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NUMERICAL SOLUTION OF NONLINEAR DIFFERENTIAL
EQUATIONS WITH ALGEBRAIC CONSTRAINTS II:

PRACTICAL IMPLICATIONS*

LINDA PETZOLDt AND PER LOTSTEDT

Abstract. In this paper we investigate the behavior of numerical ODE methods for the solution of
systems of differential equations coupled with algebraic constraints. Systems of this form arise frequently
in the modelling of problems from physics and engineering; we study some particular examples from fluid
dynamics and constrained mechanical systems. We investigate some ofthe practical difficulties of implement-
ing variable-stepsize backward differentiation formulas for the solution of these equations, showing how to
overcome problems of matrix ill-conditioning, and giving convergence tests and error tests which are
supported by theory.
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1. Introduction. In this paper we investigate some of the practical difficulties
involved with implementing backward differentiation formulas (BDF) for the solution
of differential/algebraic equations (DAE) of the form

(1.1) 0= Fl(X x’, y, t), 0= FE(X, y, t)

where the initial values of x and y are given at 0 and OF1/Ox’ is nonsingular. Systems
of this form arise frequently in the modelling of engineering problems, for example
the simulation of electrical networks and mechanical systems, and the solution of the
equations of fluid dynamics. In an earlier paper [1] we showed that for the systems
under consideration (certain restrictive assumptions must be placed on (1.1); these
assumptions are satisfied in many practical applications) the k-step constant stepsize
BDF method converges to order of accuracy O(hk), where h is the stepsize. Here we
are concerned with the practical difficulties such as varying the stepsize and dealing
with ill-conditioned matrices which arise in implementing BDF methods for the solution
of (1.1). Recently, similar systems of equations have been studied also by Brenan [2].

The idea of using BDF methods for systems of this type was introduced by Gear
[3] and consists of replacing x’ in (1.1) by a difference approximation, and then solving
the resulting equations for approximations to x and y. Let F (F1, F2)r. To solve (1.1)
numerically at t, bythe k-step BDF, we replace x’(t,) by px,/h where p is the difference
operator defined by

k

(1.2) px,, Z aix,,_,,
i=0

h t. t._l and ai are the BDF coefficients, to obtain the system of nonlinear equations

(1.3) F xn,--h-, y,, tn =0.
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This system has a unique solution [4] if the inverse of the scaled Jacobian matrix

cF OF10F\

(1.4) hJ,,
0 -x + h

Ox

h OF2 h OF2
ox l

exists.

The types of equations that we consider here arise commonly in several areas of
application, which are discussed in more detail in [5]. For example, the flow of an
incompressible, viscous fluid is described by the Navier-Stokes equations

(1 5a)
Ou
+(u" V)u -Vp+ ]/V2u,
ot

(1.5b) V. u=0

where u is the velocity in two or three dimensions, p is the pressure, and y is the
kinematic viscosity. After spatial discretization of (1.5) with a finite difference or finite
element method, the vectors U and P, approximating u and p, satisfy [6]

(1.6a) M(J+(K+N(U))U+CP=f(U,P),
(1.6b) cTu=o
which has the form (1.1). The mass matrix M is the identity matrix (finite differences)
or a symmetric positive definite matrix (finite elements). The discretization of the
operator X7 is C and the forcing function f emanates from the boundary conditions.

Another application which fits into this general framework is the simulation of
mechanical systems of rigid bodies interconnected directly by joints or via other
components such as springs and dampers. The vector q of coordinates of the bodies
satisfies the following equations [’7]

(1.Ta) M(q)q"=f(q, q’, t)+ G(q)A,

(1.7b) (q) =0.

The mass matrix M is nonsingular almost everywhere, Z is the Lagrange multiplier
vector and O/Oq= Gr. The algebraic equation (1.7b) often represents geometrical
constraints on the system. A simple example of a system such as (1.7) is the physical
pendulum. Let L denote the length of the bar, )t is proportional to the force in the
bar, and x and y the Cartesian coordinates of the infinitesimal ball of mass one in
one end of the bar. Then x, y and A solve the DAE system

X"

(1.8) y"= Ay g,

0 1/2(X2 q- y2__ L2),
where g is the gravity constant.

To state our results, we must first introduce the concept of the index of a DAE
system. The index is a measure of the singularity of a system. Standard form ODEs,
y’=f(t,y), have index zero, the fluid flow system (1.6) has index two, and the
constrained mechanical system (1.7) has index three. In general, the higher the index,
the more severe the numerical difficulties that we can expect. For the purposes of this
paper we will simply define the index as the number of times the constraints of the
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system must be differentiated in order to obtain a standard form ODE system. This
definition is compatible with previous definitions, for the systems considered here [8].

To illustrate the idea of index, we compute the index of the mechanical system
(1.7). If the initial condition qo q(0) is consistent with (1.Tb), (qo)=0, then the
algebraic constraint (1.7b) can be replaced by its differentiated form

(1.9) GT(q)q’=O.

If (qo) =0, q= q’(0) and Gr(qo)q’o=O then the condition (1.9) is equivalent to its
derivative,

d
(1.10) d-(Grq’) GWq"+ G’rq’= O.

We obtain a system of linear equations satisfied by h by introducing q" from (1.7a)
into the expression above and solving for A,

(1.11) h -(GM-G)-(GM-f+ G’q’).

This condition replaces (1.9). Finally, if ho, qo, q satisfy (1.11) at 0 we can differenti-
ate (1.11) once more and the resulting equation, coupled with (1.7a), form a standard-
form ODE system. The index ofthe original system (1.7) is three, because the constraint
was differentiated three times to obtain a standard form ODE system. Similarly, it is
easy to verify that the index of the equivalent system (1.Ta, 1.9) is two, and that the
index of the fluid dynamics system (1.6) is two [5].

In [1], [5], we showed that the k-step constant-stepsize BDF method converges
to order O(h k) for systems of the form (1.1) where the initial values are consistent
and the functions are sufficiently smooth, provided the system satisfies

ASSUMPTION 1.1.
(1) The index is less than or equal to one, or
(2) the index is equal to two and OF./Oy =-0, or
(3) the index is equal to three and the system has the form (1.7).

These conditions are satisfied by the fluid dynamics and mechanical systems mentioned
earlier. In this paper we study the practical difficulties which are inherent in implement-
ing a variable-stepsize code based on formulas such as BDF for solving these types
of problems.

Often, as in the case of the simulation of mechanical systems of rigid bodies, a
DAE system may be written in a ditterent but analytically equivalent way. In some
cases this is a good idea, because it may reduce the index and make the problem easier
to solve by numerical methods. Therefore, in 2 we discuss some analytical techniques
for rewriting DAE systems in a simpler form, and the reasons why we may or may
not want to do this.

The remainder of the paper is concerned with the numerical difficulties associated
with solving the systems in their original, high index form. A difficulty that is common
to the solution of all high index DAE systems is that the iteration matrix which is used
by numerical ODE methods is poorly conditioned when the stepsize is small. This can
cause variable-stepsize codes to fail or to give poor diagnostics in case of failure from
other causes [9]. In 3 we give a general technique for scaling the equations and
variables in (1.1) that circumvents this difficulty. Scaling can also cause trouble with
the convergence and error tests in an automatic code. We study these problems in 4
and 5 and devise convergence tests and error tests that do not suffer from these
difficulties, and that are justified by the theory in 1 ].



SOLUTION OF NONLINEAR DIFFERENTIAL EQUATIONS II 723

2. Alternative forms for DAE systems. In this section we consider some techniques
for rewriting a system in an alternative form that may be easier to solve numerically.
All of the different forms of the equations that we consider are analytically equivalent
in the sense that, given a consistent set of initial conditions, different forms of a system
have the same analytical solution. Computationally, however, some forms of the
equations may have much different properties than others. We discuss some of the
advantages and disadvantages of rewriting a high index DAE system in a different form.

As an example, let us consider some different ways to solve the constrained
mechanical system (1.7). First of all, we can attempt to solve the system in its original,
index-three form, using an implicit numerical method such as BDF. This technique is
actually used in some codes [10], [11] for solving mechanical systems. Solving the
problem in this way has the advantages that it is easy to formulate the system (we do
not have to differentiate the constraints or rewrite the system in any way), the sparsity
of the system is preserved, and the constraints are satisfied exactly on every step.
However, there are several difficulties in using a variable-stepsize BDF code for solving
systems in this form. First, the iteration matrix that the code uses at each time step is
very ill-conditioned for small stepsizes. This can cause severe difficulties with the
Newton iteration and with stepsize selection in the code. This difficulty can be partially
remedied via the scaling techniques considered in 3. Secondly, error estimation and
stepsize selection algorithms that are normally used in variable-stepsize codes fail for
this type of problem (see 4 and 5). One way to overcome this difficulty is to base
the error control and stepsize selection strategies only on the vector q, and not on the
velocities q’ or the Lagrange multipliers &. We can use the theory developed in 1] to
show that the constant-stepsize BDF converges for problems written in this form, but
this says nothing about what will happen when there are errors, for example, in the
initial velocities. We have found from experiment that a variable-stepsize code which
bases its stepsize selection and order control strategies only on q can obtain completely
wrong answers when the initial velocities fail to satisfy the condition that the derivative
Ofthe constraint should be zero. Thus, we must be very careful that the initial conditions
are consistent in the sense that not only the constraint, but also the derivative of the
constraint, is zero at the initial time. Unfortunately, all of the techniques for solving
mechanical systems that we discuss in this section experience some type of serious
difficulty when the initial conditions to the original problem are not chosen to be
consistent. For this reason, we do not reject this method (of solving the original
index-three problem with variable-stepsize BDF) entirely, but we do doubt its reliability
when the initial conditions are inconsistent, or in situations where there are steep
gradients or discontinuities in the velocities. It may be possible to reliably solve systems
in the index-three form with methods other than BDF, such as extrapolation [8] or
defect correction, by controlling errors on the velocities as well as the positions, but
we will not take up this subject further in this paper.

A second way of solving (1.7) is to differentiate the constraint and solve the system
(1.7a), (1.9). This approach produces a poorly conditioned iteration matrix (though
not as poorly conditioned as solving the system in its original form), but we can again
eliminate most of these difficulties by scaling the problem as described in 3. Stepsize
selection and error control strategies for variable-stepsize BDF codes fail for these
problems, unless we somehow exclude the Lagrange multipliers , from the error
control decisions. In contrast to the error control strategies proposed in the previous
paragraph, there is some justification (see 5) for excluding from the error control
decisions. In this approach, it is a simple task to verify that the initial conditions q’(0)
on the velocity satisfy the algebraic constraint (1.9). If GT(q(O))q’(O)30 then q’(0)
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can be corrected by computing an impulse A in the system at 0 such that

q’+- q’(O) GA, GTq’+ O.

However, now we must be careful that the constraint itself is satisfied at the initial
time. An initial error in the constraint will contaminate the solution in the whole time
interval of interest. There are, though, reasons to believe [5] that any system which
does not satisfy the constraint initially is not a good physical model. The main difficulty
with solving (1.7a), (1.9) is that of "drifting off" the original constraint. (Note that
this is not a problem for solving the Navier-Stokes equations (1.6), which are essentially
the same form as (1.7a), (1.9) because there the constraint that we are using is the
original constraint of the system.) This formulation of the problem does not force the
constraint to be satisfied on every step, and there may be a tendency for the amount
by which the constraint is not satisfied to increase from step to step. By using small
stepsizes (in an automatic code, by keeping the error tolerances fairly stringent), we
can keep small these errors in the amount by which the constraint is not satisfied.
Whether this is a serious problem or not depends on the application, although clearly
it could be troublesome if the solution is desired over a long interval in time.

A third strategy, which is used in some codes for solving mechanical systems [10],
is to eliminate the Lagrange multipliers analytically by means of methods in analytical
mechanics to obtain a standard form ODE system. The system of.ODEs is assembled
from a data structure describing the mechanical system. If the resulting problem is not
stiff, this approach has the advantage that the system can be solved by an explicit
numerical method. The number of unknowns after this type of transformation usually
is smaller, but the sparsity of the system has decreased, which is an important consider-
ation if the problem happens to be stiff. Again, we must be very careful that the initial
conditions satisfy that both the constraint and the derivative of the constraint are zero,
or we will obviously obtain a solution which is nonsense. A constraint corresponding
to an eliminated Lagrange multiplier is automatically satisfied in the chosen representa-
tion of the mechanical system. Consider the pendulum (1.8) as an example. Let

x L sin 0, y L cos

Then the algebraic constraint of constant length is fulfilled and the well-known ODE
is

g; 3’ sin o 0, 3’ L"
Various combinations of the above strategies can be employed. Baumgarte [12]

discusses a technique for circumventing this problem of "drifting off" the cbnstraints
(q) by adding to the original equations an equation consisting of a linear combination

of , dd/dt and d2dp/dt2. The linear combination is chosen so that the resulting
system damps errors in satisfying the constraint equation. This approach is similar,
but not identical, to penalty function methods (L/Ststedt [13], Sani et al. [14]). Depend-
ing on the choice of the parameters in the linear combination, we may see any of the
difficulties discussed earlier. This technique introduces extraneous eigenvalues into the
system, which may or may not cause difficulties. Finally, the penalty techniques have
the disadvantage that if the initial conditions are not posed correctly, they introduce
a nonphysical transient into the problem [14].

While all of these techniques have their shortcomings, we have attempted here to
put them on a firmer foundation, and to suggest some ways to implement them more
effectively. All of these techniques experience serious difficulties when the initial
conditions are not consistent.
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Before leaving the subject of alternate forms for DAE systems, there is one more
aspect of this problem that we wish to consider. Sometimes there is a choice of which
variables to use for solving a problem. For example, in the system

u’= v,

(2.1) v’=f(u, v, t)+ G(u)A,

G% =o
we could have replaced v in the constraint by u’ to obtain

tt’ V,

(2.2) v’= f(u, v, t)+ G(u)A,

GT"u,=O.

Are there any advantages in writing the system in one form over the other? Using BDF
with Newton iteration for linear problems in exact arithmetic, the two forms of the
equations give identical solutions. (This is because Newton’s method is exact in one
iteration for linear systems, and because the equations which result from discretizing
both systems by BDF are identical--this last fact is obviously true for nonlinear systems
too.) For nonlinear systems in exact arithmetic we know of no reasons why Newton’s
method would be more likely to converge for one form of the equations than the other.
Both forms of the system may lead to very poorly conditioned iteration matrices. In
the next section we will suggest scaling techniques to overcome this difficulty. These
techniques are directly applicable to problems of the form (2.1) but not to (2.2) (though
it is often possible to devise ways to scale the analytically equivalent systems such as
(2.2)). This may be a reason to prefer (2.1). Everything that we discuss in this paper,
with the exception of the scaling techniques introduced in 3, is applicable to systems
such as (2.2) where these obvious substitutions have been made. Thus, if it is more
convenient to solve one of these alternative forms of a system, then there is some
justification for doing so.

3. Conditioning of matrices arising in the solution of DAEs. In this section we
study the solution of DAEs of the form (1.1). Conditioning is a problem for DAE
systems, and especially for high index systems, because the condition number of the
iteration matrix for a system with index of m is O(h-") ([5, Thm. 4.1]). We describe
schemes for scaling systems (1.1) so that the iteration matrices are no longer singular
as h 0, and we discuss how these scaling techniques can be conveniently implemented
into existing DAE software.

The system of linear equations to be solved in each Newton iteration step is

Az= b.

If we use Gaussian elimination with partial pivoting we know that the computed
solution z + Az satisfies

(3.) (A + aA)(z + Az)= b,

where

(3.2) IIAAII--< rullall.
In (3.2) r is a moderate number and u is the machine unit. The accuracy of this
computation is improved if we introduce a row scaling of A by premultiplying by a
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diagonal matrix D. Then by (3.2)

lAzil <= I(A-1D-1DAA(z + Az)),

<=E I(A-1D-)oII(DAA(z + Az))jl
(3.3)

-<-E I(A-D-1)ijl IIDAAIIool[z / azll

_--< ru E I(A-’D-),] IIOAllllz / azll.

We consider three cases" index one, index two, and index three systems of the form

x’-f(x, y, t) O,
(3.4)

g(x,y,t)=O.

(These ideas extend easily to the slightly more general form (1.1).) For these problems,
the iteration matrix is written as

(3.5) hJ,,
aoi_h Of _h Of]

Ox Oyl.I h
Og

h
Og

L ox oy J

Case I. When the index is one, we have that Og/Oy is nonsingular, so hJ,, is
nonsingular as h 0 if we scale the rows corresponding to the algebraic constraint by
1/h. Since we are not scaling variables, but only equations, the effect of this scaling
should be to improve the accuracy of the solution of the linear system, for all variables.

Case II. For this case, we will assume that the index is two, and that Og/Oy =-O.
By explicitly computing (hJ,,)- we find that the orders of the blocks of the inverse are

1 1/h(3.6)
1/h l/h2]

where the elements in the first row correspond to x and those in the second row to y.
If we scale the bottom rows of hJ, (corresponding to the "algebraic" constraints) by
l/h, then the scaled matrix can be written as

(3.7) hJ’,
aoI_h Of _h Of

"gox
Ox oOY ).

It follows from (3.3) that roundoff errors proportional to u/h and u/h2 are introduced
in x and y, respectively, while solving the unscaled linear system. With the suggested
scaling the roundoit errors are of O(u) in x and O(u/h) in y. As h- 0 these errors
can begin to dominate the solution y. This is likely to cause difficulties for the error
estimates and convergence tests in an automatic code. These difficulties, along with
what can be done to minimize their effects, will be described in greater detail later.
For now, we merely note that the effect of the proposed scaling is to control the size
of the roundoff errors in x which are introduced in solving the linear system. At the
same time, the "algebraic" variables y may contain errors proportional to u/h. However,
since the values of y do not affect the state of the system directly (that is, how the
system will respond at future times), we may be willing to tolerate much larger errors
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in y than in x. In any case, this scaling is a significant improvement over the original
scaling (3.5). For the scaled system, the errors are considerably diminished, and the
largest errors are confined to the variables which are in some sense the least important.
Painter [15] describes difficulties due to ill-conditioning for solving incompressible
Navier-Stokes equations of the form (1.6), and employs essentially the same scaling
that we have suggested here to solve the problem. These difficulties are most severe
when an automatic code is using a very small stepsize, as in starting a problem or
passing over a discontinuity in some derivative.

We further note that if we are using Gaussian elimination with partial pivoting,
we do not need any column scaling. The solution will be the same without this scaling,
because it does not affect the choice of pivots [16]. What the analysis shows is that
the errors which are due to ill-conditioning are concentrated in the "algebraic" variables
of the system and not in the "differential" variables. Thus, we must be particularly
careful about using the "algebraic" variables in other tests in the code which might
be sensitive to the errors in these variables.

Case III. For this case, we will work with systems of the form

(3.8) v’=f(u, v, t)+ G(u)A,

(u) =0,

i.e., mechanical systems where we have assumed, without loss of generality for the
purposes of this discussion, that M L For these systems, the iteration matrix is written
as

(3.9) hJn

where

and

aoI -hi !GIhX aoI + hY
hGr 0

of OG
X-

Ou Ou

Let (hJ,)-1 be partitioned into nine blocks such that the three block rows corre-
spond to the variables u, v and A and the three block columns correspond to the
differential equations and the algebraic constraint in (3.8). Then the leading terms in
3 h/ao in the blocks of (hJ,) -1 are

I- P ),(I- P)S-’ T-’S-1GA
(3 10)

1 -1
-’), n (I-P)S-’ ,-S-’GAI.OtO _,y-2AGT _T-1AGrS- T-3A

In (3.10) the notation is S= I+yY+y2X, A=(GrS-1G)-1 and P=S-IGAG. If we
perform row equilibrium, i.e. scale the last row in (3.9) by i/h, then (3.3) and (3.10)
give that the roundoff errors in u, v and A are proportional to u, u/h and u/h2,
respectively. Note that if we scale the second row in (3.9) by h then the ith row block
in each column of (hJ,)-D- is of O(yl-i). The errors with either of these scalings
are much smaller than if we had solved the system with the original unscaled matrix
(3.9), which had condition number O(1/h3). We may not be interested in the values
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of A, because these Lagrange multipliers have no direct effect on the state of the system.
The situation is not quite so simple with respect to the velocities v, however. The
components of v in certain directions do in part determine the state of the system. In
the two-dimensional pendulum example (1.8) such a direction is perpendicular to the
bar. However, the O(u/h) errors that we can expect in v using this scaling are still
considerably smaller than the O(u/h), O(u/h2) and O(u/h3) errors that we could
expect in u, v and A in solving the original unscaled system. The analysis shows that
the errors which are due to ill-conditioning are concentrated in the variables v and
and not in u. Thus, we must be careful about using the "algebraic" variables v and
in other tests in the code.

One further question that remains is how to implement row scaling in a general
DAE code. There is a very nice solution to this problem. In a general purpose DAE
code [18] (for solving systems of the form F(t, y, y’)=0), there is a subroutine which
the user writes for computing the residual F(t, y, y’) A, given (t, y, y’). The user can
scale A inside this subroutine, and according to our guidelines, if we pass the stepsize
h in the argument list to this subroutine. This way, the scaling costs virtually nothing.
An alternative idea is to provide an option to automatically do row equilibration, or
to use linear system solvers which perform row scaling, as suggested in Shampine 17].

4. Tests for terminating the corrector iteration. In the last section we saw that for
high index systems, even with scaling, there are rel.atively large errors in some of the
variables. For the most part, these variables do not determine the state of the system,
so these errors are in some sense tolerable. However, from the point of view of an
automatic code where we must have some criterion for deciding when to terminate
the corrector iteration, the errors in these variables are still a source of difficulties.. Our
objective in this section is to show that, from the point of view of propagation of errors
in the state variables of a system, it is sufficient to terminate the Newton iteration
based on the errors in the scaled variables, where the variables are scaled by powers
of the stepsize as in the previous section. This eliminates troubles due to ill conditioning
in the corrector iteration part of a code.

We will examine the propagation of errors caused by the interruption of the
Newton iterations for a BDF method, for systems of the form (1.1) of index one, two
and three.

For these purposes, let (x,, y,) be the computed solution (where the corrector
iteration has not necessarily been solved exactly), and let (,, 37,) be the true solution
to the difference equation. Then .= x. +, 37. y.+ ty., where ’. and BY. are the
errors in x. and y. due to terminating the Newton iteration early. Let e
eY. y. -y(t.) be the global errors and let -. be the local truncation error. Then we have

O= F(., p;./ h, y,,,
F(x. +, p(x. + )/h, y. + 8Y., t.)

F(x(t.) + e +, p(x(t.) + e + ’)/h, y(t.) + eY. + 8Y., t.)

F(x(t.), x’(t.), y(t.), t.)+(e. + ’)(4.1)

OF
+--x,(p(e + .)/ h + ’.)

OF
+(eY. + aY.) + (higher order terms).
Oy
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For notational convenience, introduce Fx OF1/Ox, F, OF/Ox’, A1 aoF, + hFl,
A2=OF1/Oy, A3=OF2/Ox, A4=OF2/Oy. Then the errors must satisfy

where cn ki=l ai(en_i+ ,_i). Only higher order terms of 8 and Y are present in
the right-hand side of (4.2). From (4.2) we find that

(4.3)
] hA3

where sr is the right-hand side of (4.2a). For the purposes of only controlling the errors
in x and y at tn, the same criterion can be used on both 8 and Y. In the analysis in
1 of the accumulated error in x and y as time progresses we derived the requirements
on the residual r/from the Newton iteration to obtain e O(hk) and eY. O(hk)
with the kth order BDF. It follows from (4.1) that

0= hF(x, (aoX + cn)/h, y, t,)+
hA hA4] Y]

+(higher order terms).

Hence,

(4.4) (A1 hm2(tx) (FlnhA3 hA4] t hrl =-h F2n]

where F, and F2, are evaluated at x,, y, and t. In the index one case must be of
O(hk) according to the results in 1]. The iteration should be terminated when 8 and
hSY, are of O(h k/l) in (4.4). Let r/T (r/, r/). If A4-=0 and the index is two, then
r/1 and r/2 must be of O(h k) and O(hk/). This is achieved by letting 8 and hY, be
proportional to h k+ in (4.4). Equation (4.4) is satisfied with xT"=(u , v) and y= h
by the index three system (3.8). Here, we require I1,  11- O(h and I1, =11- O(h
in [1] which is obtained by taking I111- o(h+) and IIhll--O(h+). These con-
clusions are independent of the row scaling.

In general, variables should never be totally excluded from the test for convergence
of the corrector iteration. Even if a variable occurs linearly, as for example in Brown
and Gear 19], it is a mistake to exclude it from the convergence test in an automatic
code. The reason for this is that codes are so often using Jacobians which were calculated
on previous steps and possibly even based on different stepsizes that in general we
cannot count on the Newton iteration to converge in one step.

5. Error tests. In this section we will examine the reasons why some variables
should be excluded from the error test in an automatic code.

It follows from (4.1) and (4.2) that the errors in the "algebraic" variable y on
previous time steps, ey, < n, do not directly influence the errors in any of the variables
at the current time t, for systems of index one and two satisfying Assumption 1.1 since
they do not appear in (4.1). Therefore, we can consider deleting these variables from
the error estimate. This could be advantageous for the smooth operation of a code.
Consider first the case of solving index one systems. Suppose, for example, that on
one step we make a fairly large mistake by terminating the Newton iteration before it
has really converged, and that on this step the value of y that should have been
computed has a large error in it, but that based on the incorrect value it passes the
error test anyway. If we base the error test on y, then on the next step this could cause
a big problem, because the new value of y does not approach the old (incorrect) value
of y, so that their difference, and hence the error estimate, does not approach zero as
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h- 0. Because of this, we feel that in this case it is probably wise to leave y out of
the error control decisions. The main drawback in this strategy is that if we would like
to know the values of y at interpolated points (between mesh points) then the stepsize
should be based in part on the values of y. For index two systems, the stepsize control
strategy in an automatic BDF code will fail, for reasons explained in Petzold [9],
unless the "algebraic" variables y are excluded from the error test. For Navier-Stokes
systems, this means that the pressure should be excluded from the error test, and for
constrained mechanical systems (1.7a), (1.9) where the constraint has been differenti-
ated once, it means that the Lagrange multipliers should be excluded from the error test.

Another possible error estimate is based on the observation that the part of the
error in x and y due to the truncation error hzn in (4.2) in the present step is

(eX)(5.1) e. ey
Tn

where higher order terms have been omitted. This is the contribution to the global
error that is directly influenced by a change of the stepsize. An estimate of e. can be
obtained by multiplying the usual error estimate by the matrix

An approximate factorization of hJ,, is available from the Newton iteration. Then an
estimate of e can be computed according to (5.1). The step size is chosen such that
e, is less than a given error tolerance. This is a generalization of the estimate given
by Sincovec et al. [20] for constant-coefficient DAE.systems (see also Petzold [9]). If
A4 0 and the index is two, we find from (3.6) that ex. h’r, h k+l as we would expect
but that ey k

For the index three mechanical systems, the situation is almost as simple. According
to (3.10) the leading term in the contribution from the discretization error h, to the
errors e and e is

e. ao -P/y (I-P)S-1 h-
The next term of higher order in the lower left-hand block is of O(y). The lower left
part of the first matrix above is of O(h-1). In general we have Pr’ 0 and the order
of the asymptotic behavior of e. is one less than what we can expect for differentiated
variables from index one or two systems. What we would ideally like to control is e Tn

and the truncation error in the components of the velocity vector v which are in
allowable directions (which would not cause u to violate the constraint). Stepsize
control strategies used in BDF codes will fail [9] if we base the strategy on the values
of v and/or A. One way to solve this problem using a general purpose BDF code is
to base the error control and stepsize selection strategies solely on u. This is actually
done in a production code [10], [11] for solving mechanical systems. However, we
question whether this is always a reliable procedure.

Another possible error estimate for the index three mechanical system is based
on the observation from (5.2) that we can obtain the leading terms in e and e byTn

solving

(hJ) e h
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where the value of z does not matter to us. Now if we are only interested in the
components of v in the nullspace N(G7") of GT then such a component is

(5.3) v*=(I-P)v,

where

p=S-’G(GTS-IG)-’GT,
as in (3.10). The matrix P is a projector [21] since p2= p. Let }1" denote the spectral
matrix norm. For h sufficiently small

s-’ I + hS,, S, O(),

and from the definition of P in (5.3)

P Po + hV, e O(1),

where P0 G(GTG)-IG= P, an orthogonal projector [21]. Therefore,

IIPII 1 + O(h), lit- PII 1 + O(h),

and IIv*ll is bounded by

(5.4) Ilv*[[ <_-Ilvll(1 + O(h)).

From the pendulum example in (1.8) and the definition of S and P we find that with
uT"=(x,y)

IIs- 11- O(h=), Po (u)-u, liP- Poll O(h=).

The motion of the pendulum ball is constrained in the direction u--Pou and free in
the perpendicular direction wr= (y,-x) for which Pow =0.

The contribution to the error in v* from the truncation error is

v.* e(5.5) e -(l-P) ..
It follows from (3.10) that the leading term in e. is the solution to

(hJn 0Z

Z2 0

The reasons why the particular projector in (5.3) is chosen are first that P is close to

an orthogonal projector so that a relation such as (5.4) is satisfied and second the
I)*determination of e is not too complicated. Thus we can obtain e. and e. with two

extra back substitutions using the approximate factorization of hJn which was computed
during the Newton iteration. It follows from (5.2) and (5.5) that the terms of lowest

order in e are

(I- P)(-hP-/ 3,+ h(I- P)S-1-)- h(I- P)- + o( hk+2).

The projector in front of the truncation errors is bounded independently of h. Hence,
1)*e. is proportional to h k+l This is in contrast to the error e. which is O(h k) due to

the error component Pe.--. P’ in Pv. If the approximate factorization of hJ, is the

exact factorization at t, i< n, then v* corresponding to the computed e. will not

satisfy Gv* 0 exactly, but rather

0= GTv* Gr, v*+ hr, llrll O(1),
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where r=-(n-i)(G’)Tv* +.... In sum, we have derived an estimate based on the
size of (en, en). It is somewhat complicated, but it may be more reliable than basing
the estimate solely on ’,.

There are several issues to consider when implementing these alternative error
tests (where some variables are excluded from the error tests) in software for the
solution of differential/algebraic systems. First, we note that there are two main tests
which control the operation of a code--namely, the test to decide when to terminate
the Newton iteration, and the error test to accept or reject the current step and to
control the stepsize. If we exclude some variables from the error test but base the
convergence test on the values of all the variables (or scaled variables), then the
weighted max norm seems to be preferable to some other norms. Why? Consider for
example the RMS norm, which is used in several popular ODE codes. Since this norm
looks at all the variables for the convergence test, but only some of them for the error
test, and it is weighted by the number of variables, then something like the following
can happen. The code can pass the convergence test very easily, possibly because some
very small components are included in the norm for the convergence test, but not
really have converged to a great enough accuracy in the variables which are included
in the error test. This can cause the code not to run smoothly, or to be unreliable. With
the max norm, this kind of incompatibility in norms cannot occur. The second observa-
tion is that it is relatively easy and cheap to implement the error test where some
variables are excluded in a code which allows the user to write a subroutine to define
his own norm. We can pass a flag to the norm routine which tells it whether it wants
a norm for the convergence test or for the error test, and’then the norm can be computed
based on the appropriate variables.
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version of this paper, and in particular for suggesting (3.3) as a basis for the roundoff
error analysis.
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