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Abstract—In this paper we address reduction of complexity in
management of scientific computations in distributed computing
environments. We explore an approach based on separation of
computation design (application development) and distributed
execution of computations, and investigate best practices for
construction of virtual infrastructures for computational science
- software systems that abstract and virtualize the processes of
managing scientific computations on heterogeneous distributed
resource systems. As a result we present StratUm, a toolkit for
management of eScience computations. To illustrate use of the
toolkit, we present it in the context of a case study where we
extend the capabilities of an existing kinetic Monte Carlo software
framework to utilize distributed computational resources. The
case study illustrates a viable design pattern for construction
of virtual infrastructures for distributed scientific computing.
The resulting infrastructure is evaluated using a computational
experiment from molecular systems biology.

I. INTRODUCTION

For scalability, most applied science computational software
would benefit from utilization of parallel computing resources,
expanding their capabilities as eScience (computationally in-
tensive science carried out in highly distributed network en-
vironments) applications. However, many applications in the
scientific community are first developed for local computation.
Scaling scientific computations from local environments to
dedicated computing environments is complicated, as it al-
ters the way computations are performed and often requires
changes to computational methods to efficiently utilize parallel
resources. Scaling computations to distributed computing envi-
ronments, e.g., grid or cloud environments, further complicates
the process as it again alters the way resources are utilized
and now also introduces additional factors such as distributed
data and failure management, resource set heterogeneity, and
cross-domain security issues.

Computational researchers and developers of scientific soft-
ware are often cognizant of parallelization issues, but lack
detailed knowledge of the issues involved in computational
enactment in distributed environments. The task of adapting
existing desktop software to execute in a grid or cloud en-
vironment without the aid of a field specialist can hence be
an insurmountable task, especially in small software projects
composed of application specialists. Thus, design patterns and
integration tools that help to overcome such barriers can be
expected to have a great impact in many areas of eScience by
expediting migration of existing computational applications to
scalable computational resource sets.

In this work we discuss scaling of scientific computations
to dedicated and distributed computing environments using
an approach based on separation of computation design and
execution. The vision of this work details virtual infrastruc-
tures for computational science that abstract and virtualize the
processes of executing, managing, and monitoring scientific
computations on distributed resource sets. The model used
is focused on preservation of the roles of the tools involved
in scientific computing; specialized applications should still
allow end-users to interface and utilize them the way they
do for local computations, and generalized computing infras-
tructure components should preserve their operation while
being extended to support distribution of computations. This
methodology is realized in two steps; development of virtual
infrastructure tools that abstract and automate tasks related to
execution of computations, and intelligent integration of these
tools with existing computing tools and applications.

To illustrate the methodology, we build on preliminary work
presented in [13] and present a case study where we extend the
capabilities of an existing open-source computational software
framework from the systems biology community to utilize
cluster and grid resources. As a result of this work we present
StratUm, an extensible toolkit for migration of computational
applications to distributed resource environments.

In the case study, computational resources are accessed
through the Grid Job Management Framework (GJMF) [12],
a grid job management tool that manages infrastructure tasks
such as brokering, monitoring, and control of job executions
on grid resources. The existing environment is extended with
capabilities for data management, more efficient communica-
tion, security, and notification models, as well as a set of
native client APIs. The extended environment, StratUm, is
then integrated with URDME [3], a Matlab-based environment
designed for computational experiments, using a set of custom
computational clients that allow the core parts of the computa-
tional application to remain unchanged. To highlight some of
the trade-offs in these kinds of integrations, the efficiency of
the resulting environment is then evaluated in a computational
experiment from the systems biology literature.

Efforts similar to StratUm exist and include, e.g.,
Falkon [15], a lightweight task execution framework designed
for Many Task Computing [14]. While Falkon and StratUm
are similar in use of custom protocols and service interfaces,
Falkon is designed for high submission throughput whereas



StratUm is focused on providing high abstraction levels for
computation. The GridSAM [10] grid job submission system
is similar in design to StratUm in that it is standards-based
and abstracts underlying resource managers through service-
based interfaces. GridSAM also builds on a staged event-
driven architecture (SEDA) [17] that is similar to the job
processing pipeline of StratUm and the GJMF [11].

The StratUm native client APIs are conceptually similar to
the Simple API for Grid Applications (SAGA) [9], which is an
API standardization initiative that, like StratUm and the GJMF,
aims to provide a unified interface to distributed resource
integration. The design philosophy of the SAGA API differs
from StratUm in that StratUm focuses on high-level automa-
tion and facilitation of integration customization. Performance
evaluations comparing StratUm to SAGA implementations are
a subject for future work. For reasons of brevity, the list
is naturally far from complete. In general, the approach of
this work differs from most in that StratUm aims to abstract
resources from multiple types of infrastructures and facili-
tate development of customized integration tools that support
application-specific use cases. For more exhaustive treatment
of grid job management mechanisms we refer to [12].

On the application side, enactment of stochastic simulations
in a cloud environment have been demonstrated using the
domain-specific language Neptune [1]. Although both StratUm
and Neptune strive to be mechanisms by which scientific
computations are enacted on remote distributed computing
resources, the StratUm approach is based on abstracting
job management complexity and facilitating development of
application-specific integration tools, while Neptune is focused
on resource management while enacting computation on cloud
computing platforms. For a related stochastic modeling frame-
work, a dedicated virtual infrastructure has been proposed for
simulations with MCell in grid environments [2].

The rest of this paper is organized as follows. Section II
presents our approach and details the design and components
of the StratUm toolkit. Section III illustrates use of the toolkit
in the context of an integration case study. This section
contains an introduction to the computational problem, and
a brief overview of the application used in the case study.
To characterize and illustrate the capabilities of the toolkit,
Section IV presents an evaluation of the integrated system and
Section V contains a discussion of the methodology used and
the experiences gained from developing and using the toolkit.
Finally, Section VI concludes the paper.

II. STRATIFIED RESOURCE ABSTRACTION

The computational requirements of eScience applications
often require computational capacity well beyond the compute
and storage capabilities of individual computational resources.
To increase available computational capacity, eScience appli-
cations are often migrated to dedicated resource environments,
e.g., HPC clusters or distributed grid environments. Dedicated
computing environments introduce new usage patterns that
include computation management tasks such as distributed
data management and remote computation monitoring, which

can amount to substantial overhead in resource utilization. In
migration, the complexity of such management tasks are often
underestimated, resulting in problem- or environment-specific
solutions for distribution of computations.

In our approach we argue that suitable and reusable design
patterns that facilitate integration and migration of eScience
applications to distributed computing environments will re-
quire high-level abstractions on both the job management
level as well as on the level of the computational application.
In line with this reasoning, we utilize an approach based
on the clean separation of (application-side) computation
design and (infrastructure-side) computation management. In
our approach we design tools that operate in the borders
between these two areas and provide generic computation
management functionality coupled with application-specific
integration environment tools, e.g., smart infrastructure clients.

In this section we present StratUm, a toolkit for migra-
tion of computational applications to distributed computing
environments. To relate the toolkit to earlier contributions and
its operation context, we first briefly introduce the Grid Job
Management Framework (GJMF), an existing framework for
management of scientific computations in grid environments.

A. The Grid Job Management Framework (GJMF)

The Grid Job Management Framework (GJMF) [12] is a
grid environment computation management toolkit designed
as a loosely coupled service-oriented architecture. Constructed
as a hierarchically ordered set of services, the GJMF has an
abstractive design where higher level services aggregate the
functionality of lower level services and offer increasingly
advanced functionality and automation. The services of the
GJMF offer concurrent access to multiple grid middlewares
through a unified set of job management interfaces.

In addition to a range of job submission, brokering, control,
and monitoring interfaces, the framework offers advanced ser-
vice features such as dynamic fail-over capabilities, dynamic
recomposition of the framework, and a set of customization
points that allow third parties to modify the internal workings
of the framework without altering the framework design.
The GJMF is implemented in Java, is constructed using the
Globus Toolkit 4 (GT4) [7], and utilizes Web Service Resource
Framework (WSRF) notifications for state coordination.

B. The Stratified Resource Abstraction Toolkit (StratUm)

While the GJMF provides a generic and flexible framework
for computation enactment in grid environments, it inherits
some technical features that limit the integration flexibility of
the framework. For example, the GJMF exposes functionality
through web service interfaces and utilizes WSRF notifications
for distributed state updates, which requires computational
applications to host service containers to fully benefit from
the notification model. Additionally, the GJMF builds on the
security model of the Globus Toolkit v4, and utilizes x509
certificates and key pair proxies for authentication of end-
users. While this is a robust security model, utilization of these



Fig. 1: StratUm architecture. Toolkit functionality exposed as services through a custom protocol and (optional) web services.
Web service and native client APIs abstract service communication, credentials, data, and job management complexity.

kinds of mechanisms can be perceived as complicated by end-
users with limited experience of advanced security models.

The Stratified Resource Abstraction Toolkit (StratUm) is
designed to constitute an abstractive layer for computation
management. Its name comes from the geologic term stratum,
a layer of sedimentary rock, while the Um emphasis of the
name refers to the toolkit place of origin, Umeå University.
As illustrated in Figure 1, the functionality of the toolkit can
be organized into three main areas: credentials, data, and job
management. Access to the functionality is provided through
two types of APIs, web service interfaces and native client
APIs. Communication with the components of the framework
is routed through two types of protocols: generic SOAP and
a custom hybrid protocol called the Resource Access and
Serialization Protocol (RASP). The abstractions provided by
the StratUm toolkit can be categorized as follows:

1) Credentials Management: The StratUm toolkit extends
the GSI-based security model of the Globus Toolkit and
offers mechanisms for storage, management, translation, and
delegation of authentication credentials. The security model is
based on a Public Key Infrastructure (PKI) where key pairs are
associated to end-user identities via certificates. StratUm stores
credentials securely on the service side using keystores and
databases. Separate service APIs are offered for management
of security credentials and identities. Using a mechanism
similar to the GT4 delegation service, StratUm creates prox-
ies (temporary delegated credentials) for job submissions. In
addition to sending proxies directly to StratUm, the StratUm
client APIs also support authentication via username-password
tokens, which are sent using challenge-response authentication
schemes built into the RASP protocol.

Use of advanced security models can impose steep learning
curves and complicate access to computational infrastructures.
The StratUm services and client APIs are designed to reduce
the complexity of security-related tasks, e.g., authentication
(client APIs provide mechanisms for authentication using
username-password and challenge-response schemes as well
as key pair-based authentication), authorization (temporary key
pairs and certificates are automatically generated and used for
resource-side job submissions without end-user interaction),
and credentials management (tools are provided for client-
side key pair and certificate generation and management as

well as for secure transmission and server-side storage of
authentication credentials). The design of the StratUm security
mechanisms allows end-users to access infrastructure capabil-
ities with a minimum of security complexity and overhead.

2) Data Management: The GJMF does not actively par-
ticipate in any type of data transfer or storage. The GJMF
coordinates data staging through management of standardized
Job Submission Description Language (JSDL) documents, and
relies on underlying Grid middleware to manage data transfers.
Data storage is managed by external storage systems, and no
validation of data availability is performed by the framework.

Management and transmission of data sets of scientific
applications is complicated in distributed computing envi-
ronments. To reduce the complexity of managing data in
computation, Stratum provides a set of mechanisms for simple
transmission and intermediate storage of data. On the service
side, StratUm can be configured to host dedicated storage
solutions, e.g., GridFTP servers, which are abstracted and
monitored in the same way as external storage solutions by
the toolkit. Data transfer interfaces are part of the client
APIs and efficient transfer of data files to and from the
toolkit storage systems is offered through RASP. While RASP
supports (chunked and enveloped) transmission of large binary
data payloads, it should be noted that this optional feature
is to be regarded as a convenience mechanism, designed to
reduce the threshold for migration of applications. For ad-
vanced users, and maximization of transmission performance
and computational throughput, use of dedicated third party
transmission utilities such as GridFTP is recommended. The
StratUm data management mechanisms are entirely optional
and simply convenience mechanisms designed to reduce the
complexity of transmission and temporary storage of data.

3) Job Management: The job management capabilities of
StratUm include job submission, monitoring, and control
interfaces, as well as basic support for execution of static
workflows. Job descriptions use the standardized JSDL lan-
guage, and all job instantiations are monitored and managed
by services in the toolkit. Job status updates are propagated
through a notification mechanism built into the RASP protocol,
and clients can register for updates using a publish-subscribe
scheme. The StratUm workflow model employs a recursive
workflow definition that details workflows to be ordered



sequences (including parallel constructs) of tasks and sets
of dependencies between tasks. Workflow nodes (tasks) are
defined as abstract computational tasks and can be realized
as individual jobs or other workflows. This definition allows
workflows to consist of sets of tasks and sub-workflows, which
allows end-users to use a single interface to describe and
monitor all types of tasks (be it single jobs or large workflows).

The StratUm workflow model assumes that sequences of
tasks that can be deterministically described in advance are
represented in static workflow descriptions, while dynamic
workflows (e.g., where branching of the task sequences are
determined by results of prior tasks) are described in pro-
gramming languages and coordinated by agents external to the
toolkit. As demonstrated in the case study, this model provides
the functionality required for coordination of execution of jobs
in distributed resource environments. Conceptually, StratUm
workflows may be viewed as directed acyclic graphs, where
graph nodes contain computational tasks, i.e. jobs or work-
flows. Dependencies between nodes can be defined explicitly
(control flow) or derived from implicit task constraints (e.g.,
data flows derived from data dependencies). The StratUm job
dispatchment mechanisms are designed to be data aware, and
will not process jobs before all required data are available.

4) Client APIs: The StratUm toolkit exposes functionality
through two types of client APIs: web service interfaces and
native client APIs. The APIs expose a basic functionality set
that comprises operations for authentication, credentials man-
agement, (optional) data storage and retrieval, job submission,
control and monitoring, as well as log management. To reduce
the complexity of integration with the toolkit, the APIs are
designed to be as simple as possible. For example, the task API
offers operations to add, remove, and check/listen to the status
(including logs) of tasks. All APIs abstract the complexity of
communicating with distributed resources.

The web service interfaces communicate over SOAP, while
the native client APIs communicate over RASP. RASP is
designed for integration with the StratUm APIs, and is a hybrid
wire-transport protocol that offers efficient serialization and
parsing of message data. Messages are represented in tree
format, where tree nodes contain hash maps that map text-
resolved tags to binary payloads. RASP defines a message-
oriented protocol stack that supports advanced protocol fea-
tures such as in-message binary data payloads, secure authen-
tication schemes, and transparent notification delivery. These
advanced features are exposed through the native client APIs
and fully abstracted in the toolkit programming model.

The purpose of providing native, multi-language client APIs
is to reduce the learning curve of using the toolkit and to
facilitate migration of scientific applications to distributed
resource environments. The StratUm client APIs are designed
to be as simple to use as possible and aim to abstract
communication complexity whenever possible. The StratUm
native client APIs are available in Python, Java, and C/C++,
and are complemented with a set of clients that demonstrate
the use of the APIs and constitute a set of tools that can be
used to run jobs on distributed resources through StratUm.

III. CASE STUDY

In this section we present a case study of a computational
infrastructure for stochastic simulation of biochemical reaction
networks. The resulting system is based on two existing tools:
URDME, a public domain software package for stochas-
tic reaction-diffusion simulation, and GJMF, a middleware-
agnostic grid job management framework. Between these two
we place a customized StratUm-based integration architecture
designed to abstract and reduce integration complexity for
both applications and infrastructures. Combined, the systems
constitute a versatile tool for scalable eScience computations
and demonstrate a functional approach for migration of local
applications to distributed computing environments.

A. Stochastic Simulation of Reaction-Diffusion Kinetics

Modeling and simulation of reaction-diffusion processes are
frequently employed in molecular systems biology to investi-
gate networks of interacting macromolecules such as proteins.
When modeling the dynamic behavior of cellular control
systems on the molecular level, it is important to properly
account for intrinsic stochasticity caused by small numbers of
molecules. An important and frequently studied aspect of gene
regulatory network function inside living cells is how they
operate reliably despite large molecular fluctuations [16]. In
such cases, deterministic phenomenological equations such as
reaction-diffusion partial differential equations (PDEs) cannot
be used to address the underlying biological questions.

Instead, stochasticity in the reaction-diffusion process can
be accounted for by modeling it as a Markov process. Diffu-
sion is modeled as jumps on a lattice, or mesh, and reactions
occur according to pre-defined rules with rates given by
the biochemical nature of the reactions and experimentally
determined rate-constants. The state of the system is the
discrete number of molecules of each biochemical species
at each vertex in the mesh. Independent realizations of the
process can be generated using kinetic Monte-Carlo (KMC)
methodology. Unlike the deterministic PDE model, where a
single solution is sufficient for one set of parameters and initial
condition, a great many realizations of the stochastic process
may be needed to analyze the properties of the biochemical
network. For fine spatial discretization, the computational
effort to generate even one such realization is high. Fortunately
stochastic realizations are independent, and thus the overall
problem is inherently task-parallel and maps well to distributed
computing environments. This is a property shared with most
computational workflows based on Monte Carlo methodology.

B. URDME

URDME [3] is a software package for stochastic reaction-
diffusion simulation based on the described framework. It
enables scientists to easily develop and execute simulations of
models of biochemical networks and to analyze the resulting
simulation data. URDME relies on the third party software
COMSOL for geometry modeling, mesh generation, and pre-
and postprocessing, and utilizes a Matlab interface to provide
a familiar, interactive, and flexible environment for model
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Fig. 2: Process flow for the integrated system. (1) URDME
clients send batch computation requests to the URDME server.
(2) The URDME server sends jobs (including data) to StratUm
via the StratUm client APIs and RASP. (3) StratUm exacts
computation on computational resources using GJMF. (4)
Computation results are sent to storage servers via GridFTP.
(5) StratUm data management service moves result data sets.
(6) URDME clients asynchronously fetch result data sets.

development. The modular design of URDME allows easy
extension of the core simulation algorithms of the package.

The current release of URDME is designed for an interactive
usage pattern, thus to facilitate execution of URDME compu-
tations on distributed compute resources we have developed
a new server-side component to the URDME framework that
acts as a communication point between clients and StratUm.
Figure 2 illustrates the process flow of a URDME job executed
through StratUm in a distributed computation environment.

IV. EVALUATION

To evaluate the system for use in production environments,
we here demonstrate the use of the system to analyze a model
of cell division in E. Coli using distributed resources from
the Swedish Grid Initiative, SweGrid. The performance of the
system is analyzed to characterize the system overhead.

A. Using URDME to conduct a parameter sweep on SweGrid

An important method for analyzing cellular reaction net-
work models is to conduct parameter sweeps, in which param-
eters such as chemical reaction rate constants are varied within
specified ranges. In such computations, model parameters
undetermined by experiments can be fit by searching for areas
in parameter space that reproduce observed or assumed be-
havior of the underlying biological system. Parameter sweeps
conducting global sensitivity analysis can also reveal the
robustness of the biochemical network to perturbations around
the assumed parameter values of the rate constants. Often,
parameter values derived from experiments are known with
low accuracy. Sensitivity analysis can elucidate the precision
with which the parameters must be known, and can contribute
to qualitative understanding of the regulatory mechanisms
modeled. This process requires generation of ensembles of
simulations (for stochastic models) of the system for each
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Fig. 3: The geometry of the bacterium is discretized on an
unstructured mesh made up of tetrahedra in the interior and
triangles on the boundary (a). A snapshot of the protein
MinD on the membrane, localized to one of the poles in a
stochastic URDME simulation (b). MinD oscillates from pole
to pole. The amplitude of the oscillations vary with the rate
constants in the model (c). Dark red regions indicate areas in
parameter space where the amplitude is high and oscillations
are consistent. We find the values of [8] to be near optimal.

point in parameter space. As simulation trajectories are inde-
pendent, the process is well suited for distributed computation.

To illustrate the use of the virtual infrastructure, we simulate
a model of Min protein oscillations in the bacterium E. Coli.
The Min system has been studied extensively in the literature
using quantitative models, both in a deterministic setting and
using a mesoscopic spatial stochastic framework [8], [6]. Here,
we simulate the model from [8] using URDME. Fig. 3a shows
the geometry and the mesh used to represent the bacterium.
The boundary is represented by a surface mesh made up of tri-
angles, and the interior volume is covered by non-overlapping
tetrahedra. Diffusion jump constants on the unstructured mesh
are obtained as detailed in [5]. For properly chosen parameters,
a protein called MinD will oscillate regularly from pole to
pole. These oscillations are believed to be a key component
in the regulation of reliable and symmetric cell division.

To illustrate how the amplitude of the oscillations (i.e. the
stability of the system) depends on two of the rate constants



in the model, we conduct a two-dimensional parameter sweep
in URDME, using StratUm to run simulations on SweGrid.
Fig. 3c shows the outcome for a parameter grid consisting
of 10 values for each of the rate constants σdD and σde [8].
To compute amplitude averages, we generate 10 independent
realizations for each unique parameter combination. The total
computation consists of 1000 individual tasks, each taking 5-
10 minutes to execute (depending on parameter value).

B. Performance Evaluation

In this section we characterize the performance of the over-
all system when executed in a production grid environment.

1) Test Environment: The test environment used in the
evaluation is comprised of a set of servers across Sweden.
A 3.33 GHz 6 core Intel Core i7, 24 GB RAM server with a
100 Mbps network acting as URDME server host is deployed
in Uppsala, and a dual quad-core (8 cores) AMD Opteron 1.8
GHz, 32 GB RAM server running a set of virtual machines is
deployed in Umeå, Sweden. The Umeå virtual machines are
configured with 1.8 GHz AMD Opteron 2 core CPUs, 4 GB
RAM, and interconnected with a Gigabit Ethernet network.

The virtual machines are deployed with identical installa-
tions of Ubuntu Linux, StratUm, GJMF, and Globus Toolkit
4.0.5. In tests, they are the only load processes on the shared
hardware server. An additional host is also running a (Globus)
GridFTP server handling all file staging for computational
jobs. The GJMF is configured to interconnect with SweGrid
resources via the ARC [4] middleware, and communicates
with the middleware via ARCLib v1. As GJMF overhead is
independent of middleware overhead, and the purpose of the
performance evaluation is to characterize StratUm and GJMF
overhead contributions to total system overhead, a test setup
using an older (Globus) middleware version is acceptable.

2) Performance Tests: The purpose of the experiments is
to investigate individual overhead contributions to total system
overhead and to relate the overhead imposed by StratUm and
the GJMF to the functionality offered by the frameworks. Jobs
are submitted from URDME to StratUm via RASP. StratUm
utilizes the GJMF to submit and control jobs at SweGrid.
Experiment data are staged via StratUm to a GridFTP server
that manages file staging to and from SweGrid resources.

Synchronized clock timestamps are used to determine the
amount of time jobs spend in different systems, which forms
the basis for characterization of system behavior. In distributed
system environments, job executions suffer overhead for file
transfers (staging) to and from computational resources, and
most likely also (due to resource contention) for scheduling
and queuing (wait) time on resources. Tests utilize a model
for execution of a single job that categorizes time spent as

1) StratUm stage-in: client to storage file transfers.
2) overhead imposed by use of StratUm.
3) overhead imposed by use of GJMF.
4) overhead imposed by failed jobs.
5) stage-in: storage to resource file transfers.
6) wait time: resource scheduling and queuing.
7) job execution: execution of jobs at resources.

8) stage-out: resource to storage file transfers.
9) StratUm stage-out: storage to client file transfers.
In reality, resource stage-in and resource wait time are

typically overlapped, as they may be performed in parallel
in resource scheduling environments. It should be noted that
utilization of StratUm for file staging to and from storage
servers is an optional abstraction mechanism for clients that do
not wish to interface with storage servers directly. In tests we
have not included information about file staging from storage
servers to clients, as the chosen experiment produces data that
are incrementally post-processed by clients.

3) Analysis: As the integration system is made up of multi-
ple hierarchical systems that perform tasks in parallel, analysis
of job behavior is non-trivial. Overhead imposed by using
distributed computational resources is substantial, and can for
analysis be classified by overhead source. Figure 4 illustrates
the average relative distribution of overhead for computational
jobs run in the experiment. As can be seen (in the upper pie
chart), a majority of the overhead imposed by using distributed
computational resources is spent performing file staging or
waiting for execution on resources. As this overhead would
be imposed even if the underlying grid middleware would be
used directly, it is considered part of the middleware overhead
and not part of the cost for using StratUm and GJMF. Further
analysis of the overhead contributed by StratUm and GJMF
(illustrated in the lower pie chart of Figure 4) reveals that
the majority of the StratUm overhead in these experiments
is constituted by the optional file stage-in activity. Note that
overhead from failed jobs is accounted for as GJMF overhead,
as the GJMF automates rescheduling of failed jobs.

As illustrated in the histogram of Figure 4, most of the
overhead contributed by StratUm and GJMF is incurred early
in the job execution process. Job executions, file stagings,
etc. are monitored by the systems, but monitoring overhead
is masked by parallelism with other system tasks. In the
experiment, an average of less than 15 and 13 seconds of
overhead per job is imposed by StratUm and GJMF. Even
with the short-lived computational jobs of this setting, this
constitutes less than 1% of the total execution time.

The value of high abstraction levels and automation of
computation management is well illustrated by the failure rates
of distributed computing environments. In the experiment,
0.5% of the jobs failed and were automatically rerun by
the GJMF. The time (roughly 4.5 hours) these failed jobs
spent performing file staging, execution, etc. can be consid-
ered lost experiment time. Identifying and recovering from
these failures could, however, potentially delay a large-scale
experiment substantially longer than the lost experiment time.
This illustrates that for large experiments, failures constitute
non-negligible overhead, and abstractive mechanisms for au-
tomated management of computations can be very valuable.

In summary, the behavior of computational jobs in an ar-
chitecture such as the proposed integration system will largely
depend on characteristics of the underlying computational
infrastructure used. The average overhead for managing com-
putations using tools designed with the approach explored here
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is low enough to motivate use of the systems. The techniques
used here are applicable to most types of computational
environments. As the overhead is low, the performance of the
systems will largely be characterized by the performance of
the underlying computational infrastructure.

V. DISCUSSION

From the application developer perspective, the StratUm
toolkit greatly simplifies migration from local resources to
distributed resources in this case study. Development of spe-
cialized StratUm clients, that compartmentalize an integration
bridge between the GJMF and URDME, allows extension and
development of the existing URDME infrastructure without
modification of the conceptual model of the application.
The integration clients build on the StratUm native client
APIs and are customized to interface with the application as
seamlessly as possible, e.g., through organizing and managing
computational tasks in groups as inferred from the URDME
computational structures. Communication between the clients
and the pre-existing application software is managed through
a small set of Bash and Perl scripts as part of a new server-
side component of URDME. Importantly, by allowing for this
design of the overall system, no alteration of the pre-existing
code base is required – all necessary new components are
implemented in a dedicated layer of code maintained and
released separately from the main URDME package.

From a modeling point of view, the stochastic models
in this case study can provide more accurate descriptions
of the biochemical systems than the more traditional, de-
terministic models based on PDEs. From a computational
point of view, the nature of computations is fundamentally
different between these two models, changing from one single,
large synchronized computation for the PDE model to large
numbers of task parallel computations for the stochastic model.
Computational applications such as URDME can however

generate computations that vary in behavior based on the
nature of the task. In the URDME case, the nature of the
molecular network under study, as well as the mesh resolution,
affects the average number of timesteps taken by the KMC
method for a given time-horizon of the simulation. The time-
horizon in turn depends on the biological question addressed:
it may for example be necessary to observe the system on the
timescales of several minutes to characterize the reliability of
the oscillations, while discrete events in the simulations may
occur on nanosecond timescales for fine meshes.

From a practical standpoint, this means that for the same
application (URDME) computational tasks will vary greatly
in, e.g., number and compute-to-data transfer ratios. In the
evaluation, we conducted a parameter sweep using a rather
coarse mesh, and the compute times of tasks (realizations) are
short (∼5-10 minutes per core on a modern workstation). This
results, as illustrated in Figure 4, in a situation where the av-
erage execution time constitutes only a small part (6%) of the
overall time required for jobs to complete. In larger scientific
inquiries, these computations could constitute the first steps in
a larger experiment where a parameter space is explored by
initially conducting simulations with low spatial resolution and
for many different parameters, followed by (when potentially
interesting regions of parameter space are identified) local
refinement of the parameter space. In such cases, computations
will transition from data-intensive to compute-intensive, which
will require the underlying computational infrastructure to
accommodate the dynamic nature of this process.

To increase application end-user productivity, it is desirable
to be able to modify system resource utilization behavior to,
e.g., maximize throughput or minimize asynchrony between
groups of tasks with dependencies in a larger workflow. To
this end, the StratUm client APIs are designed to provide
flexibility for customizations with respect to different applica-



tions, but also to open up for optimizations and customization
for different use cases of the same application. In the case
study, the application (URDME) is able to predict the behavior
of computational tasks for different use-cases and biological
models, and the integration model between the application
and the computation enactment system (StratUm) is therefore
designed to give the flexibility in resource utilization required
to maximize computational throughput.

In addition to computation, storage of, and access to,
resulting simulation data for post-processing and analysis
is an important aspect of the overall system workflow. As
the detailed nature of the post-processing requirements are
rarely known in advance for a given biochemical model, it
is very hard for the application to anticipate and provide
routines that will serve all users. The local version of the
URDME software addresses this issue by providing access
to simulation routines and result data in the Matlab scripting
environment. This flexibility needs to be preserved even when
simulations and data are conducted and stored on distributed
resources. Again, the design of StratUm makes possible a
flexible choice of data-transfer protocols on the application
side. To facilitate convenient integration of data storage and
analysis, the StratUm integration bridge clients encompass
functionality for abstracting data management.

VI. CONCLUSION

In this paper we discuss migration of computational ap-
plications to dedicated and distributed resource environments
and present StratUm, an extensible toolkit for facilitating the
computational needs of eScience applications. We extend on
earlier work and build on a pattern of separation of compu-
tation design and execution of computations in distributed re-
source environments. The approach focuses on development of
generic infrastructure components that can be reused between
projects, coupled with integration tools that are customized to
computational applications. The aim of the toolkit is to reduce
computation management complexity and facilitate migration
of applications to dedicated resource environments without
altering the way end-users design computations.

To illustrate the approach, we present StratUm in the context
of a case study where we integrate a computational systems
biology application with a grid job management framework.
The resulting system constitutes a powerful tool for meso-
scopic spatial stochastic simulation and is evaluated in a
computational experiment run on the Swedish national grid.
Evaluation results indicate that StratUm contributes limited
overhead to distributed computation scenarios, and that com-
putation management complexity is well abstracted by the
toolkit in the case study. Integration findings and migration
methodology are discussed throughout the paper.

VII. ACKNOWLEDGEMENTS

The authors acknowledge Mikael Öhman, Sebastian Gröhn,
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