
Velocity Response Curves Support the Role of Continuous Entrainment in

Circadian Clocks

Stephanie R. Taylor∗, Alexis B. Webb†, Linda R. Petzold‡, and Francis J. Doyle III§¶

∗Department of Computer Science, Colby College

Waterville, ME 04901

†Department of Biology, Washington University

Saint Louis, MO 63130

‡Department of Computer Science, University of California Santa Barbara

Santa Barbara, CA 93106

§Department of Chemical Engineering, University of California Santa Barbara

Santa Barbara, CA 93106

¶Corresponding Author: Email: frank.doyle@icb.ucsb.edu. Phone: 805-893-8133. Fax: 805-893-4731

Running Title: Velocity Response Curves



Abstract

Circadian clocks drive endogenous oscillcations in organisms across the tree of life. The Earth’s daily

light/dark cycle entrains these clocks to the environment.Two major theories of light entrainment have

been presented in the literature – the discrete theory and the continuous theory. Here, we re-introduce the

concept of a velocity response curve (VRC), which describeshow a clock’s speed is adjusted by light.

We examine entrainment of a mathematical model of the circadian clock using both the VRC and phase

response curves (PRCs) for long (circa 12 h) pulses of light.Our results demonstrate that the VRC and

PRCs together predict clock behavior under full photoperiod entrainment, supporting the contention that

the clock is being adjusted continuously. Further, we show that much of the insights gained from PRCs

and the discrete theory of entrainment can be used to understand continuous entrainment. For example,

we show that the presence of a deadzone in the VRC explains whyphotoskeleton and full photoperiod

entrainment yield the same phase of entrainment.

Keywords: phase response curves, mathematical modeling, circadianclock, sensitivity analysis, entrain-

ment, velocity response curves
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Introduction

In organisms across the tree of life, circadian clocks coordinate daily behaviors with the environment by

responding to external cues, or zeitgebers. Left in constant conditions, these clocks will oscillate, but with

a period that is not exactly 24 hours. Entrainment allows zeitgebers, such as daily light/dark cycles, tem-

perature cycles, and social interactions to adjust the period and synchronize the clock with the environment.

Historically, the circadian field has employed two theoriesof light entrainment – the discrete theory of Colin

Pittendrigh and the continuous theory of Jürgen Aschoff1. The discrete theory assumes that the light/dark

transitions at dawn and dusk reset or phase shift the clock instantly, correcting its mismatch with the envi-

ronment. These transitions are mimicked experimentally asshort pulses of light. Thus, the phase response

curve (PRC), which measures the phase shift resulting from ashort pulse of light, is the main experimental

tool and has been a good predictor of entrainment behaviors (Daan and Pittendrigh, 1976a). Alternatively,

the continuous theory assumes that light acts on the clock throughout the circadian cycle. It is supported

by evidence that the period of an animal’s clock depends uponthe levels of light in constant conditions

(Aschoff, 1979). It is now generally accepted that both theories are at least partially valid. Reconciling them

remains a perplexing but important question.

Three unified theories of entrainment have been presented. First, Pittendrigh himself (Daan and Pit-

tendrigh, 1976b) considered the possibility of velocity response curves (VRCs) (Swade, 1969), which are

similar in shape to PRCs but describe changes to the clock’s phasevelocity. In this case, the majority of

the phase shifting would take place at dawn and dusk not because the light/dark transition is important but

because the clock’s velocity cannot be altered during the middle of the day (see Figure 1A). Second, the

“limit cycle” interpretation of Peterson (1980) raises thepossibility that there are two separate limit cycles

used by the molecular clock – one in constant darkness (DD) and another in constant light (LL). Movement

between the two cycles would cause discrete and continuous entrainment to look similar at the behavioral

level but would be different at the molecular level (Johnsonet al., 2003). Third, Beersmaet al. (1999)

present a phase-only model incorporating continuous effects (using a period response curve) and discrete

effects (using a phase response curve), which are treated asindependent from one another. This model takes

into account variability in light patterns, illustrating that a combination of the two effects yields the most

robust entrainment behavior. All three theories were developed prior to the development of mathematical

1For recent perspectives on entrainment, see (Johnson et al., 2003) and (Roenneberg et al., 2003) and the references contained
within.
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modeling at the molecular level. Thus they have not been evaluated at the molecular level – a necessity for

determining the biological mechanisms for entrainment.

In mammals, the master clock resides in the suprachiasmaticnuclei (SCN) of the hypothalamus where

transcriptional feedback networks drive oscillations in thousands of neurons. The SCN receives environ-

mental timing information through the retinohypothalamictract. The pathway of light information is not

well characterized, but there is evidence that short pulsesof light cause rapid induction of mRNA transcrip-

tion from clock genesPeriod1 (Per1) andPeriod2 (Per2) (Reppert and Weaver, 2001). Additional evidence

indicates that the effects of light are attenuated over timevia either saturation or adaptation (Comas et al.,

2006; Comas et al., 2008). Further, for nocturnal mammals, light fails to cause any phase shifts during a

clock’s internal, or subjective, day. This is evident in theso-called deadzone of their PRCs. It has been

argued that a clock-controlled, or phase-dependent, gate prevents light from entering the system during the

day (Roenneberg et al., 2003; Geier et al., 2005).

In the present work, we study the process of entrainment using a mathematical model of the mouse

circadian clock that incorporates both “saturation” and phase-dependent light gates. We use a limit cycle

model and an analytical VRC to demonstrate the relationshipbetween the PRC of the discrete theory and

the period-modulation of the continuous theory, thus providing mathematical support for a VRC unified

theory of entrainment. We demonstrate the ability of our unified theory to predict properties such as the

phase angle of entrainment and show that much of the intuition gained by studying PRCs can be used to

understand continuous effects of light. We also show that the presence of a deadzone of the VRC explains

why pulse and continuous stimuli at subjective dawn yield the same response and further that the VRC acts

as the basis on which PRCs of differing durations are formed.
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Figure 1: Velocity response curves (VRCs) in free-run and under entrainment. A) The VRC has a shape
similar to that of a PRC, but shows changes in the clock’s velocity. When the VRC is one, then light (L = 1)
doubles the speed of the clock. The VRC is shown as its changesunder B) full photoperiod (12:12) and C)
skeleton photoperiod (1:10:1:12) entrainment. D) Shown isthe difference between zeitgeber time and the
phase of the clock under both entrainment scenarios (solid line for the full photoperiod, dashed line for the
skeleton photoperiod). Positive values indicate the internal phase is ahead of zeitgeber time. The dark gray
background indicates night in both scenarios. The light gray background from ZT1 to ZT11 indicates the
period of darkness during photoskeleton entrainment.

Materials and Method

Phase Sensitivity Measures

Limit Cycles and Phase

A limit cycle model is a deterministic model whose solution is a stable, attracting cycle, orlimit cycle γ. It

is defined by a set of autonomous nonlinear ordinary differential equations

ẋ(t) = f(x(t,p),p) (1)
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wherex ∈ R
n is the vector of states andp ∈ R

m is the vector of (constant) parameters. A simulation of the

freerunning clock (i.e. with the nominal DD parameter set) will be along the limit cycle (i.e.xγ(t,p)) and

will have periodτ (i.e. xγ(t,p) = xγ(t + τ,p).

The phaseφ of a clock model is indicated byposition on limit cycle, e.g the position of the peak ofPer2

mRNA is associated with CT7 (φ = 7)2. In constant conditions,φ(xγ(t)) will progress at the same rate as

external, or zeitgeber, time3. The single ODE describing its trajectory is

dφ(xγ(t,p))

dt
= 1, φ(xγ

0) = 0 (2)

wherexγ
0 is the position on the limit cycleγ associated with dawn (Kuramoto, 1984; Brown et al., 2004)4.

When light acts on the clock model, it is manifested as a parametric perturbation. Parametric perturba-

tion causes the state trajectory to leave the DD limit cycle.Thus, our definition of phase must be extended

to positions off the limit cycle. For this, we use isochrons.An isochron is a hyperplane that acts as a “same-

time locus” (Winfree, 2001); over time, all points on a single isochron approach the same position on the

limit cycle, and therefore all share the same phase. In the interest of concise notation, we writeφ(x(t,p)) as

φ(x(t)) below.

Dynamic Phase Tracking

To predict the phase dynamics in response to a series of infinitesimally short perturbations, we consider

two forms of the phase evolution equation and infinitesimal phase response curve. They are rooted in

theory established by Winfree and Kuramoto, and extended byothers (Kuramoto, 1984; Kramer et al.,

1984; Winfree, 2001; Brown et al., 2004; Taylor et al., 2008). The oldest measure, the state impulse PRC

(sIPRC)5, predicts the phase response to a direct manipulation of a state trajectory. The sIPRC is a vector,

with one entry sIPRCk for each statexk:

sIPRCk(φ(xγ(t))) =
∂φ
∂xγ

k

(φ(xγ(t))),

2CT7 is circadian time 7, that is 7 circadian hours after subjective dawn. In keeping with standard practice, we associateCT0
with internal, or subjective, dawn and CT12 with subjectivedusk.

3ZT (zeitgeber time) is used to describe the timing of an entraining agent and we associate ZT0 with the first occurrence of
lights on (i.e. external dawn).

4For a more in-depth discussion ofφ defined in the presence of perturbations, see (Brown et al., 2004).
5The sIPRC is called the “infinitesimal PRC” orz in much of the literature (Brown et al., 2004). In (Taylor et al., 2008) we

named it the sIPRC to differentiate it from curves associated with parametric perturbation.
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and can be interpreted as the infinitesimal phase shift (∂φ) resulting from a direct perturbation to thekth entry

of a solution along the limit cycle. More often, the sIPRC is used to predict the change in phase velocity, as

part of a phase evolution equation:

dφ(x(t))
dt

= 1+sIPRC(φ(x(t))) ·S(φ(x(t)), t) (3)

whereS is a vector of stimuli and is written as a function of either phase (i.e. the stimulus is from a clock-

controlled source) or time (i.e. the stimulus is dependent on zeitgeber time). Frequently, this model is used

to capture oscillatory behavior of electrically stimulated neurons as they fire.

In earlier work (Taylor et al., 2008), we introduced analogous formulae for tracking the phase dynamics

in the presence ofparametric perturbation. The parametric impulse PRC (pIPRC) predictsthe phase shift

(∂φ) resulting from an infinitesimally short duration, infinitesimally small in magnitude perturbation to a

parameter. The pIPRC for thejth parameter is defined

pIPRCj(φ(x(t))) =
d
dt

∂φ
∂p j

(φ(x(t)) (4)

=
∂

∂p j

dφ
dt

(φ(x(t))) (5)

= VRCj. (6)

From Eq. 5, it is clear that the pIPRC is also a velocity response curve – it predicts the change in phase

velocity dφ/dt due to a perturbation in parameterp j. For the remainder of the present work, we refer to

pIPRCj as VRCj or “the VRC.”

To track the effects of parametric perturbation to component j over time, we rewrote the phase evolution

equation using the VRC according to

dφ(x(t))
dt

= 1+VRCj(φ(x(t)))s j(x(t), t) (7)

wheres j(x(t), t) = ∆p j(x(t), t).
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The VRC is related to the sIPRC according to

VRCj(x(t)) =
N

∑
k=1

sIPRCk(x(t))
∂ fk

∂p j
(x(t))

= sIPRC·
∂f

∂p j

whereN is the number of states.

The stimuli in the phase evolution equations are then related according to

Si(φ(x(t)), t) =
∂ fi

∂p j
(φ(x(t))) s j(φ(x(t)), t),

and Eqs. 3 and 7 are related by:

dφ(x(t))
dt

= 1+sIPRC(φ(x(t))) ·S(φ(x(t)), t)

= 1+sIPRC(φ(x(t))) ·
∂f

∂p j
(φ(x(t))) s j(φ(x(t)), t)

= 1+VRCj(φ(x(t))) s j(φ(x(t)), t).

Gating Light

To accurately reproduce light response data, we must accurately model the signal as it is seen by the clock.

Experimental evidence indicates that light is gated by a “saturation” gate and a phase-dependent gate (which

creates the deadzone) (Roenneberg et al., 2003; Comas et al., 2007; Comas et al., 2008). Thus, our model

must incorporate such gates. In Figure 2 we show a conceptualpicture of the clock and the input pathway

of light. L(t) is the level of light in the environment. It passes through aninitial gateGI, which attenuates

L(t) due to saturation and adaptation. The signal leaving gateGI then passes through the phase-dependent

gateGP and finally into the core clockX , where it activates the transcription ofPer.

We model the system shown in Figure 2, using a published modelof the circadian clock as the core

oscillator. The initial gateGI mimics the response reduction and restoration dynamics observed in (Comas

et al., 2006; Comas et al., 2007). Comas et al. (2006) reported a 78% attenuation in the response to light

arriving after the first hour of a pulse. It is an open questionas to the response during the first hour6, but

6The response to short pulses of light has been studied for hamsters and mice (see, for example, (Nelson and Takahashi, 1999)),
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Figure 2: Input Schematic. Light gates are shown as rectangles, the core clock as a circle, and input and
feedback are shown as arrows. The external light cueL passes through the initial gate, which produces an
attenuated light signalGI(L). This signal then passes through the phase-dependent gate,which uses clock
componentsXGC to compute further signal attenuation. The result isGP(GI(L),XGC), which manipulates
the core clockX . The core clock sends output signals to peripheral oscillators which, in turn, may feed back
to the clock. The output processes are shown in gray and are not included in the models under consideration.

Fig. 5 in (Comas et al., 2007) suggests there is no significantattenuation.7 We make the assumptions that

(a) there is no attenuation during the first hour, and (b) the attenuation of the phase response is directly

proportional to the attenuation in the signal. Thus, we model the initial gate such that it allows all light

through for the first hour. Thereafter, it allows exponentially less light through, asymptoting at 22%. In the

dark, the system restores its response capabilities according to an exponential curve. For the restoration, we

use the exponential curve estimated by Comas et al. (2007).

We model the initial gateGI as a function of lightL and gate variableG. G has an upper steady-state

Gss > 1 and a lower steady-state 0.22. WhenG ≥ 1, all light is allowed through. Otherwise, it is attenuated

according to

GI(t,L) = min(G(t),1)L. (8)

G is designed to travel fromGss to 1 in the first hour of a light signal. It then decreases to within 5% of its

some with results indicating that light effects saturate at15 minutes (Khammanivong and Nelson, 2000), but because these light
pulses were much more intense (4960 lux) than those in Comas et al (2006; 2007) (100 lux), we model results in Comas et al.
(2006; 2007) only.

7Fig. 5 (Comas et al., 2007) shows a linear increase in the response for pulses up to 1 hour long (the first pulse of a two-pulse
experiment). A linear relationship between the pulse duration and the magnitude of the response indicates no attenuation.
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lower steady-state 0.22 in 0.8 hours. In darkness,G recovers its magnitude until it reachesGss
8. The ODE

for G is

dG
dt

=































ln(0.005)(G−0.22), L = 0 (Dark)

0, L > 0andG > Gss (Light)

9.9344, L > 0andG ≤ Gthresh (Light),

(9)

whereGss = 0.78e− ln(0.005) +0.22.

Geier et al. (2005) incorporated a phase-dependent gate into a model of the mouse clock (Becker-

Weimann et al., 2004) by assuming that some (possibly not modeled) clock components are cycling in

phase with modeled components. These unknown components interact with the pathway of light within the

cell, preventing the signal from increasing the transcription of Per during the subjective day. We construct a

similar gate, using a function bounded between 0 (no increase allowed) and 1 (the signal is ungated).

Because the trace of the gate-controlling clock component(s) XGC is not known, we assume it is a linear

combination of the modeled components (i.e. the state variables in the core clock model)

XGC(x) = γ
N

∑
i=1

αixi. (10)

The gate uses a functionY designed to allow maximal light through whenXGC is at its peak and to block

passage of light when at its trough, i.e.

Y (XGC) =































0, XGC < A

1
C

(

1
6X3

GC − A+B
4 X2

GC + AB
2 XGC + A3

12 −
A2B

4

)

, A ≤ XGC ≤ B

1, XGC > B.

(11)

whereC = −B3

12 + AB2

4 − A2B
4 + A3

12 andA andB bound an interval between the minimum and maximum value

of theXGC oscillation, i.e. mint(XGC(t)) ≤ A < B ≤ maxt(XGC(t)). The amount of light allowed through the

phase dependent gate is then

GP(t,L,XGC) = GI(t,L) ·Y (XGC). (12)

We assume that the gated signal increases the rate ofPer transcription as an additive term, i.e. if the

8Although the recovery ofG is modeled as linear, the exponential saturation causes theeffects of light to follow the exponential
restoration curve published in (Comas et al., 2007).
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state associated with nuclearPer mRNA is namedMP, then its ODE would look like

dMP
dt

= rMP −dMP + GP(t,L,XGC), (13)

whererMP anddMP are the terms representing regulation (e.g. by BMAL1) and degradation, respectively9.

We create a VRC to gated light, VRCGP, with the deadzone, delay zone, and advance zone at the desired

subjective times and with the proper magnitudes. These features are introduced by fittingY ’s parameters (αi

andγ). The process is straightforward if we use the concept of abase VRC – the VRC associated with the

effects of lightwithout the presence of a phase-dependent gate. Without the phase-dependent gate, Eq. 13 is

dMP
dt

= rMP −dMP + GI(t,L). (14)

The light regulation termGI(t,L) is a time-varying parameter, and its VRC, VRCGI, is our base VRC. Notice

that d
dGI

dMP
dt = 1. If MP is thekth state, then we can express this more generally asd

dGI
fk = 1. This means

that

d fk

dGI
=















1, statexk representsPer mRNA

0, statexk represents any other species.

Recall that the VRC is simply the dot-product of the vector ofsIPRCs and the partial derivative∂f/∂p j (Eq.

8). For a model with only one light-activatedPer gene, we have the base VRC

VRCGI(φ) = sIPRCk(φ),

wherexk is the state associated withPer mRNA. For a model with more than one light-activatedPer gene,

the base VRC is simply the sum of the sIPRCs for thePer mRNA states.

To fit the phase-dependent gate parameters, we minimize the distance between an ideal VRC, VRCideal,

and VRCGP where

VRCGP(φ) = VRCGI(φ)Y (φ). (15)

9For the majority of studies of light affecting the oscillator, light is incorporated as an additive term. One exception is in (Leloup
and Goldbeter, 2004), in which the authors increase the maximal rate of transcription within the regulation term itself. In this case,
the regulation by BMAL1 is the phase-dependent gate.
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Phase Response Curves

To compute the phase shift resulting from a light signalL(t) with onset at phaseφ1, we employ one of the

following methods:

• Full Model Method – Perform a numerical experiment with the full model. Compare the position

of a marker (such as the peak ofPer mRNA) in the reference trajectory to that in a simulation with

a w-hour light pulse. For example, if the two trajectories share the same initial conditions and the

experimental trajectory returns to the limit cycle by the tenth cycle, then we compute the phase shift

usingtre f (the time of the peak ofPer mRNA in the tenth cycle of the reference trajectory) andtexp

(the time of the peak in the tenth cycle of the experimental trajectory) according to

PRC(φ1) = texp − tre f . (16)

• Phase Evolution Method – Solve the phase evolution equation(Eq. 7) in the presence of the light

pulse. Compare the phase to zeitgeber time at the end of the simulation, according to

PRC(φ1) = φ(tend)− tend . (17)

• Method of Averaging – Use the VRC with the method of averaging. Compute the PRC10 with GI(t,L)

and VRCGP via

PRC(φ1) =

Z τ

0
VRCGP(t + φ1)GI(t,L)dt. (18)

For more details, see (Taylor et al., 2008).

Entrainment

Phase Angle of Entrainment

The phase angle of entrainment relates the phase of the clockto the zeitgeber, e.g. the dawn phase angle

of entrainment is the phase of the entrained clock when it encounters the onset of light each day. Given a

light/dark patternLD, where the photoperiod lastsw hours, the phase angle of entrainmentψ is predicted

10Computing the PRC with the method of averaging is similar to calculating the interaction functionH in (Kuramoto, 1984).
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by the PRC. For a natural photoperiod, we compute the dawn phase angle of entrainmentψBL and the dusk

phase angle of entrainmentψEL.

• If PRC(φ) is the phase shift incurred by a light pulsebeginning at phaseφ and lastingw hours, then

ψBL is the phase such that PRC(ψBL) = τ−T and the slope of the PRC is negative atψBL.

• If PRCo f f set(φ) represents the phase shift incurred by aw-hour light pulseending at phaseφ, ψEL is

the phase such that PRCo f f set(ψEL) = τ−T and the slope of the PRC is negative atψEL. According

to limit cycle theory, phase adjustments are made while the clock is receiving a signal and end when

the signal ends. The state trajectories may still be in transient, but the phase shifting has completed.

Thus the phase of pulse offset must take into account both theduration of the pulse and the shift it

incurs. The offset PRC is computed from the onset PRC according to

PRCo f f set(φ+ w +PRC(φ)) = PRC(φ), for all φ.

Phase Transition Map

The phase transition curve (PTC) describes the phase of the oscillator one cycle after encountering a pulse

of light. It is computed from the PRC for the appropriate pulse of light according to

PTC(φ) = φ+ PRC(φ).

The phase transition map (PTM) describes the phase of the next cycle, but with respect to an entraining

signal of periodT . It is computed from the PTC according to

PTM(φ) = PTC(φ)+ T − τ. (19)

The phase angle of entrainmentψ falls on the intersection of the PTM and the lineφ = φ.

A Closer Look at the VRC Theory of Entrainment

The VRC theory of entrainment states that the rate of internal time (i.e. phase progression) is adjusted con-

tinuously, but that most of the adjustment occurs circa dawnand dusk (Swade, 1969; Daan and Pittendrigh,

12



1976b). Figure 1A shows a theoretical VRC plotted as a function of phase. The response to light is an

adjustment in the speed – during early subjective morning the clock will speed up, during subjective day-

time there is a deadzone with no response, during early subjective evening the clock will slow down, and

during the subjective night the clock will transition from deceleration to acceleration. In the presence of an

entraining light signal, the phase is dynamically adjusting and the VRC is deformed (as is shown for PRCs

by Pittendrigh and Daan (1976) Figure 2).

The VRC illustrates both the differences and similarities between the continuous model of entrainment

and the discrete model. Figures 1B and 1C show the VRC as a function of zeitgeber time of fast clock

(τ = 23.7h) under full photoperiod (LD12:12) and photoskeleton (LD1:10:1:23) entrainment, respectively.

The dawn and dusk phase angles of entrainment are nearly identical despite the different light schedules (in

Figures 1B and C, the VRC values at ZT0 and ZT12 are very close). However, examining the VRC values

throughout the entire daytime reveals the subtle differences in the phase dynamics leading to those phase

angles. In the presence of 12 hours of light, the dynamics areshifted more gradually, most notably during

the period between ZT8 and ZT12. Figure 1D allows us to track the phase dynamics more precisely, plotting

the difference between the clocks’ phases and zeitgeber time. At ZT0, the phase of the system undergoing

full photoperiod entrainment is approximately CT0.1 and the phase of system undergoing photoskeleton

entrainment is approximately CT23.4. Under both scenarios, the phase is adjusted dramatically in the first

hour of light. During the daytime, the phases gradually drift away from zeitgeber time – the slope is positive

because the clock represented here has a short period. The system undergoing full photoperiod entrainment

is adjusted during the last 4 hours of daylight while the system undergoing photoskeleton entrainment is

adjusted only during the dusk light pulse. Thus we see clearly that the continuous model of entrainment can

account for data observed in photoskeleton experiments. Aslong as there is a deadzone during the day, it can

be difficult to discern the difference between continuous and discrete entrainment in short-pulse entrainment

experiments.

The deadzone also plays an important role in conserving the phase angle of entrainment over different

photoperiods. As in the discrete theory (Pittendrigh and Daan, 1976), the VRC theory holds that short-

period clocks (those in nocturnal animals) conserve the dusk phase angle under different photoperiods and

that long-period clocks (those in diurnal animals) conserve the dawn phase angle. Figure 1B illustrates how

a short-period clock can conserve its dusk phase for photoperiods of 12 hours or less. In LD12:12, we see

that the photoperiod ranges from just before the deadzone, across the deadzone, and well into the delay zone

13
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Figure 3: Theoretical VRCs of varied shape allow for similarstable phases of entrainment under different
photoperiods. Shown are theoretical VRCs for (A) short-period and (B) long-period clocks. For each VRC,
a phase-only model was entrained to a 24-hour LD schedule using photoperiods of 8 to 16 hours. The stable
dawn and dusk phase angles for (C) short-period and (D) long-period clocks are drawn with gray rectangles
in the background. The gray rectangles indicate perfect photoperiodic behavior in which a short-period
clock conserves a dusk phase of CT12 and a long-period clock conserves a dawn phase of CT0.

(see Figure 1B), allowing the clock to encounter overall delays. A shorter photoperiod must cause the same

overall delay. Thus, shortening the photoperiod fixes dusk and causes dawn to move into the deadzone. For

longer photoperiods the deadzone cannot accommodate all ofthe morning, so dawn must occur during the

advance zone.

VRCs with a variety of shapes allow for near-conservation ofdawn and dusk in long-period and sort-

period clocks, respectively. To illustrate, we choose eight theoretical VRCs with deadzones ranging in

width from 3 to 8 circadian hours and with delay and advance zones with different characteristics (some are

wide, some narrow, some VRCs favor delays, while others favor advances). Short-period (τ = 23.3) and
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long-period (τ = 24.7) clocks with each of these VRCs entrain to 24-hour cycles with photoperiods ranging

from 8 to 16 hours. We show the VRCs and the dawn and dusk phase angles for a short-period clock in

Figures 3A and 3C. In Figures 3B and 3D, we show the same for a long-period clock. The VRCs in the

two upper panels are identical in shape, but are aligned to allow for the dawn phase angle of entrainment

under LD12:12 to be CT0. Regardless of the precise shape of the VRC, short-period animals conserve the

dusk phase (gaining at most 2.5 hours) and long-period animals conserve the dawn phase (losing at most 3.9

hours). Of the prominent characteristics (area under the delay and advance sections, slopes of the delay and

advance sections, width of the advance, delay, and deadzones, and maximal delays and advances), only the

deadzone width indicates the degree of phase angle conservation – the longer the deadzone, the better the

conservation.

Results

The ideal VRC to light will cross zero with positive slope in the subjective evening (circa CT15-CT18).

The positive-slope zero-crossings of four published mammalian models are CT0.2 (Forger and Peskin,

2003), CT11.8 (Leloup and Goldbeter, 2003), CT15.6 (a modified Goodwin oscillator) (Gonze et al., 2005),

and CT15.7 (Becker-Weimann et al., 2004). We incorporate both light gates into the latter two models,

designing the phase-dependent gate to produce a VRC similarto that of the nocturnal animal model in

(Geier et al., 2005). For the modified Goodwin oscillator, the phase dependent gateGP (Eq. 12) uses

XGC(x) = 0.5417x2 + 0.9784x3, A = 2.2155, andB = 2.4506. For the 7-state model of Becker-Weimann

(2004), GP (Eq. 12) usesXGC(x) = 0.2x3, A = 1.5326, andB = 1.8701. As in (Geier et al., 2005), we

scale the rate constants to acquire a free-running periodτ of 23.7 hours. We label the former model MGG

(Modified Goodwin with Gate) and the latter BWG (Becker-Weimann with Gate).

The PRCs for these two models are computed for light pulses ofdurations 1, 3, 4, 6, 9, 12, and 18 hours,

as in (Comas et al., 2006). Figure 4 shows the PRCs for BWG computed via A) the full model method, B)

the phase evolution method, and C) the method of averaging. We align them according to the approximate

circadian time of the center of the pulse (again, as in (Comaset al., 2006)). The results are similar for MGG

(data not shown).

To evaluate the VRC theory of entrainment, we study the process of re-entrainment when the clock is

out of phase with the environment. We perform numerical experiments mimicking those most commonly

15



performed in behavioral experiments, i.e. single pulse entrainment, full photoperiod entrainment, and pho-

toskeleton entrainment experiments. To begin, we attempt to entrain the clock models with a daily LD

schedule of 1:2311 and find that MGG does not entrain. Even after a stable phase ofentrainment seems

to be achieved, the amplitude of oscillations continues to vary. Thus for the remainder of the experiments

“the model” refers to BWG. The entrainment experiments for this model useL = 1.5 to indicate “lights on”

and are initiated from 25 initial conditions, covering the entire cycle (i.e. we associate the onset of light

in zeitgeber time (ZT0) with CT0, CT1, CT2, etc.). We predictthe stable phase of entrainment using the

full model 1-hour PRC (Figure 5A, top panel) asψ̂BL =CT11. All experiments converge to an actual stable

phase angle of entrainmentψBL=CT10.7, with the time to convergence dependent upon the initial phase dif-

ference between circadian time and zeitgeber time. In the lower panel of Figure 5A, we show the number of

cycles required to reset the clock to within 15 minutes ofψBL versus the circadian time associated with ZT0.

To examine the process of entrainment, we plot the phase transitions for three experiments (ZT0 associated

with CT6, CT12, and CT18) on the phase transition map (PTM) computed from the full model PRC (Figure

5B). For each circle, its x-axis position is its phase at the onset of light (φBL) of cyclei and its y-axis position

is its phase at the onset of light of cyclei+1. The circles are connected to clarify the process from cycle to

cycle. The clocks in the ZT0=CT6 and ZT0=CT18 experiments reachψBL by advancing their phase daily,

while the ZT0=CT12 experiment’s clock delays its phase daily. Figure 5C summarizes the results of all

experiments by showing the phase of the clock at the onset of light each day.

To examine the effects of a full photoperiod, we entrain the clock with an LD schedule of 12:12. The

entrainment experiments are initiated from 25 initial conditions, covering the entire cycle (i.e. we associate

ZT0 with CT0, CT1, CT2, etc.). We predict the stable phase of entrainment using the full model 12-hour

PRC (Figure 6A, top panel) aŝψBL=CT1.3. Some experiments converge to an actual stable phaseangle of

entrainmentψBL=CT1.5, while others converge toψBL=CT14. In the lower panel of Figure 6A, we show

the number of cycles required to reset the clock to within 15 minutes ofψBL versus the circadian time asso-

ciated with ZT0. The experiments converging to the predicted ψBL are shown with filled circles and those

converging toψBL=CT14 are shown with empty circles. Like above, we plot the phase transitions for three

experiments (ZT0 associated with CT6, CT12, and CT18) on thePTM computed from the full model PRC

(Figure 6B). The clocks in the ZT0=CT6 and ZT0=CT18 experiments reach theψBL by advancing their

phase daily, while the ZT0=CT12 experiment’s clock delays its phase on the first day and advances it the

11That, is a daily light/dark schedule of 1 hour of light followed by 23 hours of dark.

16



remaining days. We examine the state trajectories for all experiments and find that, for experiments con-

verging to the predicted phase of entrainment, all entrained state trajectories are similar to their trajectories

in constant darkness. In contrast, the experiments entraining to an incorrect phase show state trajectories

deviating significantly from their cycle in constant darkness (data not shown).

To further investigate the entrainment process with a full photoperiod, we turn to a phase-only system

in which we use the PTM directly to determine the daily changes in phase. As above, the entrainment

experiments are initiated from 25 initial conditions and the PTM is computed from the full model 12-hour

PRC. Figure 7A shows the 12-hour PRC and the time to convergence. Again we plot the phase transitions

for three experiments (ZT0 associated with CT6, CT12, and CT18) on the PTM computed from the full

model PRC (Figure 7B). The clocks in the ZT0=CT6 and ZT0=CT12scenarios reach theψBL by delaying

their phase daily, while the ZT0=CT18 scenario’s clock advances daily. Figure 7C summarizes the results.

To compare the full photoperiood to the skeleton photoperiod, we repeat the experiments for a LDLD

schedule of 1:10:1:12. To predict the stable phase of entrainment, we compute a phase response curve (via

the full model method) to a light pattern LDL=1:10:1. There are two theoretical stable phase angles of

entrainment (Figure 8A) aŝψBL =CT23.7 (i.e. the first light pulse is associated with dawn) and CT11 (i.e.

the second light pulse is associated with dawn). In Figure 8B, we show the number of cycles required to

reset the clock to within 15 minutes ofψBL versus the circadian time associated with ZT0. Experiments

converge toψBL =CT23.4 (filled circles) and toψBL=CT10.7 (empty circles). As with the 1-hour single

pulse entrainment experiments, the system remains on the PTM throughout the process of entrainment (data

not shown).

Finally, we study the dawn and dusk phases of entrainment under 24-hour LD cycles with photoperiods

of 8, 9, 10, 11, 12, 13, 14, 15, and 16 hours. First, using a phase-only model (Eq. 7) with the full model’s

VRC (shown in Figure 9A), we predict the dawn and dusk phase angles. The predicted dawn anglesψBL are

CT5.7, CT4.7, CT3.6, CT2.6, CT1.6, CT0.53, CT23.5, CT22.5,and CT21.4, respectively. The predicted

dusk angleψEL is CT13.2 for all photoperiods. Next, we use the full model PRCs for 8- to 16-hour pulses

of lights. We predictψBL will be CT5.3, CT4.3, CT3.3, CT2.2, CT1.2, CT0.2, CT23.5, CT22.2, and CT21.2

(see Figure 9B). The dusk phase anglesψEL are predicted to be CT12.9 for photoperiods of 8 to 13 hours and

CT13 for photoperiods of 14 to 16 hours (see Figure 9C). Afterentraining the full model, the observed dawn

phase angles are CT5.6, CT4.5, CT3.5, CT2.5, CT1.5, CT0.4 CT23.4, CT22.4, and CT21.3, respectively.

The dusk phase angle is always CT13.
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Discussion

The gated Becker-Weimann model entrains to LD schedules with a stable wave form and is the model

we consider for the remainder of paper, refering to it as “themodel.” Its PRCs (computed with the full

model method) closely match the data in (Comas et al., 2006).The trends in phase evolution and averaging

predictions are correct as well. Together these data show that modeling the correct velocity response curve

is, at least for this model, sufficient for predicting the longterm response to differing light signals. This

is significant because the PRC shapes change as the duration of light increases. The model PRC displays

an increase in the delay to advance ratio. As is typical for a nocturnal animal, the PRC to a one-hour

light pulse produces an area under the delay region,D, greater than the area under its advance region,

A. Comas et al. observed that|A−D| grew with pulse duration and postulated that the reverse might be

seen in PRCs collected for typical diurnal animals (i.e.A > D in the 1-hour PRC). With the method of

averaging, it is relatively straight forward to show that this should be the case and thatA−D is proportional

to w ·
R τ

0 VRC(φ)dφ. The agreement between full model PRCs and phase-only PRCs also support conclusions

drawn from previously published phase-only models (Comas et al., 2006; Comas et al., 2007) that longer-

duration PRCs can be predicted from short-duration pulse PRCs. Here, we are assuming not that the 1-hour

PRC is the basis for computation, but that the VRC, an infinitesimally short pulse PRC, is the basis for

computation.

Our simulations show that the steady-state response of the model is biologically realistic, but that this is

no guarantee that it will re-entrain properly from all initial phase mismatches. In other words, demonstrating

the correct long-term response is not equivalent to demonstrating the correct short-term (24-hour) response.

The full model shows a realistic short-term response and re-entrains to the correct phase angleψBL if the

model returns promptly to the DD limit cycle during each scotoperiod. For the 9 full photoperiod simulations

that result in an incorrectψBL, the entrained cycle differs significantly from the DD limitcycle.

After a 1-hour pulse of light, the model does return to the DD limit cycle, and simulations using these

pulses are realistic on several levels. First, all methods of 1-hour pulse PRC computation produce nearly

identicalin silico experimental PRCs, which are, in turn, very similar toin vivo (behavioral) PRCs. Second,

the numerical experimental entrainment process flows according to the theoretical PTM, a process which,

again, is a reasonable description of the process of entrainment seen in behavioral experiments. The data

in Figure 5 provide additional support for the hypothesis ofWatanabe et al. (2001) that resetting is accom-
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plished within the first day even when the output indicates a lag. In addition, it supports conclusions from

two-pulse experiments such as those by Best et al. (1999), which indicate that resetting is accomplished

within two hours. In our data it is clear that the phase shift is completed before the end of the cycle at all

sections of the curve; the data from all cycles in all experiments aligns with the PTM (see Figure 5B; three

are shown, but the statement is true for all).

In natural light/dark cycles, we expect to see phase velocity increase in the early morning, no adjust-

ments made during the deadzone, and then phase velocity decrease in the early evening. The overall phase

adjustment is captured by the 12-hour PRC which should then be used to predict the process of entrainment

from cycle to cycle. The 12-hour PRC is used to compute the PTMfor the full photoperiod entrainment

simulations. Our data show that the PTM consistently predicts realistic re-entrainment (see Figure 7), but

that the full model simulations are realistic only when the model returns quickly to the DD limit cycle. For

entrainment simulations beginning in the ranges CT0 to CT6 and CT16 to CT24, the full model simulations

return to the DD limit cycle relatively quickly, follow the PTM, and entrain realistically. For example, these

data show a correct phase angle of entrainment and converge within a week (Yamazaki et al., 2000). It is sig-

nificant that the process of re-entrainment from an animal/environment mismatch follows the PTM because

it demonstrates the ability of the clock to be adjusted continuously by light repeatedly and for that action

to be predictable and effective at re-entrainment. This provides direct support for the VRC dictating phase

response behavior of the clock and the contention that dawn and dusk light transitions play no special role

in entrainment. This is consistent with recent step-PRC experiments, the results of which can be sufficiently

explained by the continuous theory, but not by the discrete (Comas et al., 2008).

The relationship between the discrete and continuous theories can be further understood by compar-

ing PRCs and entrainment for full photoperiods to those for skeleton photoperiods. Both the 12-hour PRC

(Figure 7A, upper panel) and the two-pulse 1:10:1 PRC (Figure 8A) predict dawn stable phase angles of

entrainment relatively close to CT0 (CT23.7 for the photoskeleton and CT1.3 for the photoperiod). This is

readily explained by presence of a deadzone in the VRC – if light is unable to change the clock’s velocity

during the middle of the daytime, then we expect the phase of entrainment to be similar whether or not

light is actually shone on the clock in the middle of the day. The difference in photoskeleton and photope-

riod entrainment is seen in experiments beginning from large mismatches between mouse and environment

phases. Only the photoskeleton PRC predicts two stable phase angles, one in which the 10-hour period of

darkness is considered the “daytime” and the other in which the 12-hour period of darkness is considered
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the “daytime.” This is consistent with behavioral experiments (Pittendrigh and Daan, 1976). Thus, despite

the predictive power of the skeleton photoperiod, the full photoperiod is required to ensure that the clock

re-entrains in such a way thatPer mRNA peaks during the day.

The relationship between the VRC, the free-running period,and the zeitgeber predicts the stable phase

of entrainment. Our simulations entrain such that the dawn and dusk phases of entrainment are accurately

predicted by the VRC-based phase-only model. First, the free-running period is short, which means we

expect the dusk phase of entrainment to be conserved over changing photoperiods. The deadzone for this

model is 14 hours wide, allowing it to conserve the dusk phaseangle not just over short photoperiods,

but over long photoperiods as well. Figure 9A demonstrates the phase relationship between photoperiods

of increasing duration and the clock. All photoperiods encounter the same section of the delay zone, and

extend as far as necessary into the deadzone. This highly intuitive behavior is also predicted by PRCs to long

pulses of light (see Figures 9B and 9C). A long deadzone allows a short-period clock to perfectly conserve

its dusk phase of entrainment – a feature advantageous to a nocturnal mammal needing to forage at dusk.

When only approximate conservation of dusk is necessary, a deadzone as short as 3 hours may be sufficient

(see Figure 3).

In summary, discrete and continuous entrainment are unifiedby the VRC and can be studied using both

the VRC and the PRC to long pulses of light. Further, much of the intuition developed under the discrete

theory can be transferred directly to the continuous theory. For example, straight-forward prediction of

the phase angle of entrainment – a hallmark of the discrete theory – is also possible within the VRC-

unified theory. In addition, we have shown that the presence of a deadzone is important both functionally

and theoretically. Functionally, the deadzone allows short-period clocks to conserve the dusk phase angle

of entrainment. Theoretically, examining the deadzone reveals why it is difficult to distinguish between

continuous and discrete effects using short pulses of light(see Figure 1). Finally, the implication of this

work is not only a call for more experimentation with long light pulses (such as those of similar to those of

Comas et al. (2006; 2007; 2008)) but also a re-examination ofshort-pulse experiments in light of continuous

theory. Collection of a VRC would be ideal, but is not straight-forward. However, we suggest phase-only

modeling and careful attention to light gating be used to uncover a good approximate VRC.
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Figure Legends

Figure 1. Velocity response curves (VRCs) in free-run and under entrainment. A) The VRC has a shape

similar to that of a PRC, but shows changes in the clock’s velocity. When the VRC is one, then light (L = 1)

doubles the speed of the clock. The VRC is shown as its changesunder B) full photoperiod (12:12) and C)

skeleton photoperiod (1:10:1:12) entrainment. D) Shown isthe difference between zeitgeber time and the

phase of the clock under both entrainment scenarios (solid line for the full photoperiod, dashed line for the

skeleton photoperiod). Positive values indicate the internal phase is ahead of zeitgeber time. The dark gray

background indicates night in both scenarios. The light gray background from ZT1 to ZT11 indicates the

period of darkness during photoskeleton entrainment.

Figure 2. Input Schematic. Light gates are shown as rectangles, the core clock as a circle, and input and

feedback are shown as arrows. The external light cueL passes through the initial gate, which produces an

attenuated light signalGI(L). This signal then passes through the phase-dependent gate,which uses clock

componentsXGC to compute further signal attenuation. The result isGP(GI(L),XGC), which manipulates

the core clockX . The core clock sends output signals to peripheral oscillators which, in turn, may feed back

to the clock. The output processes are shown in gray and are not included in the models under consideration.

Figure 3. Theoretical VRCs of varied shape allow for similar stable phases of entrainment under dif-

ferent photoperiods. Shown are theoretical VRCs for (A) short-period and (B) long-period clocks. For each

VRC, a phase-only model was entrained to a 24-hour LD schedule using photoperiods of 8 to 16 hours.

The stable dawn and dusk phase angles for (C) short-period and (D) long-period clocks are drawn with
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gray rectangles in the background. The gray rectangles indicate perfect photoperiodic behavior in which a

short-period clock conserves a dusk phase of CT12 and a long-period clock conserves a dawn phase of CT0.

Figure 4. Phase Response Curves for the Becker-Weimann model with both gates. PRCs calculated

with A) the full model method, B) the phase evolution method,and C) the method of averaging are shown

for light pulses of durations 1, 3, 4, 6, 9, 12, and 18 hours. The phase shift is plotted as a function of the

circadian time of the middle of the pulse.

Figure 5. Full Model Entrainment of BWG by a 1:23 LD schedule. A) The PRCto a 1-hour pulse of

light is shown in the upper panel, plotted with the phase shift as a function of the circadian time of the onset

of the pulse (ZT0). The filled triangle shows the predicted stable phase angle of entrainment (with respect

to pulse onset). The bottom panel shows the number of cycles required to converge to (i.e. remain within

0.25 hours of) the stable phase of entrainment. The x-axis represents the circadian time of the clock when

the entrainment experiment begins (i.e. the onset ZT0 of thefirst light pulse). B) The phase transitions

are shown for three entrainment experiments – ZT0=CT6 for cycle 1 (upper panel), ZT0=CT12 for cycle

1 (middle panel), and ZT0=CT18 for cycle 1 (lower panel). Forall three, the dotted line represents the

theoretical PTM, the filled triangle is the predicted stablephase angle of entrainment, the black filled circle

is the actual stable phase angle of entrainment, the gray circles represent the phase transitions for cycles 1

to 50 of the experiment, and the arrows indicate the general direction of the phase shifts. C) The process of

entrainment is shown for 25 experiments with the circadian time of dawn shown for each of the 50 cycles.

Figure 6. Full Model Entrainment of BWG by a 12:12 LD schedule. A) The PRC to a 12-hour pulse of

light is shown in the upper panel, plotted with the phase shift as a function of the circadian time of the onset

of the pulse (ZT0). The filled triangle shows the predicted stable phase angle of entrainment. The bottom

panel shows the number of cycles required to converge to (i.e. remain within 0.25 hours of) the stable phase

of entrainment. Experiments converge to the predicted phase of entrainment (circa CT0; filled circles) and

to one approximately in anti-phase (circa CT12; empty circles). The x-axis represents the circadian time of

the clock when the entrainment experiment begins (i.e. ZT0). B) Theoretical phase transitions are shown

for three entrainment experiments – ZT0=CT6 for cycle 1 (upper panel), ZT0=CT12 for cycle 1 (middle

panel), and ZT0=CT18 for cycle 1 (lower panel). For all three, the dotted line represents the theoretical

PTM, the filled triangle is the predicted stable phase angle of entrainment, the black filled circle is the actual

stable phase angle of entrainment, the gray circles represent the phase transitions for cycles 1 to 50 of the

experiment, and the arrows indicate the general direction of the phase shifts. C) The process of entrainment
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is shown for 25 PTM-based simulations with the circadian time of dawn shown for each of 50 cycles.

Figure 7. PTM Entrainment by a 12:12 LD schedule. A) The PRC to a 12-hourpulse of light is

shown in the upper panel, plotted with the phase shift as a function of the circadian time of the onset of the

pulse (ZT0). The filled triangle shows the predicted stable phase angle of entrainment. The bottom panel

shows the number of cycles required to converge to (i.e. remain within 0.25 hours of) the stable phase of

entrainment. The x-axis represents the circadian time of the clock when the entrainment experiment begins

(i.e. the onset ZT0 of first light pulse). B) The phase transitions are shown for three entrainment scenarios

– ZT0=CT6 for cycle 1 (upper panel), ZT0=CT12 for cycle 1 (middle panel), and ZT0=CT18 for cycle 1

(lower panel). For all three, the dotted line represents thetheoretical PTM, the filled triangle is the predicted

stable phase angle of entrainment, the gray triangles represent the phase transitions for cycles 1 to 50 of the

experiment, and the arrows indicate the general direction of the phase shifts. C) The process of entrainment

is shown for 25 scenarios with the circadian time of dawn shown for each of 50 cycles.

Figure 8. Entrainment of BWG by a 1:10:1:12 LDLD schedule. A) The PRC totwo 1-hour pulses

of light (separated by 10 hours of darkness) is shown, plotted with the phase shift as a function of the

circadian time of the onset of the pulse (ZT0). The filled triangles show the two predicted stable phase

angle of entrainment (with respect to the onset of the first pulse). B) Shown are the number of cycles each

experiment required to converge to (i.e. remain within 0.25hours of) the stable phase of entrainment. The

x-axis represents the circadian time of the clock when the entrainment experiment begins (i.e. ZT0).

Figure 9. Entrainment under photoperiods of 8 to 16 hours. (A) The model’s VRC is double-plotted.

The photoperiods (all ending at CT13) are shown in gray rectangles, with lighter grays for longer photope-

riods. (B) The full model PRCs for 8- to 16-hour pulses of light are shown, aligned according to the time of

the pulse onset. The ranges of the predicted dawn phase angles ψBL are indicated with arrows. (C) The full

model PRCs for 8- to 16-hour pulses of light are aligned according to the time of pulse offset. The predicted

dusk phase angleψEL is indicated with an arrow.
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Figure 4: Phase Response Curves for the Becker-Weimann model with both gates. PRCs calculated with A)
the full model method, B) the phase evolution method, and C) the method of averaging are shown for light
pulses of durations 1, 3, 4, 6, 9, 12, and 18 hours. The phase shift is plotted as a function of the circadian
time of the middle of the pulse.
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Figure 5: Full Model Entrainment of BWG by a 1:23 LD schedule.A) The PRC to a 1-hour pulse of light
is shown in the upper panel, plotted with the phase shift as a function of the circadian time of the onset
of the pulse (ZT0). The filled triangle shows the predicted stable phase angle of entrainment (with respect
to pulse onset). The bottom panel shows the number of cycles required to converge to (i.e. remain within
0.25 hours of) the stable phase of entrainment. The x-axis represents the circadian time of the clock when
the entrainment experiment begins (i.e. the onset ZT0 of thefirst light pulse). B) The phase transitions
are shown for three entrainment experiments – ZT0=CT6 for cycle 1 (upper panel), ZT0=CT12 for cycle
1 (middle panel), and ZT0=CT18 for cycle 1 (lower panel). Forall three, the dotted line represents the
theoretical PTM, the filled triangle is the predicted stablephase angle of entrainment, the black filled circle
is the actual stable phase angle of entrainment, the gray circles represent the phase transitions for cycles 1
to 50 of the experiment, and the arrows indicate the general direction of the phase shifts. C) The process of
entrainment is shown for 25 experiments with the circadian time of dawn shown for each of the 50 cycles.

27



−10

−5

0

5

∆φ

A

0 6 12 18 24
0

10

20

30

φ
BL

D
ay

s 
to

 C
on

ve
rg

e

0 10 20 30

6

12

18

0

6

Cycle

ψ
B

L(C
yc

le
)

C

0

12

24

B

ψ
B

L(C
yc

le
+

1)

0

12

24

ψ
B

L(C
yc

le
+

1)

0 6 12 18 24

0

12

24

ψ
BL

(Cycle)

ψ
B

L(C
yc

le
+

1)

Figure 6: Full Model Entrainment of BWG by a 12:12 LD schedule. A) The PRC to a 12-hour pulse of
light is shown in the upper panel, plotted with the phase shift as a function of the circadian time of the onset
of the pulse (ZT0). The filled triangle shows the predicted stable phase angle of entrainment. The bottom
panel shows the number of cycles required to converge to (i.e. remain within 0.25 hours of) the stable phase
of entrainment. Experiments converge to the predicted phase of entrainment (circa CT0; filled circles) and
to one approximately in anti-phase (circa CT12; empty circles). The x-axis represents the circadian time of
the clock when the entrainment experiment begins (i.e. ZT0). B) Theoretical phase transitions are shown
for three entrainment experiments – ZT0=CT6 for cycle 1 (upper panel), ZT0=CT12 for cycle 1 (middle
panel), and ZT0=CT18 for cycle 1 (lower panel). For all three, the dotted line represents the theoretical
PTM, the filled triangle is the predicted stable phase angle of entrainment, the black filled circle is the actual
stable phase angle of entrainment, the gray circles represent the phase transitions for cycles 1 to 50 of the
experiment, and the arrows indicate the general direction of the phase shifts. C) The process of entrainment
is shown for 25 PTM-based simulations with the circadian time of dawn shown for each of 50 cycles.
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Figure 7: PTM Entrainment by a 12:12 LD schedule. A) The PRC toa 12-hour pulse of light is shown in the
upper panel, plotted with the phase shift as a function of thecircadian time of the onset of the pulse (ZT0).
The filled triangle shows the predicted stable phase angle ofentrainment. The bottom panel shows the
number of cycles required to converge to (i.e. remain within0.25 hours of) the stable phase of entrainment.
The x-axis represents the circadian time of the clock when the entrainment experiment begins (i.e. the onset
ZT0 of first light pulse). B) The phase transitions are shown for three entrainment scenarios – ZT0=CT6 for
cycle 1 (upper panel), ZT0=CT12 for cycle 1 (middle panel), and ZT0=CT18 for cycle 1 (lower panel). For
all three, the dotted line represents the theoretical PTM, the filled triangle is the predicted stable phase angle
of entrainment, the gray triangles represent the phase transitions for cycles 1 to 50 of the experiment, and
the arrows indicate the general direction of the phase shifts. C) The process of entrainment is shown for 25
scenarios with the circadian time of dawn shown for each of 50cycles.
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Figure 8: Entrainment of BWG by a 1:10:1:12 LDLD schedule. A)The PRC to two 1-hour pulses of light
(separated by 10 hours of darkness) is shown, plotted with the phase shift as a function of the circadian time
of the onset of the pulse (ZT0). The filled triangles show the two predicted stable phase angle of entrainment
(with respect to the onset of the first pulse). B) Shown are thenumber of cycles each experiment required
to converge to (i.e. remain within 0.25 hours of) the stable phase of entrainment. The x-axis represents the
circadian time of the clock when the entrainment experimentbegins (i.e. ZT0).
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Figure 9: Entrainment under photoperiods of 8 to 16 hours. (A) The model’s VRC is double-plotted. The
photoperiods (all ending at CT13) are shown in gray rectangles, with lighter grays for longer photoperiods.
(B) The full model PRCs for 8- to 16-hour pulses of light are shown, aligned according to the time of the
pulse onset. The ranges of the predicted dawn phase anglesψBL are indicated with arrows. (C) The full
model PRCs for 8- to 16-hour pulses of light are aligned according to the time of pulse offset. The predicted
dusk phase angleψEL is indicated with an arrow.
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