonstration purposes, we assume τ1 ≤ τ2 ≤ · · · ≤ τN (and in the

E-S example we have τE , τES < τS).

2. Construct the set of species U for which we will use the time dependent

solution. Start from the species with the smallest stepsize, i.e. S1. If

S1 satisfies condition (∗), add it into U to obtain U = {{S1}}. Now

go on to the species which has the second smallest stepsize, i.e. S2. If

{S1, S2} does not satisfy condition (∗), end step 2 with U = {{S1}}.
Otherwise, add S2 into U . If S2 is linked to S1, i.e. c12 6= 0 or c21 6= 0,

add S2 into U to obtain U = {{S1, S2}}. Otherwise add it into U to

obtain U = {{S1} , {S2}}. Continue adding species into U in a similar

way until you cannot add any more species that satisfy the condition

(∗). Now each element in U is a set of species for which we can use

18

the time dependent solution. (In the E-S example we end up with

U = {{E, ES}}. We cannot add S into U since Ŝ = {E, ES, S} does

not satisfy condition (∗), as R1 consumes two molecules in Ŝ).

3. Recompute the stepsize. For species not in U , we need to recompute

their stepsizes with the new value of each ri which may no longer be the

original Poisson random variable (see Appendix C in the supplementary

material for a more detailed computation. In the E-S example, we need

to recompute the stepsize τS).

4. Sample the number of firings for all reactions that do not involve the

species in U as reactants. For these reactions tau-leaping is appropriate,

so sample Poisson random numbers for them (in the E-S example, r4

is sampled).

5. Sample each element in U using its time dependent solution (14). (In

the E-S example, xE(t), xES(t), r
E
O(t), r

ES
O (t) are sampled)

6. For each species Si in U , sample reactions in Oi using the multinomial

distribution

{rj : Rj ∈ Oi} ∼ M
(

riO,
c̃j
ciO

: Rj ∈ Oi

)

.

(In the E-S example, r5 and r6 are sampled, and the multinomial dis-

tribution yields r5 = rEO , r6 = rES
O).

7. Sample the reactions in Rij . This is not trivial since we have to main-

tain the flow conservation of the network, so what we actually sample

is an instance of a feasible flow. An algorithm to sample the flow is

presented in Appendix D in the supplementary material. For the E-S

example, this step is very simple. First sample r1 using formula (10).

19

Here E (xE(t)) in the formula has the form (see Appendix A in the

supplementary material for detailed derivation)

E (xE(t)) = xE(0)p
E
1 (t) + xES(0)p

ES
1 (t) + λ1(t),

where pE1 (t), p
ES
1 (t) and λ1(t) are the parameters that appeared in (13).

The conservation equation

r4 + xE(0) + (r2 + r3) = xE(t) + r1 + r5

gives

(r2 + r3) = xE(t) + r1 + r5 − r4 − xE(0).

Then sample r2 and r3 from their sum using the binomial distribution

r2 = B
(

xE(t) + r1 + r5 − r4 − xE(0),
c2

c2 + c3

)

r3 = xE(t) + r1 + r5 − r4 − xE(0)− r2.

8. If there are reactions involving species in U that are acting as a catalyst,

for example

Si → Si + Sj,

where Sj is not in U (this is guaranteed by the algorithm, because

species in U satisfies condition (∗)), use formula (10) to approximate

the number of their firings. In the E-S example there is no such reaction.

9. Update the system and begin the next step or terminate if the end time

of the simulation has been reached.

20

This algorithm is adaptive in the sense that it always applies the time

dependent solution to the motifs which limit the tau-leaping stepsize, even

though the limiting motifs change during the simulation. We achieve this

goal by constructing the limiting motifs U on the fly in step 2, rather than

partitioning the system at the beginning of the simulation.

In the enzyme substrate example, allowing non-catalytic bimolecular re-

actions to be grouped into the motif plays an important role. If such an

operation is not allowed, reaction R1 : E + S → ES will be taken away

from the motif and we will have a partition of the system as I1 = {R1},
I2 = {R2, . . . , R6}. This partition will significantly decrease the stepsize be-

cause I1 takes into account only the reaction that converts E to ES, while I2

includes the reactions in the opposite direction. Thus if we use a big stepsize,

E will be depleted in subsystem I1 in a short time, as will ES in R2. During

the remaining time of the step, the system will do nothing. This is obviously

not the correct physics of the model. Our method can avoid this partition

because we allow R1 to be included in the motif as shown in Figure 3. Thus

the motif contains all the reactions in both directions and it can take a much

longer stepsize than the previous partition.

4. Numerical simulation

In this section we present the results for the numerical simulations of the

examples in Section 3. We also demonstrate the time dependent solution for

a more complex real world model of blood coagulation.

21

Table 1: The time used for 100000 realizations of the one second simulation for Example
1, ǫ = 0.003

Method Time used
SSA 5943.97s

Tau Leaping 1006.84s
Tau Leaping/TDS1 8.18854s
Tau Leaping/TDS2 1.30296s

1Tau Leaping using time dependent solution of Motif I
2Tau Leaping using time dependent solution of Motif II

4.1. Example 1

The first example is the one mentioned in Section 3.1:

S0

c1−⇀↽−
c2

S1
c3−→ S2

S1
c4−→ S1 + S3.

The parameters are taken to be c1 = 0.1, c2 = 1, c3 = 1, c4 = 1. The initial

population of each species is given by x0 = 1e + 6, x1 = x2 = x3 = 0. The

result of a one second simulation is shown in Table 1.

In this example, the stepsize for S1 is smaller than the stepsize for S0,

thus the stepsize of tau-leaping is constrained by the stepsize for S1. Using

the time dependent solution of S1, we can remove the stepsize requirement

of S1 (which tries to keep x1 almost constant during the step) and use the

stepsize of S0 for the simulation, which yields a huge speedup. If we use the

time dependent solution of both S1 and S0, we have no stepsize requirement

at all! The last method in Table 1 simply samples the population of each

species at time t = 1 directly. This explains why it is so fast.

Speed is important, however we don’t want to trade speed at the cost of

22

Figure 5: Histograms of each species in Example 1. Comparison of result given by SSA
and tau-leaping using time dependent solution of Motif II. Red is SSA, blue is tau-leaping
using time dependent solution, and purple is the overlap of the two histograms.

losing too much accuracy. The population distributions given by SSA and

the last method in Table 1 are compared in Figure 5. The result shows that

accuracy is not sacrificed. The distribution of every species is maintained.

Formula (10) plays an important role for sampling the population of S3.

If we use only the mean value of x1 to do the sampling, i.e. using (9), the

distribution will have a noticeable error. Figure 6 shows the distribution of

S3 if (9) is used. The distribution has the correct mean but the variance is

too small.

23

Figure 6: The distribution of S3 if (9) is used. It has the correct mean value but the
variance is too small.

24

Table 2: The time used for 100000 realizations of a one second simulation of Example 2
with ǫ = 0.003

Method Time used
SSA 519.708s

Tau Leaping 787.655s
Tau Leaping/TDS1 475.314s
Tau Leaping/TDS2 2.57195s

1Tau Leaping using time dependent solution of Motif I
2Tau Leaping using time dependent solution of Motif II

4.2. Example 2

The second example is the one we used in Section 3.2:

E + S
c1
⇋
c2

ES
c3→ E + P

φ
a4−→ E, E

c5−→ φ, ES
c6−→ φ.

The parameters were taken to be c1 = 0.0001, c2 = 10, c3 = c5 = c6 =

1, a4 = 100.The initial population was taken as xS = 1e+6, xE = 1000, xES =

xP = 0.We do a one second simulation. The results are shown in Table 2

and Figure 7.

In this example it will not help much if we use the time dependent solution

of only one species (the third method in Table 2). This is because both E

and ES require a small stepsize, thus relaxing the stepsize requirement for

one of them will not completely solve our problem. The last method in Table

2 uses the time dependent solution of both E and ES, thus the stepsize of

the method is actually the stepsize of S, which is much larger than those of

E and ES. In the simulation, the stepsize of S is greater than one second

therefore the last method basically samples the population of each species at

25

Figure 7: Histograms of each species in Example 2. Comparison of result given by SSA
and tau-leaping using time dependent solution of Motif II. Red is SSA, blue is tau-leaping
using time dependent solution, and purple is the overlap of the two histograms.

26

Table 3: The time used for one realization of a 700-second simulation of the coagulation
model, with ǫ = 0.02. The results are averaged over ten realizations.

Method Time used
SSA 273.498s

Tau Leaping 39.2127s
Tau Leaping/TDS1 7.61337s

1Tau leaping using time dependent solution of Motif I+II.

t = 1 directly.

4.3. Coagulation model

For the final example, we apply our method to a model of blood coagu-

lation [14] with 43 reactions and 33 species. The coagulation model contains

reaction pathways that form several levels of cascades. Different factors are

activated at different time intervals, which finally leads to the activation of

thrombin. Meanwhile, the negative regulation factor antithrombin III binds

to thrombin as well as to some other factors in order to control the coagula-

tion process. In this model the species which constrain the stepsize vary as

time goes on. However, we do not need to worry about this in the simulation.

Our algorithm does not require any prior knowledge about the system. It

automatically detects the motifs that limit the stepsize and applies the time

dependent solution to them if applicable.

The original model uses concentration for each species rather than popu-

lation. We convert the concentration to population by selecting a 1mm long

cylinder with diameter 0.01mm as the control volume. The time used for one

realization of a 700 second simulation is shown in Table 3.

The last method in Table 3 applies the time dependent solution of Motif

I and Motif II. We can see that it already is significantly faster compared to

27

standard tau-leaping. We can expect that if we fully implement the algorithm

and use the time dependent solution of motifs containing more than two

species, it will further accelerate the speed of the simulation.

According to Table 3, if we do a 10000-realization simulation, it takes

about 31.7 days for SSA, 4.5 days for tau-leaping, and about 21.1 hours

for the time dependent solution implemented as described above. We have

code that can run the simulation in parallel. Thus the 10000-realization

simulation using the third method required only 5.2 hours running on a 4-core

workstation. Since it takes too much time to obtain a complete SSA result

of 10000 runs, we do not compare the species distributions for this model.

Instead, we compare the evolution of thrombin’s mean value with the result

given by the ODE model. Here we plot the mean values of IIa+1.2×mIIa

given by 10000 tau-leaping runs using the time dependent solution (blue)

and the ODE model (green) in Figure 8. The error tolerance of the adaptive

tau leaping simulation is 0.02, which is larger than the previous examples, so

the result will not be as accurate. However Figure 8 shows that this result

is already able to catch the trend of thrombin.

5. Conclusion

Tau-leaping using the time dependent solution provides a means to ac-

celerate the simulation of systems that have rapidly changing species. The

key point of the method is that it uses the time dependent solution for the

fast changing species. Thus, it can use a much larger stepsize than standard

tau-leaping, without noticeable loss of accuracy. The auto detection fea-

ture grants the algorithm the ability to handle systems whose fast changing

28

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6
x 10

−7

time [s]

co
nc

en
tr

at
io

n
[M

]

concentration evolution of IIa+1.2*mIIa

Tau−Leaping using
time dependent solution
of Motif I+II

ODE

Figure 8: Concentration of thrombin (IIa+1.2×mIIa). Blue curve: Tau-leaping using time
dependent solution of Motif I+II. Green curve: ODE.

29

species vary over time. However, the method still has some limitations.

1. It can handle only networks that satisfy condition (*). If (*) is violated,

we may not have the formula for the time dependent solution. Actually,

it is still possible to derive PDEs for the generating function, as we do

in Appendix A in the supplementary material. However the PDEs will

be second order and the analytical solution may not be easy to obtain.

Even if we find the solution for the PDEs, we still need to convert

them into proper random variables that are easy to sample, which is

also nontrivial.

2. For systems that do not have fast-changing species, the method will

not benefit the simulation.

The time-dependent solution for acceleration of tau-leaping is already

applicable to many real-world systems. The formulas and hence the imple-

mentation are complicated, but we have automated the method so that this

is not a limitation.

Acknowledgment

The authors acknowledge the following financial support: National Insti-

tute of Biomedical Imaging and Bioengineering (Grant No. 5R01EB007511-

03); US Army Research Office (Grant No. W911NF-10-2-0114); Institute for

Collaborative Biotechnologies from the US Army Research Office (Grant No.

W911NF-09-D-0001) and DOE Contract No. DE-FG02-04ER25621.

30

Reference

[1] H. H. McAdams, A. Arkin, Stochastic mechanisms in gene expression,

Proc. Natl. Acad. Sci. USA 94 (1997) 814–819.

[2] A. Arkin, J. Ross, H. H. McAdams, Stochastic kinetic analysis of devel-

opmental pathway bifurcation in phage λ-infected escherichia coli cells,

Genetics 149 (1998) 1633–1648.

[3] N. Fedoroff, W. Fontana, Small numbers of big molecules, Science 297

(2002) 1129–1131.

[4] D. T. Gillespie, A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions, J. Comput.

Phys. 22 (1976) 403–434.

[5] D. T. Gillespie, Exact stochastic simulation of coupled chemical reac-

tions, J. Phys. Chem. 81 (1977) 2340–2361.

[6] D. T. Gillespie, Approximate accelerated stochastic simulation of chem-

ically reacting systems, J. Chem. Phys. 115 (2001) 1716–1733.

[7] Y. Cao, L. R. Petzold, Slow-scale tau-leaping method, Comput. Meth-

ods Appl. Mech. Engrg. 197 (2008) 3472–3479.

[8] L. A. Segel, M. Slemrod, The quasi-steady-state assumption: a case

study in perturbation, SIAM Review 31 (1989) 446–477.

[9] C. V. Rao, A. P. Arkin, Stochastic chemical kinetics and the quasi-

steady-state assumption: Application to the gillespie algorithm, J.

Chem. Phys. 118 (2003) 4999–5010.

31

[10] Y. Cao, D. T. Gillespie, L. R. Petzold, The slow-scale stochastic simu-

lation algorithm, J. Chem. Phys. 122 (2005) 014116.

[11] E. A. Mastny, E. L. Haseltine, J. B. Rawlings, Two classes of quasi-

steady-state model reductions for stochastic kinetics, J. Chem. Phys.

127 (2007) 094106.

[12] T. Jahnke, D. Altintan, Efficient simulation of discrete stochastic re-

action systems with a splitting method, BIT Numer. Math. 50 (2010)

797–822.

[13] Y. Cao, D. T. Gillespie, L. R. Petzold, Efficient step size selection for

the tau-leaping simulation method, J. Chem. Phys. 124 (2006) 044109.

[14] M. F. Hockin, K. C. Jones, S. J. Everse, K. G. Mann, A model for

the stoichiometric regulation of blood coagulation, J. Biol. Chem. 277

(2002) 18322–18333.

32

Supplementary Material

Jin Fu, Sheng Wu, Linda R. Petzold

Appendix A. Derivation of the time dependent solution

We use the probability generating function to derive the formula. For a

nonnegative discrete random variable X , its probability generating function

is defined as

GX (s) =

∞
∑

i=0

sip (X = i) ,

where p (X = i) is the probability thatX takes the value of i. The generating

function of a Poisson random variable X ∼ P (λ) is given by

GX (s) =
∞
∑

i=0

sip (X = i) =
∞
∑

i=0

si
λi

i!
e−λ = e−λ

∞
∑

i=0

(sλ)i

i!

= e−λesλ = e(s−1)λ. (A.1)

The joint generating function of multiple random variables (X1, . . . , Xn) is

defined as

GX1,...,Xn
(s1, . . . , sn)

=
∑

i1,...,in

si11 . . . sinn p (X1 = i1, . . . , Xn = in) . (A.2)

It is convenient to compute the generating function of every variable from

their joint generating function. For example, if we want the generating func-

Preprint submitted to Elsevier October 6, 2011

tion of Xj , we can simply plug si = 1, i 6= j into (A.2). This is because

GX1,...,Xn
(1, . . . , sj, . . . , 1)

=
∑

i1,...,in

s
ij
j p (X1 = i1, . . . , Xn = in)

=
∑

ij

s
ij
j

∑

ik,k 6=j

p (X1 = i1, . . . , Xn = in)

=
∑

ij

s
ij
j p (Xj = ij)

= GXj
(sj) . (A.3)

A useful property of the joint generating function is given by

Theorem 1: Random variables (X1, . . . , Xn) are independent if and only if

GX1,...,Xn
(s1, . . . , sn) = GX1

(s1) . . . GXn
(sn) .

The proof can be found in any probability textbook (see Theorem (29) for

two variable case in [1]).

Now let us look at the time dependent population of multiple species.

Suppose that we have n species Ŝ = {S1, . . . , Sn}. As shown in Figure A.1,

for each Si there is an input from outside the system that increases the

population of Si with propensity aiI , i.e. a reaction Ri
I : φ → Si. There is

also an output from Si with rate constant ciO, i.e. a reaction Ri
O : Si → φ.

In addition, one Si molecule can become a Sj molecule due to a reaction

Rij : Si → Sj with rate constant cij.

Denote by xi the population of species Si, r
i
O the number of firings of

reaction Ri
O, r

i
I the number of firings of reaction Ri

I , and pi1,...,in,j1,...,jn (t) the

2

Figure A.1: Example system

probability that x1 = i1, . . . , xn = in, r
1
O = j1, . . . , r

n
O = jn. Then the master

equation can be written as

dpi1,...,in,j1,...,jn (t)

dt
=

n
∑

k=1

pi1,...,ik−1,...,in,j1,...,jn(t)a
k
I

+
∑

k 6=l

pi1,...,ik+1,...,il−1,...,in,j1,...,jn(t)ckl(ik + 1)

+

n
∑

k=1

pi1,...,ik+1,...,in,j1,...,jk−1,...,jn(t)c
k
O(ik + 1)

− pi1,...,in,j1,...,jn(t)

(

n
∑

k=1

akI +
∑

k 6=l

cklik +

n
∑

k=1

ckOik

)

. (A.4)

To simplify the notation we will use pik+1,jl−1 to refer to pi1,...,ik+1,...,in,j1,...,jl−1,...,jn.

Multiplying si11 . . . sinn uj1
1 . . . ujn

n on both sides of the master equation (A.4)

3

gives

∂si11 . . . sinn u
j1
1 . . . ujn

n pi1,...,in,j1,...,jn(t)

∂t

=

n
∑

k=1

si11 . . . sik−1
k . . . sinn uj1

1 . . . ujn
n pik−1(t)ska

k
I

+
∑

k 6=l

cklsl
∂

∂sk

(

. . . sik+1
k . . . sil−1

l . . . pik+1,il−1(t)
)

+

n
∑

k=1

ckOuk

∂

∂sk

(

. . . sik+1
k . . . ujk−1

k . . . pik+1,jk−1(t)
)

− si11 . . . sinn uj1
1 . . . ujn

n pi1,...,in,j1,...,jn(t)

(

n
∑

k=1

akI

)

−
∑

k 6=l

cklsk
∂

∂sk

(

si11 . . . sinn u
j1
1 . . . ujn

n pi1,...,in,j1,...,jn(t)
)

−
n
∑

k=1

ckOsk
∂

∂sk

(

si11 . . . sinn uj1
1 . . . ujn

n pi1,...,in,j1,...,jn(t)
)

.

Summing both sides over i1, . . . , in, j1, . . . , jn and using the definition of gen-

4

erating function (A.2), we have

∂G (s1, . . . , sn, u1, . . . , un, t)

∂t

=

n
∑

k=1

Gska
k
I +

∑

k 6=l

cklsl
∂G

∂sk
+

n
∑

k=1

ckOuk

∂G

∂sk

−G

(

n
∑

k=1

akI

)

−
∑

k 6=l

cklsk
∂G

∂sk
−

n
∑

k=1

ckOsk
∂G

∂sk

=

n
∑

k=1

(

∑

l 6=k

ckl (sl − sk) + ckO (uk − sk)

)

∂G

∂sk
+G

n
∑

k=1

akI (sk − 1)

=

(

∂G

∂s

)T

(−A (s− 1) + diag (cO) (u− 1)) +GaT
I (s− 1) , (A.5)

where

A =























∑

j 6=1

c1j + c1O −c12 . . . −c1n

−c21
∑

j 6=2

c2j + c2O . . . −c2n

...

−cn1 −cn2 . . .
∑

j 6=n

cnj + cnO























5

and

(s− 1)T = (s1 − 1, . . . , sn − 1)

(u− 1)T = (u1 − 1, . . . , un − 1)
(

∂G

∂s

)T

=

(

∂G

∂s1
, . . . ,

∂G

∂sn

)

aT
I =

(

a1I , . . . , a
n
I

)

, cTO =
(

c1O, . . . , c
n
O

)

.

Here, diag (cO) is the diagonal matrix with diagonal elements (c1O, . . . , c
n
O).

This is a PDE for G (s1, . . . , sn, u1, . . . , un, t). To determine the solution,

we also need an initial condition. Let us begin with the simple case that

the system is initially empty, i.e. all of the molecules come from the input

channels R1
I , . . . , R

n
I . Thus at t = 0 we have x1 = · · · = xn = r1O = · · · =

rnO = 0. The initial condition is given by

G (s1, . . . , sn, u1, . . . , un, 0)

=
∑

i1,...,in,j1,...,jn

si11 . . . sinn uj1
1 . . . ujn

n pi1,...,in,j1,...,jn (0)

= s01 . . . s
0
nu

0
1 . . . u

0
n × 1 = 1. (A.6)

The solution for (A.5), (A.6) can be written as

G = eλ
T (s−1)+λT

O
(u−1) =

n
∏

k=1

eλk(sk−1)
n
∏

k=1

eλOk(uk−1), (A.7)

6

where

λT △
= (λ1, . . . , λn) = aT

I

(
∫ t

0

eAxdx

)

e−At (A.8)

λT
O

△
= (λO1, . . . , λOn) = aT

I

(∫ t

0

eAx

∫ t

x

e−Aydydx

)

diag (cO) . (A.9)

In particular, ifA is invertible and has n linearly independent eigenvectors

vA
1 , . . . , v

A
n , with the corresponding eigenvalues λA

1 , . . . , λ
A
n , then (A.8) and

(A.9) can be replaced by

λT = aT
I VAdiag

(

1− e−λA
i t

λA
i

)

V −1
A (A.10)

λT
O =

(

aT
I t− λT

)

A−1diag (cO) , (A.11)

where VA =
(

vA
1 , . . . , v

A
n

)

is the matrix composed of the eigenvectors of A.

diag (xi)
△
= diag(x) where xT = (x1, . . . , xn).

We can easily obtain the generating function of xi, i = 1, . . . , n and riO, i =

1, . . . , n from their joint generating function (A.7) using (A.3):

Gxi
= G (1, . . . , si, . . . , 1) = eλi(si−1)

Gri
O
= G (1, . . . , ui, . . . , 1) = eλOi(ui−1).

Comparing with (A.1), we can see that xi is a Poisson random variable

with parameter λi, and riO is a Poisson random variable with parameter

λOi. According to Theorem 1, (A.7) implies that x1, . . . , xn, r
1
O, . . . , r

n
O are

7

independent Poisson random variables

xi ∼ P (λi) , riO ∼ P (λOi) , i = 1, . . . , n. (A.12)

The next problem is to find a way to sample those random variables in

the simulation. The inputs r1I , . . . , r
n
I are just independent Poisson random

variables with parameters a1It, . . . , a
n
I t, so they are easy to sample. However

when the inputs are sampled, we should not sample xi and riO directly from

P (λi) and P (λOi). For example if we accidentally sampled a very large value

for xi that it is even greater than the sum of all the inputs we sampled, then

the result does not make sense. Instead we need to sample x = (x1, . . . , xn)

and rO = (r1O, . . . , r
n
O) conditioned on rI = (r1I , . . . , r

n
I). In other words,

we need to sample x and rO using their conditional distribution when rI is

given.

Since the molecules coming from an input channel Ri
I behave indepen-

dently from molecules coming from other input channels, we can first focus

on the molecules from Ri
I and switch off Rj

I , j 6= i. Now we have only one

input channel, and (A.8), (A.9) become (we have added the index i to the

notation to indicate that the values are contributed by input channel Ri
I)

(

λi
)T

=
(

λi
1, . . . , λ

i
n

)

= aiIe
T
i

(∫ t

0

eAxdx

)

e−At (A.13)

(

λi
O

)T
=
(

λi
O1, . . . , λ

i
On

)

= aiIe
T
i

(∫ t

0

eAx

∫ t

x

e−Aydydx

)

diag (cO) , (A.14)

where eT
i is the unit vector with the ith element being 1.

Now our purpose is to find the distributions of x and rO when riI is given.

8

The following theorem answers this question directly.

Theorem 2: If Xi ∼ P (λi) (i = 1, . . . , n) are independent Poisson random

variables, then

Xi

∣

∣

∣

∣

∣

n
∑

j=1

Xj ∼ B
(

n
∑

j=1

Xj,
λi

∑n

j=1 λj

)

.

Proof. We show the proof for n = 2. For n > 2, the problem can be converted

to the n = 2 case using the fact that the sum of independent Poisson random

variables is still a Poisson random variable.

As X1 and X2 are independent Poisson random variables

X1 +X2 ∼ P (λ1 + λ2)

⇒ P (X1 +X2 = n) =
(λ1 + λ2)

n

n!
e−(λ1+λ2)

P (X1 = i |X1 +X2 = n) =
P (X1 = i)P (X2 = n− i)

P (X1 +X2 = n)

=
λi
1

i!
e−λ1

λn−i
2

(n− i)!
e−λ2

/(

(λ1 + λ2)
n

n!
e−(λ1+λ2)

)

=
n!

i! (n− i)!

(

λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)n−i

= P (Y = i) ,

where

Y ∼ B
(

n,
λ1

λ1 + λ2

)

.

According to this theorem, the conditional distribution of x |riI and rO |riI

9

is actually a multinomial distribution:

(

x1, . . . , xn, r
1
O, . . . , r

n
O

) ∣

∣riI

∼ M
(

riI ,
λi
1

aiIt
, . . . ,

λi
n

aiIt
,
λi
O1

aiIt
, . . . ,

λi
On

aiIt

)

.

Here

aiIt =
n
∑

i=1

λi
i +

n
∑

i=1

λi
Oi

because the sum of all of the Poisson random variables should be equal to

the total input. This can also be verified in the following way. From (A.8)

and (A.9), we have

d

dt

(

λT1+ λT
O1
)

= aT
I

(

I −
(
∫ t

0

eAxdx

)

e−AtA

)

1+ aT
I

(
∫ t

0

eAxe−Atdx

)

diag (cO)1

= aT
I

(

1−
(∫ t

0

eAxdx

)

e−AtcO

)

+ aT
I

(∫ t

0

eAxdx

)

e−AtcO = aT
I 1.

Together with the initial condition λ(0) = 0, λO(0) = 0, this yields

λT1+ λT
O1 =

(

aT
I 1
)

t

Now we can extend the result by switching on the other input channels.

Since the molecules from different input channels do not interrupt each other,

the result in this situation should be the sum all the multinomial random

10

variables produced by each input channel,

(

x1, . . . , xn, r
1
O, . . . , r

n
O

)

|rI

∼
n
∑

i=1

M
(

riI ,
λi
1

aiIt
, . . . ,

λi
n

aiIt
,
λi
O1

aiIt
, . . . ,

λi
On

aiIt

)

. (A.15)

Now let us remove the assumption that the system is initially empty. We

also start from a simple case, assuming at time t = 0 that we have xi (0) 6= 0,

xj (0) = 0 (j 6= i). Since these molecules have nothing to do with those

coming from the input channels, we can switch off all the input channels and

just look at the behavior of these molecules. Consider one such molecule.

At any time t > 0, there is a probability pij (t) that the molecule stays

at the state Sj . There is also a probability piOj (t) that the molecule has

already left the system through channel Rj
O. More importantly, these prob-

abilities should be the same for every molecule that initially stays in Si.

Thus (x1 (t) , . . . , xn (t) , r1 (t) , . . . , rn (t)) should have a multinomial distribu-

tion. To determine the parameters for this distribution, we need to compute

pi (t)
△
= (pi1 (t) , . . . , p

i
n (t)) and pi

O (t)
△
= (piO1 (t) , . . . , p

i
On (t)) .

The master equation for a single molecule is given by

dpij (t)

dt
=
∑

k 6=j

pik (t) ckj − pij (t)

(

∑

k 6=j

cjk + cOj

)

(A.16)

dpiOj (t)

dt
= pij (t) cOj (A.17)

j = 1, . . . , n,

11

with initial condition

pii (0) = 1, pij (0) = 0, j 6= i (A.18)

piOj (0) = 0, j = 1 . . . , n. (A.19)

The solution to (A.16) and (A.18) is given by

pi (t) = eBtei, (A.20)

and from (A.17) and (A.19) we have

pi
O (t) =

∫ t

0

diag (cO) e
Bxeidx (A.21)

where

B = −AT .

If B has n linearly independent eigenvectors vB
1 , . . . , v

B
n , with the corre-

sponding eigenvalues λB
1 , . . . , λ

B
n , then (A.20) and (A.21) can be replaced

by

pi (t) = VBdiag
(

eλ
B
j t
)

V −1
B ei (A.22)

pi
O (t) = diag (cO)VBdiag

(

eλ
B
j t − 1

λB
j

)

V −1
B ei, (A.23)

where VB =
(

vB
1 , . . . , v

B
n

)

is the matrix composed of the independent eigen-

vectors of B.

Putting all the molecules together, the distribution of x (t) and rO (t)

12

should be a multinomial distribution

(x (t) , rO (t)) ∼ M
(

xi (0) ,p
i (t) ,pi

O (t)
)

.

Now we can let every species have a nonzero initial population. Since they

do not influence each other, the result in this case should be the sum of all

the multinomial random variables

(x (t) , rO (t)) ∼
n
∑

i=1

M
(

xi (0) ,p
i (t) ,pi

O (t)
)

. (A.24)

Having obtained the solution for the initial molecules, it is time to put ev-

erything together by switching on the input channels. The result in this case

is the sum of (A.15) and (A.24)

(x (t) , rO (t)) ∼
n
∑

i=1

M
(

xi (0) , pi (t) , pi
O (t)

)

+

n
∑

i=1

M
(

riI ,
1

aiIt
λi,

1

aiIt
λi

O

)

. (A.25)

This is the time dependent solution for x (t) and rO (t)

For the simulations in Section III in the main paper, the mean and vari-

ance of x (t) have also been used. It would be convenient to have formulas

for these values. It seems that we can compute them from (A.25), however

(A.25) is the formula when rI has already been sampled. If we need the

mean and variance before rI has been sampled, we must replace (A.15) by

13

the Poisson random variables (A.12), yielding

E (xi (t)) =

n
∑

j=1

xj (0) p
j
i (t) + λi (A.26)

Var (xi (t)) =
n
∑

j=1

xj (0) p
j
i (t)

(

1− pji (t)
)

+ λi. (A.27)

In section III we also need to use the solutions for n = 1 and n = 2. The

solutions for these two cases are given below.

n = 1: In this case, A = −B = cO, and λA = −λB = cO. Equations (A.10)

and (A.11) give

λ =
aI
cO

(

1− e−cOt
)

, λO = aIt− λ,

and (A.22) and (A.23) yield

p (t) = e−cOt, pO (t) = 1− e−cOt.

Thus the time dependent solution of x (t) and rO (t) given by (A.25) is

(x (t) , rO (t)) ∼ M
(

x (0) , e−cOt, 1− e−cOt
)

+M
(

rI ,
1− e−cOt

cOt
, 1− 1− e−cOt

cOt

)

.

n = 2: Assume the two species are E (enzyme) and ES (enzyme-substrate

compound) as shown in Figure A.2. The population of S (substrate) is very

large (xS(0) ≫ xE(0), xES(0)). The reactions in the system are

14

Figure A.2: R4 is the input reaction for E, and R5 and R6 are the output reactions for E

and ES respectively. R1 converts E to ES, R2 and R3 convert ES to E.

R1 : E + S
c1−→ ES, R2 : ES

c2−→ E + S, R3 : ES
c3−→ E + P

R4 : φ
a4−→ E, R5 : E

c5−→ φ, R6 : ES
c6−→ φ.

During a stepsize of S, equation (A.25) in this case has the form

(

xE(t), xES(t), rEO(t), rES
O (t)

)

∼ M
(

xE (0) , pE1 (t), pE2 (t), pEO1(t), pEO2(t)
)

+M
(

xES (0) , pES
1 (t), pES

2 (t), pES
O1 (t), pES

O2 (t)
)

+M
(

rEI ,
λ1(t)

aEI t
,
λ2(t)

aEI t

λO1(t)

aEI t

λO2(t)

aEI t

)

, (A.28)

15

where

(λ1 λ2) =
(

aEI aES
I

) (

vA
+ vA

−

)

diag

(

1− e−λA
+
t

λA
+

,
1− e−λA

−

t

λA
−

)

(

vA
+ vA

−

)−1

(λO1 λO2) =
((

aEI aES
I

)

t− (λ1 λ2)
)

A−1

diag
(

cEO cES
O

)





pE1

pE2



 =
(

vB
+ vB

−

)

diag
(

eλ
B
+
t, eλ

B
−

t
)

(

vB
+ vB

−

)−1





1

0









pEO1

pEO2



 = diag
(

cEO, cES
O

) (

vB
+ vB

−

)

diag

(

eλ
B
+
t − 1

λB
+

,
eλ

B
−

t − 1

λB
−

)

(

vB
+ vB

−

)−1





1

0









pES
1

pES
2



 =
(

vB
+ vB

−

)

diag
(

eλ
B
+
t, eλ

B
−

t
)

(

vB
+ vB

−

)−1





0

1









pES
O1

pES
O2



 = diag
(

cEO, cES
O

) (

vB
+ vB

−

)

diag

(

eλ
B
+
t − 1

λB
+

,
eλ

B
−

t − 1

λB
−

)

(

vB
+ vB

−

)−1





0

1



 .

16

Here,

aEI = a4, aES
I = 0, cEO = c5, cES

O = c6

cE,ES = c1xS(0), cES,E = c2 + c3

A = −BT =





cE,ES + cEO −cE,ES

−cES,E cES,S + cES
O



 , (A.29)

where λA
+, λ

A
−, v

A
+, v

A
− are the eigenvalues and corresponding eigenvectors of

A, and λB
+, λ

B
−, v

B
+ , v

B
− are the eigenvalues and corresponding eigenvectors

of B.

Appendix B. The mean and variance of Y = P (X)

Suppose that we sample two random variables X and Y . Y depends on X

in such a way that after we have sampled the value x of X , we will sample Y

as a Poisson random variable with parameter x, i.e. Y = P (x). The purpose

of this section is to compute the mean and variance of Y , and show that if we

approximate Y by P (EX), the approximation will give us the correct mean

value but a smaller variance than the true Var (Y).

Let us begin with the expectation of Y . Using the conditional expecta-

tion, we have

EY = E (E (Y |X)) .

When X is given, Y is a Poisson random number with parameter X , so

the conditional expectation E (Y |X) is actually the expectation of a Poisson

17

random variable with the given parameter X . Thus,

E (Y |X) = X

and

EY = E (E (Y |X)) = EX. (B.1)

For the variance of Y , we have

Var (Y) = E
(

Y 2
)

− (EY)2 . (B.2)

For E (Y 2) we also use the conditional expectation

E
(

Y 2
)

= E
(

E
(

Y 2 |X
))

. (B.3)

Here

E
(

Y 2 |X
)

= Var (Y |X) + (E (Y |X))2 = X +X2. (B.4)

The last step in the previous equation uses the fact that when X is given, Y

is a Poisson random variable with parameter X so both the mean and the

variance of Y are equal to X . Inserting (B.4) in (B.3) yields

E
(

Y 2
)

= E
(

E
(

Y 2 |X
))

= E
(

X +X2
)

= EX + E
(

X2
)

.

18

Inserting this into (B.2) and using (B.1), we obtain the variance of Y ,

Var (Y) = EX + E
(

X2
)

− (EY)2

= EX + E
(

X2
)

− (EX)2

= EX +Var (X) . (B.5)

Now we can compare this with the approximation Y ′ = P (EX). As EX is

a real number, Y ′ is actually a Poisson random variable with

E (Y ′) = Var (Y ′) = EX.

Comparing this with (B.1) and (B.5), we can see that the approximation has

the same mean value but a smaller variance.

Appendix C. The mean and variance of the number of firings in a

reaction channel

Consider the Example System from Appendix Appendix A. For any

species in Ŝ, we know its time dependent solution. Thus there is no stepsize

requirement associated with this species, as long as the species not belonging

to Ŝ can be considered as constant. In another words, we need only to

compute the stepsize for species not in Ŝ.

We use the following inequalities to bound the change of a species.

E∆xi ≤ max

(

ǫ

gi
xi, 1

)

,
√

Var (∆xi) ≤ max

(

ǫ

gi
xi, 1

)

,

where gi is a constant that depends on the highest order of the reactions

19

which involve Si as a reactant. In the current situation ri may no longer be

a Poisson random variable. The purpose of this section is to find the mean

and variance for such reactions.

For the system in Appendix Appendix A, we can partition the reactions

into three groups:

1. Reactions whose reactants do not belong to Ŝ (e.g. all the input chan-

nels). As the reactants for these reactions can be considered constant

during the step, these reactions can be sampled by Poisson random

variables as in tau leaping.

2. Reactions corresponding to output channels. In the Example System

of Appendix Appendix A, the output reactions are Ri
O, i = 1, . . . , n,

however, generally speaking a species Si ∈ Ŝ could have several output

reactions, i.e. Ri
O in not just one reaction but a set of reactions. These

reactions should compete with each other for a share of riO. Now the

rate constant ciO for Ri
O is the sum of all the rate constants for reactions

in Ri
O. Supposing that Rk : Si → φ is in Ri

O with reaction rate ck. Then

the probability that Rk is responsible for a firing of Ri
O is ck/c

i
O.

Now let us compute the mean and variance of rk. In the Example

System of Appendix Appendix A, there are riO molecules consumed by

Ri
O. These molecules come from either the input channels (denoted by

riP) or the initial molecules of species in Ŝ (denoted by riB). Thus

riO = riP + riB.

It is shown in Appendix Appendix A that riP is a Poisson random

20

number with parameter λOi (see (A.12)),

riP ∼ P (λOi) .

riB is the sum of n binomial random variables with parameters
(

xj (0) , pjOi

)

,

j = 1, . . . , n. (see (A.24)),

riB ∼
n
∑

j=1

B
(

xj (0) , pjOi

)

.

We want to distribute these molecules to the output channels in Ri
O.

The probability that a molecule goes through reaction channel Rk is

ck/c
i
O. To distribute the first part, we make use of the following theo-

rem.

Theorem 3. Let N be a Poisson random number with parameter λ.

Then the sum of N i.i.d Bernoulli variables with parameter p is also a

Poisson random variable with parameter λp.

The proof can be found in a probability textbook (see example (27) in

[1]).

In our case, riP ∼ P (λOi), and each molecule in riP has a probabil-

ity ck/c
i
O to go through channel Rk. By Theorem 3, the number of

molecules that choose Rk is a Poisson random number

P
(

ck
ciO

λOi

)

.

Now let us distribute the second part riB. r
i
B is the sum of n independent

binomial random numbers. Each molecule in riB also has a probability

21

ck/c
i
O to choose channel Rk, so in this case the number of molecules Rk

consumed is also the sum of n binomial random variables

n
∑

j=1

B
(

xj (0) ,
ck
ciO

pjOi

)

.

Adding the two parts together, we obtain

rk ∼ P
(

ck
ciO

λOi

)

+

n
∑

j=1

B
(

xj (0) ,
ck
ciO

pjOi

)

.

The mean and variance of rk can be calculated by

Erk =
ck
ciO

(

λOi +
n
∑

j=1

xj (0) p
j
Oi

)

Var (rk) =
ck
ciO

(

λOi +
n
∑

j=1

xj (0) p
j
Oi

(

1− ck
ciO

pjOi

)

)

.

3. Reactions which convert one species in Ŝ to another species in Ŝ. In

Appendix Appendix A, the Rij , i, j = 1, . . . , n are of this type. In a

more general case, Rij can contain several reactions as well. Suppose

that Rk : Si → Sj is one of them, with rate constant ck.

Now we want to compute the mean and variance of rk. Since we use

species Si as the reactant and its population is a random variable during

the step, we may not have an exact formula for rk. Here we use the

following approximation,

rk ≈ P
(

ck

(
∫ τ

0

Exi (t) dt+
τ

2
(xi (τ)− E (xi (τ)))

))

. (C.1)

22

The mean and variance of rk can be computed using (B.1) and (B.5)

as follows:

Erk ≈ E

(

ck

(
∫ τ

0

Exi (t) dt+
τ

2
(xi (τ)− E (xi (τ)))

))

= ck

∫ τ

0

E (xk (t)) dt

Var (rk) ≈ ck

∫ τ

0

E (xi (t)) dt

+Var

(

ck

(
∫ τ

0

Exi (t) dt+
τ

2
(xi (τ)− E (xi (τ)))

))

= ck

∫ τ

0

E (xi (t)) dt+
τ 2

4
Var (xi (τ)) .

Here the formulas for E (xi (t)) and Var (xi (t)) are given by (A.26) and

(A.27).

Appendix D. Sampling a feasible flow in the network

Consider each species in Ŝ as a vertex. Vertices i and j are connected if

there are reactions which convert species Si to Sj or Sj to Si. On each edge

we define the flow

fij = rij − rji, (D.1)

where fij indicates the number of molecules that go from Si to Sj . If its

value is negative, there are more firings of Rji than Rij .

Using the result in Appendix Appendix A, we can sample all the input

reactions Ri
I , all the output reactions R

i
O and the population vector x. How-

ever sometimes we also need to sample the reactions Rij . If we do this, we

should make sure that we only sample the flow for a proper set of edges.

23

Here ‘a proper set’ means that after sampling the flow values for this set, the

flow values of other edges can be uniquely determined by mass conservation

equations.

For each vertex i, the mass conservation equation is given by,

riI + xi (0) = xi (t) + riO +
∑

j 6=i

fij. (D.2)

Consider a connected subgraph G = (V, E), where V is the set of vertices in

G and E is the set of edges in G. Each vertex provides a mass conservation

equation and each edge provides an unknown. If the subgraph contains no

loop, then the number of vertices is one more than the number of edges,

which means that the number of equations is one more than the number of

unknowns. However, these equations are not independent. Summing (D.2)

up over all vertices in V , we obtain

∑

i∈V

(

riI + xi (0)
)

=
∑

i∈V

(

xi (t) + riO
)

.

Here the flows completely cancel out. This equation simply shows the total

mass conservation of the system and it is automatically satisfied by (A.25).

Thus the number of independent equations is one less than the total number

of vertices in V . For the connected subgraph G we have the same number of

equations and unknowns, thus the flow can be determined.

After obtaining a flow value fij from the mass conservation equation, we

can go on sampling rij and rij in the following manner such that (D.1) is

satisfied:

24

If fij ≥ 0, sample rji using (C.1) and compute rij as rij = rji + fij . If

fij < 0, sample rij using (C.1) and compute rji as rji = rij − fij.

If G has loops, the number of unknowns will be more than the number

of equations. In this case, we need to sample the flow value (by sampling rij

and rji using (C.1) and computing fij using (D.1)) of some edges to decrease

the number of unknown. The following is a simple algorithm to determine

the edges we are going to sample.

1. Create an empty list L. Arbitrarily pick a start vertex i in V and push

it into L. Create a pointer and let it point to the first element in the

list, which at the beginning is i.

2. Push all the vertices connected to i into the list.

3. Move the pointer to the next element in the list (suppose the second

element is j).

4. Collect all the vertices connected to j except the one that caused j to

have been pushed into the list, i.e. the vertex i. Denote these vertices

by Vj .

5. Compare every vertex in Vj with the elements in the list. If a vertex

k ∈ Vj is not in the list, push it into the list. If it is already in the

list, this implies that there is a loop in the system. This is because

we already have a path from i to k and now we have found another

one. It is obvious that edge ejk is in the loop, so we sample the value

of fjk and cut the edge ejk. Now we have removed the loop. Continue

comparing other vertices until all the vertices in Vj are treated as we

do for vertex k.

6. Move the pointer to the next element in the list and do the same as we

25

did for vertex j. Stop the process when the pointer has walked through

the whole list.

After applying the above algorithm to the graph G, the unsampled edges

contain no loops. Thus we have the same number of independent equations

and unknowns, and the flow in the graph can be uniquely determined.

[1] G. R. Grimmett, D. R. Stirzaker, Probabiliy and Random Processes,

Oxford University Press Inc., New York, third edition, p. 154.

26

	time_dep.pdf
	SupplementaryMaterial

