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Abstract

Circadian clocks drive endogenous oscillcations in orgiasiacross the tree of life. The Earth’s daily
light/dark cycle entrains these clocks to the environm&wb major theories of light entrainment have
been presented in the literature — the discrete theory ancbthtinuous theory. Here, we re-introduce the
concept of a velocity response curve (VRC), which descritzeg a clock’s speed is adjusted by light.
We examine entrainment of a mathematical model of the diataclock using both the VRC and phase
response curves (PRCs) for long (circa 12 h) pulses of light. results demonstrate that the VRC and
PRCs together predict clock behavior under full photopkeiotrainment, supporting the contention that
the clock is being adjusted continuously. Further, we sh@t iuch of the insights gained from PRCs
and the discrete theory of entrainment can be used to uadéersbntinuous entrainment. For example,
we show that the presence of a deadzone in the VRC explainpthditpskeleton and full photoperiod

entrainment yield the same phase of entrainment.

Keywords: phase response curves, mathematical modeling, circattiak, sensitivity analysis, entrain-

ment, velocity response curves



Introduction

In organisms across the tree of life, circadian clocks coatd daily behaviors with the environment by
responding to external cues, or zeitgebers. Left in cohstamditions, these clocks will oscillate, but with
a period that is not exactly 24 hours. Entrainment allowtgebiers, such as daily light/dark cycles, tem-
perature cycles, and social interactions to adjust th@gemd synchronize the clock with the environment.
Historically, the circadian field has employed two theodébght entrainment — the discrete theory of Colin
Pittendrigh and the continuous theory of Jilrgen Aschofihe discrete theory assumes that the light/dark
transitions at dawn and dusk reset or phase shift the clathritly, correcting its mismatch with the envi-
ronment. These transitions are mimicked experimentallshast pulses of light. Thus, the phase response
curve (PRC), which measures the phase shift resulting frehoa pulse of light, is the main experimental
tool and has been a good predictor of entrainment behaviaar( and Pittendrigh, 1976a). Alternatively,
the continuous theory assumes that light acts on the clackiginout the circadian cycle. It is supported
by evidence that the period of an animal’s clock depends upenevels of light in constant conditions
(Aschoff, 1979). Itis now generally accepted that both tlemoare at least partially valid. Reconciling them
remains a perplexing but important question.

Three unified theories of entrainment have been presentest, Pittendrigh himself (Daan and Pit-
tendrigh, 1976b) considered the possibility of velocitgpense curves (VRCs) (Swade, 1969), which are
similar in shape to PRCs but describe changes to the clotidsgwelocity. In this case, the majority of
the phase shifting would take place at dawn and dusk not bedae light/dark transition is important but
because the clock’s velocity cannot be altered during thadimiof the day (see Figure 1A). Second, the
“limit cycle” interpretation of Peterson (1980) raises phassibility that there are two separate limit cycles
used by the molecular clock — one in constant darkness (D®aaather in constant light (LL). Movement
between the two cycles would cause discrete and continuttugirement to look similar at the behavioral
level but would be different at the molecular level (Johnsoral., 2003). Third, Beersmet al. (1999)
present a phase-only model incorporating continuous tsfiesing a period response curve) and discrete
effects (using a phase response curve), which are treatadegsendent from one another. This model takes
into account variability in light patterns, illustrating&t a combination of the two effects yields the most

robust entrainment behavior. All three theories were agead prior to the development of mathematical

1For recent perspectives on entrainment, see (Johnson 20@8) and (Roenneberg et al., 2003) and the referenceaicedt
within.



modeling at the molecular level. Thus they have not beeruated at the molecular level — a necessity for
determining the biological mechanisms for entrainment.

In mammals, the master clock resides in the suprachiasmatiei (SCN) of the hypothalamus where
transcriptional feedback networks drive oscillationshinusands of neurons. The SCN receives environ-
mental timing information through the retinohypothalaract. The pathway of light information is not
well characterized, but there is evidence that short pulsbght cause rapid induction of mRNA transcrip-
tion from clock gene®eriodl (Perl) andPeriod2 (Per2) (Reppert and Weaver, 2001). Additional evidence
indicates that the effects of light are attenuated over tiraeeither saturation or adaptation (Comas et al.,
2006; Comas et al., 2008). Further, for nocturnal mammajkt fails to cause any phase shifts during a
clock’s internal, or subjective, day. This is evident in $®called deadzone of their PRCs. It has been
argued that a clock-controlled, or phase-dependent, gatemts light from entering the system during the
day (Roenneberg et al., 2003; Geier et al., 2005).

In the present work, we study the process of entrainmengusimathematical model of the mouse
circadian clock that incorporates both “saturation” andg#idependent light gates. We use a limit cycle
model and an analytical VRC to demonstrate the relationsbtpveen the PRC of the discrete theory and
the period-modulation of the continuous theory, thus mlioygj mathematical support for a VRC unified
theory of entrainment. We demonstrate the ability of oufieditheory to predict properties such as the
phase angle of entrainment and show that much of the imugained by studying PRCs can be used to
understand continuous effects of light. We also show thaptiesence of a deadzone of the VRC explains
why pulse and continuous stimuli at subjective dawn yieligame response and further that the VRC acts

as the basis on which PRCs of differing durations are formed.
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Figure 1: Velocity response curves (VRCSs) in free-run andeurentrainment. A) The VRC has a shape
similar to that of a PRC, but shows changes in the clock’soiglowWhen the VRC is one, then light & 1)
doubles the speed of the clock. The VRC is shown as its changies B) full photoperiod (12:12) and C)
skeleton photoperiod (1:10:1:12) entrainment. D) Showthésdifference between zeitgeber time and the
phase of the clock under both entrainment scenarios (Sokddr the full photoperiod, dashed line for the
skeleton photoperiod). Positive values indicate the inatiephase is ahead of zeitgeber time. The dark gray
background indicates night in both scenarios. The lighy dpackground from ZT1 to ZT11 indicates the
period of darkness during photoskeleton entrainment.

Materials and Method

Phase Sensitivity Measures
Limit Cycles and Phase

A limit cycle model is a deterministic model whose solutisraistable, attracting cycle, bmit cycley. It

is defined by a set of autonomous nonlinear ordinary diftsaieaquations

x(t) =f(x(t,p),p) 1)



wherex € R" is the vector of states aqple R™ is the vector of (constant) parameters. A simulation of the
freerunning clock (i.e. with the nominal DD parameter seit) e along the limit cycle (i.exY(t,p)) and
will have periodt (i.e. xY(t,p) = xY(t+1,p).

The phasep of a clock model is indicated bosition on limit cycle, e.g the position of the peak lédr2
mRNA is associated with CTp= 7). In constant conditiongp(xY(t)) will progress at the same rate as
external, or zeitgeber, timdeThe single ODE describing its trajectory is

doix/(tp) _,

m ®xg) =0 @

wherex‘c’, is the position on the limit cyclg associated with dawn (Kuramoto, 1984; Brown et al., 2604)
When light acts on the clock model, it is manifested as a patacrperturbation. Parametric perturba-
tion causes the state trajectory to leave the DD limit cy€leus, our definition of phase must be extended
to positions off the limit cycle. For this, we use isochroAs.isochron is a hyperplane that acts as a “same-
time locus” (Winfree, 2001); over time, all points on a smgsochron approach the same position on the
limit cycle, and therefore all share the same phase. In tieedst of concise notation, we wriggx(t,p)) as

@(x(t)) below.

Dynamic Phase Tracking

To predict the phase dynamics in response to a series oftagimally short perturbations, we consider
two forms of the phase evolution equation and infinitesim@ge response curve. They are rooted in
theory established by Winfree and Kuramoto, and extendedtlwrs (Kuramoto, 1984; Kramer et al.,
1984; Winfree, 2001; Brown et al., 2004; Taylor et al., 200Bje oldest measure, the state impulse PRC
(sIPRCY, predicts the phase response to a direct manipulation @fta shjectory. The sIPRC is a vector,
with one entry sIPR{for each statex:

SIPRG(GX(1))) = 22 (o((1))),

v
OXy

2CT7 is circadian time 7, that is 7 circadian hours after stthje dawn. In keeping with standard practice, we asso€idi@
with internal, or subjective, dawn and CT12 with subjectivesk.

3ZT (zeitgeber time) is used to describe the timing of an émittg agent and we associate ZTO with the first occurrence of
lights on (i.e. external dawn).

4For a more in-depth discussion @Hlefined in the presence of perturbations, see (Brown etGf14)2

5The sIPRC is called the “infinitesimal PRC” @iin much of the literature (Brown et al., 2004). In (Taylor & 2008) we
named it the sIPRC to differentiate it from curves assodiatgh parametric perturbation.
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and can be interpreted as the infinitesimal phase shpftrésulting from a direct perturbation to tk& entry
of a solution along the limit cycle. More often, the sIPRCs$&d to predict the change in phase velocity, as

part of a phase evolution equation:

dCP((;(t(t)) =1+ sIPRA@(x(1))) - S(@(x(t)),t) 3

whereSis a vector of stimuli and is written as a function of eitheapé (i.e. the stimulus is from a clock-
controlled source) or time (i.e. the stimulus is dependarzatgeber time). Frequently, this model is used
to capture oscillatory behavior of electrically stimulhteeurons as they fire.

In earlier work (Taylor et al., 2008), we introduced analogidormulae for tracking the phase dynamics
in the presence gbarametric perturbation. The parametric impulse PRC (pIPRC) predi@sphase shift
(0@) resulting from an infinitesimally short duration, infirgienally small in magnitude perturbation to a

parameter. The pIPRC for tH& parameter is defined

PIPRG (¢0x(1) = g (6D @
0 do

- o g @) ©

— VRC;. (6)

From Eq. 5, it is clear that the pIPRC is also a velocity respoturve — it predicts the change in phase

velocity dg/dt due to a perturbation in parametey. For the remainder of the present work, we refer to

pIPRG as VRG or “the VRC."

To track the effects of parametric perturbation to compon@ver time, we rewrote the phase evolution

equation using the VRC according to

w = 1+ VRCj(g(x(t)))sj (x(t),1) -

wheres;(x(t),t) = Ap;j(x(t),t).



The VRC is related to the sIPRC according to

N
VRC|(x(1) = 3 SIPRG(X(D) 3 (x()
of
= SlF’RC-a—pj

whereN is the number of states.

The stimuli in the phase evolution equations are then mladeording to

S (QX(1).1) = g—;ij((p(x(t))) S (Q(X(1)),1),

and Egs. 3 and 7 are related by:

d(p(c)i(t(t)) = 1+sIPRAQ(X(1))) - S(@(X(1)). 1)

1-+sIPRAQ(X(t)))- aa—;(fp(X(t))) S (@(x(1)),1)
= 1+ VRCj(@(x(t))) sj(@(x(1)),1).

Gating Light

To accurately reproduce light response data, we must @etpraodel the signal as it is seen by the clock.
Experimental evidence indicates that light is gated by tutséion” gate and a phase-dependent gate (which
creates the deadzone) (Roenneberg et al., 2003; Comas22@d; Comas et al., 2008). Thus, our model
must incorporate such gates. In Figure 2 we show a concepittate of the clock and the input pathway
of light. L(t) is the level of light in the environment. It passes throughrétial gate G;, which attenuates
L(t) due to saturation and adaptation. The signal leaving @ateen passes through the phase-dependent
gateGp and finally into the core clock, where it activates the transcription fedr.

We model the system shown in Figure 2, using a published mafdile circadian clock as the core
oscillator. The initial gat&s, mimics the response reduction and restoration dynamicsreds in (Comas
et al., 2006; Comas et al., 2007). Comas et al. (2006) repari&8% attenuation in the response to light

arriving after the first hour of a pulse. It is an open questsrto the response during the first Hyusut

6The response to short pulses of light has been studied fosteasrand mice (see, for example, (Nelson and Takahast))199



L G,(L) Gp (G, (L).Xgc)
Initial Phase- Core Output
Gate Dependent Oscillator

Gate

Figure 2: Input Schematic. Light gates are shown as reaantfie core clock as a circle, and input and
feedback are shown as arrows. The external lightlcpasses through the initial gate, which produces an
attenuated light signdd (L). This signal then passes through the phase-dependentdadh, uses clock
componentsXgc to compute further signal attenuation. The resulBigG, (L), Xsc), which manipulates
the core clockX. The core clock sends output signals to peripheral oszilaihich, in turn, may feed back
to the clock. The output processes are shown in gray and anechaded in the models under consideration.

Fig. 5in (Comas et al., 2007) suggests there is no signifiatiehuatior. We make the assumptions that
(a) there is no attenuation during the first hour, and (b) ttenaation of the phase response is directly
proportional to the attenuation in the signal. Thus, we rhdue initial gate such that it allows all light
through for the first hour. Thereatfter, it allows expondhtikess light through, asymptoting at 22%. In the
dark, the system restores its response capabilities dnga@an exponential curve. For the restoration, we
use the exponential curve estimated by Comas et al. (2007).

We model the initial gat€&, as a function of light. and gate variabl&. G has an upper steady-state
G« > 1 and a lower steady-state 0.22. WHhap> 1, all light is allowed through. Otherwise, it is attenuated
according to

Gi(t,L) = min(G(t), 1)L. 8)

G is designed to travel frorsg to 1 in the first hour of a light signal. It then decreases t&init6% of its

some with results indicating that light effects saturatémminutes (Khammanivong and Nelson, 2000), but because fight
pulses were much more intense (4960 lux) than those in Cotrals(2006; 2007) (100 lux), we model results in Comas et al.
(2006; 2007) only.

Fig. 5 (Comas et al., 2007) shows a linear increase in thensspfor pulses up to 1 hour long (the first pulse of a two-pulse
experiment). A linear relationship between the pulse domaind the magnitude of the response indicates no attemuati



lower steady-state 0.22 in 0.8 hours. In darkn&secovers its magnitude until it reach@s®. The ODE
for Gis

In(0.005)(G—0.22), L =0 (Dark)

dG
9 10 L > 0andG > G (Light) )

9.9344 L > 0andG < Gipresn (Light),

whereGs = 0.78¢ (0009 4 0,22,

Geier et al. (2005) incorporated a phase-dependent gateaimbodel of the mouse clock (Becker-
Weimann et al., 2004) by assuming that some (possibly notetedil clock components are cycling in
phase with modeled components. These unknown componéataahwith the pathway of light within the
cell, preventing the signal from increasing the transmripbf Per during the subjective day. We construct a
similar gate, using a function bounded between 0 (no ineradswed) and 1 (the signal is ungated).

Because the trace of the gate-controlling clock composgKc is hot known, we assume it is a linear

combination of the modeled components (i.e. the stateblagdn the core clock model)
N
Xoc(X) = vzionxi. (10)
i=

The gate uses a functioh designed to allow maximal light through whe@c is at its peak and to block

passage of light when at its trough, i.e.

07 XGC<A

Y(Xeo) = 4 & (X~ 2EXE+ BXac+ 5~ 5E) . A<Xec<B an
17 XGC>B
\

3 2 2 3 . .. .
whereC = —& 4 28— A8 1 2~ andA andB bound an interval between the minimum and maximum value

of the Xgc oscillation, i.e. min(Xac(t)) <A< B < max(Xsc(t)). The amount of light allowed through the

phase dependent gate is then

Gp(t,L, Xac) = Gi(t,L) - Y (Xac). (12)

We assume that the gated signal increases the reerdfanscription as an additive term, i.e. if the

8Although the recovery o6 is modeled as linear, the exponential saturation causesfféws of light to follow the exponential
restoration curve published in (Comas et al., 2007).



state associated with nucleer mRNA is namedVP, then its ODE would look like

dMP

e =rmp —dwp + Gp(t, L, Xac), (13)

whereryp anddyp are the terms representing regulation (e.g. by BMAL1) argtatéation, respectively

We create a VRC to gated light, VRE, with the deadzone, delay zone, and advance zone at thedlesir
subjective times and with the proper magnitudes. Thesariesare introduced by fitting's parametersq
andy). The process is straightforward if we use the conceptluisa VRC — the VRC associated with the

effects of lightwithout the presence of a phase-dependent gate. Without the papsadent gate, Eq. 13 is

dMP

TZ"MP—dMP-i—GI(tyL)- (14)

The light regulation tern® (t,L ) is a time-varying parameter, and its VRC, VBCis our base VRC. Notice
that z&- 9%° = 1. If MP is thek™ state, then we can express this more generaliyag = 1. This means

that

dfe 1, statex represent®er mRNA

dG
I 0, statexg represents any other species

Recall that the VRC is simply the dot-product of the vectosIBfRCs and the partial derivatigé/dp; (Eq.

8). For a model with only one light-activatédr gene, we have the base VRC
VRCg (¢) = sIPRG(0),

wherex is the state associated wiler mRNA. For a model with more than one light-activates gene,
the base VRC is simply the sum of the sIPRCs forRBemRNA states.
To fit the phase-dependent gate parameters, we minimizedtaade between an ideal VRC, VR&,
and VRGsp where
VRCqp(¢) = VRCaI (9)Y (). (15)

9For the majority of studies of light affecting the oscillgtiight is incorporated as an additive term. One exceptidn {Leloup
and Goldbeter, 2004), in which the authors increase thembxiate of transcription within the regulation term itséif this case,
the regulation by BMALL1 is the phase-dependent gate.
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Phase Response Curves

To compute the phase shift resulting from a light sign@) with onset at phase;, we employ one of the

following methods:

e Full Model Method — Perform a numerical experiment with toé model. Compare the position
of a marker (such as the peakledr mRNA) in the reference trajectory to that in a simulationhwit
aw-hour light pulse. For example, if the two trajectories ghtire same initial conditions and the
experimental trajectory returns to the limit cycle by thetkecycle, then we compute the phase shift
usingter (the time of the peak oPer mRNA in the tenth cycle of the reference trajectory) angl

(the time of the peak in the tenth cycle of the experimentgéttory) according to
PRA@1) = texp — tre- (16)

e Phase Evolution Method — Solve the phase evolution equdign 7) in the presence of the light

pulse. Compare the phase to zeitgeber time at the end ofrthiadion, according to

e Method of Averaging — Use the VRC with the method of averagidgmpute the PRE with G (t, L)
and VRGsp via

PRO@) = /O "VRCep(t + @1)Gi (¢, L)dt. (18)

For more details, see (Taylor et al., 2008).

Entrainment
Phase Angle of Entrainment

The phase angle of entrainment relates the phase of the wdble zeitgeber, e.g. the dawn phase angle
of entrainment is the phase of the entrained clock when ibemiers the onset of light each day. Given a

light/dark patterrLD, where the photoperiod lastghours, the phase angle of entrainmenis predicted

10Computing the PRC with the method of averaging is similaricwating the interaction functiad in (Kuramoto, 1984).
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by the PRC. For a natural photoperiod, we compute the dawseptiagle of entrainmemig_ and the dusk

phase angle of entrainmetig, .

e If PRC(0) is the phase shift incurred by a light pulseginning at phasep and lastingw hours, then
Wg is the phase such that PR{Iz ) = T— T and the slope of the PRC is negativelat .

e If PRCys1sa (@) represents the phase shift incurred by-aour light pulseending at phasep, Wg, is
the phase such that PRGs« (WeL) = T— T and the slope of the PRC is negativalgj . According
to limit cycle theory, phase adjustments are made while linekds receiving a signal and end when
the signal ends. The state trajectories may still be in keansbut the phase shifting has completed.
Thus the phase of pulse offset must take into account botldutetion of the pulse and the shift it

incurs. The offset PRC is computed from the onset PRC acuptdi

PRGfsa (@+W+PRQ@)) = PRQ ), for all .

Phase Transition Map

The phase transition curve (PTC) describes the phase okttikator one cycle after encountering a pulse

of light. It is computed from the PRC for the appropriate pub$ light according to

PTC(g) = ¢+ PRC(¢).

The phase transition map (PTM) describes the phase of thecpebe, but with respect to an entraining

signal of periodT. It is computed from the PTC according to

PTM(@) =PTC(@) +T —1. (29)

The phase angle of entrainmepfalls on the intersection of the PTM and the lipe- ¢.

A Closer Look at the VRC Theory of Entrainment

The VRC theory of entrainment states that the rate of intdima (i.e. phase progression) is adjusted con-

tinuously, but that most of the adjustment occurs circa damthdusk (Swade, 1969; Daan and Pittendrigh,

12



1976b). Figure 1A shows a theoretical VRC plotted as a fonctif phase. The response to light is an
adjustment in the speed — during early subjective morniegctack will speed up, during subjective day-
time there is a deadzone with no response, during early aiugesvening the clock will slow down, and
during the subjective night the clock will transition froraakleration to acceleration. In the presence of an
entraining light signal, the phase is dynamically adjugstmd the VRC is deformed (as is shown for PRCs
by Pittendrigh and Daan (1976) Figure 2).

The VRC illustrates both the differences and similaritiesaien the continuous model of entrainment
and the discrete model. Figures 1B and 1C show the VRC as #éidonaf zeitgeber time of fast clock
(t = 23.7h) under full photoperiod (LD12:12) and photoskeleton {L.1D:1:23) entrainment, respectively.
The dawn and dusk phase angles of entrainment are nearljciaeaespite the different light schedules (in
Figures 1B and C, the VRC values at ZT0 and ZT12 are very cld$eyever, examining the VRC values
throughout the entire daytime reveals the subtle diffezerin the phase dynamics leading to those phase
angles. In the presence of 12 hours of light, the dynamicslfeed more gradually, most notably during
the period between ZT8 and ZT12. Figure 1D allows us to traelphase dynamics more precisely, plotting
the difference between the clocks’ phases and zeitgeber thkhZTO, the phase of the system undergoing
full photoperiod entrainment is approximately CT0.1 and finase of system undergoing photoskeleton
entrainment is approximately CT23.4. Under both scenatimsphase is adjusted dramatically in the first
hour of light. During the daytime, the phases graduallyt@mifay from zeitgeber time — the slope is positive
because the clock represented here has a short period. Steensyndergoing full photoperiod entrainment
is adjusted during the last 4 hours of daylight while the eystindergoing photoskeleton entrainment is
adjusted only during the dusk light pulse. Thus we see ¢ld¢hat the continuous model of entrainment can
account for data observed in photoskeleton experimenttorfgsas there is a deadzone during the day, it can
be difficult to discern the difference between continuous @diacrete entrainment in short-pulse entrainment
experiments.

The deadzone also plays an important role in conservinglibsgangle of entrainment over different
photoperiods. As in the discrete theory (Pittendrigh andrDd976), the VRC theory holds that short-
period clocks (those in nocturnal animals) conserve th& ghase angle under different photoperiods and
that long-period clocks (those in diurnal animals) consehe dawn phase angle. Figure 1B illustrates how
a short-period clock can conserve its dusk phase for photmseof 12 hours or less. In LD12:12, we see

that the photoperiod ranges from just before the deadzanessithe deadzone, and well into the delay zone

13
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photoperiods. Shown are theoretical VRCs for (A) shorigueand (B) long-period clocks. For each VRC,
a phase-only model was entrained to a 24-hour LD schedubg p$iotoperiods of 8 to 16 hours. The stable
dawn and dusk phase angles for (C) short-period and (D) pemipd clocks are drawn with gray rectangles
in the background. The gray rectangles indicate perfectgpesiodic behavior in which a short-period
clock conserves a dusk phase of CT12 and a long-period clotéecves a dawn phase of CTO.

(see Figure 1B), allowing the clock to encounter overalagel A shorter photoperiod must cause the same
overall delay. Thus, shortening the photoperiod fixes duskcauses dawn to move into the deadzone. For
longer photoperiods the deadzone cannot accommodatethal ofiorning, so dawn must occur during the
advance zone.

VRCs with a variety of shapes allow for near-conservatiomlafn and dusk in long-period and sort-
period clocks, respectively. To illustrate, we choose ttbkoretical VRCs with deadzones ranging in
width from 3 to 8 circadian hours and with delay and advanceegavith different characteristics (some are

wide, some narrow, some VRCs favor delays, while othersrfadeances). Short-period £ 23.3) and

14



long-period t = 24.7) clocks with each of these VRCs entrain to 24-hour cycldk pihotoperiods ranging
from 8 to 16 hours. We show the VRCs and the dawn and dusk plmagesafor a short-period clock in
Figures 3A and 3C. In Figures 3B and 3D, we show the same fongperiod clock. The VRCs in the
two upper panels are identical in shape, but are alignedduw dbr the dawn phase angle of entrainment
under LD12:12 to be CTO. Regardless of the precise shapedfRC, short-period animals conserve the
dusk phase (gaining at most 2.5 hours) and long-period dsicoaserve the dawn phase (losing at most 3.9
hours). Of the prominent characteristics (area under they@nd advance sections, slopes of the delay and
advance sections, width of the advance, delay, and deasizang maximal delays and advances), only the
deadzone width indicates the degree of phase angle cotisarvathe longer the deadzone, the better the

conservation.

Results

The ideal VRC to light will cross zero with positive slope imetsubjective evening (circa CT15-CT18).
The positive-slope zero-crossings of four published maliamanodels are CT0.2 (Forger and Peskin,
2003), CT11.8 (Leloup and Goldbeter, 2003), CT15.6 (a medii®oodwin oscillator) (Gonze et al., 2005),
and CT15.7 (Becker-Weimann et al., 2004). We incorporath bght gates into the latter two models,
designing the phase-dependent gate to produce a VRC sitoiltwat of the nocturnal animal model in
(Geier et al., 2005). For the modified Goodwin oscillatoe fthase dependent gaBs (Eq. 12) uses
Xec(X) = 0.5417%; + 0.97843, A = 2.2155, andB = 2.4506. For the 7-state model of Becker-Weimann
(2004),Gp (Eq. 12) usesXgc(x) = 0.2x3, A= 1.5326, andB = 1.8701. As in (Geier et al., 2005), we
scale the rate constants to acquire a free-running peraid3.7 hours. We label the former model MGG
(Modified Goodwin with Gate) and the latter BWG (Becker-Waim with Gate).

The PRCs for these two models are computed for light pulsdsmaitions 1, 3, 4, 6, 9, 12, and 18 hours,
as in (Comas et al., 2006). Figure 4 shows the PRCs for BWG atedpvia A) the full model method, B)
the phase evolution method, and C) the method of averagimgaliyh them according to the approximate
circadian time of the center of the pulse (again, as in (Caghak, 2006)). The results are similar for MGG
(data not shown).

To evaluate the VRC theory of entrainment, we study the @®oé re-entrainment when the clock is

out of phase with the environment. We perform numerical arpents mimicking those most commonly
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performed in behavioral experiments, i.e. single pulseagmnent, full photoperiod entrainment, and pho-
toskeleton entrainment experiments. To begin, we attemgntrain the clock models with a daily LD
schedule of 1:28 and find that MGG does not entrain. Even after a stable phasetadinment seems
to be achieved, the amplitude of oscillations continuesaty.vThus for the remainder of the experiments
“the model” refers to BWG. The entrainment experiments fiis inodel usé. = 1.5 to indicate “lights on”
and are initiated from 25 initial conditions, covering thatiee cycle (i.e. we associate the onset of light
in zeitgeber time (ZT0) with CTO, CT1, CT2, etc.). We prediwt stable phase of entrainment using the
full model 1-hour PRC (Figure 5A, top panel) s, =CT11. All experiments converge to an actual stable
phase angle of entrainmetp =CT10.7, with the time to convergence dependent upon thialiphase dif-
ference between circadian time and zeitgeber time. In tierpanel of Figure 5A, we show the number of
cycles required to reset the clock to within 15 minutegigf versus the circadian time associated with ZTO.
To examine the process of entrainment, we plot the phassiticars for three experiments (ZT0 associated
with CT6, CT12, and CT18) on the phase transition map (PTM)mated from the full model PRC (Figure
5B). For each circle, its x-axis position is its phase at theed of light (ps, ) of cyclei and its y-axis position

is its phase at the onset of light of cydle 1. The circles are connected to clarify the process fromecigl
cycle. The clocks in the ZTO=CT6 and ZT0=CT18 experimenésheg_ by advancing their phase daily,
while the ZT0=CT12 experiment’s clock delays its phaseydailigure 5C summarizes the results of all
experiments by showing the phase of the clock at the onsajhifdach day.

To examine the effects of a full photoperiod, we entrain tloelcwith an LD schedule of 12:12. The
entrainment experiments are initiated from 25 initial dtinds, covering the entire cycle (i.e. we associate
ZTO with CTO, CT1, CT2, etc.). We predict the stable phasendfainment using the full model 12-hour
PRC (Figure 6A, top panel) abz =CT1.3. Some experiments converge to an actual stable pingse of
entrainmentpg_ =CT1.5, while others converge thpg =CT14. In the lower panel of Figure 6A, we show
the number of cycles required to reset the clock to within 1hutes oflig, versus the circadian time asso-
ciated with ZT0. The experiments converging to the predidig, are shown with filled circles and those
converging tapg =CT14 are shown with empty circles. Like above, we plot thagehtransitions for three
experiments (ZTO associated with CT6, CT12, and CT18) orPtid computed from the full model PRC
(Figure 6B). The clocks in the ZTO=CT6 and ZT0=CT18 experiaeaeach thepg_ by advancing their

phase daily, while the ZTO=CT12 experiment’s clock delaggphase on the first day and advances it the

11That, is a daily light/dark schedule of 1 hour of light folled/by 23 hours of dark.
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remaining days. We examine the state trajectories for gleements and find that, for experiments con-
verging to the predicted phase of entrainment, all entchstate trajectories are similar to their trajectories
in constant darkness. In contrast, the experiments eirtcato an incorrect phase show state trajectories
deviating significantly from their cycle in constant darkeédata not shown).

To further investigate the entrainment process with a fafitpperiod, we turn to a phase-only system
in which we use the PTM directly to determine the daily changephase. As above, the entrainment
experiments are initiated from 25 initial conditions and #iITM is computed from the full model 12-hour
PRC. Figure 7A shows the 12-hour PRC and the time to conveegeftygain we plot the phase transitions
for three experiments (ZTO associated with CT6, CT12, and8}Dn the PTM computed from the full
model PRC (Figure 7B). The clocks in the ZTO=CT6 and ZT0=C3%$d&narios reach thgg, by delaying
their phase daily, while the ZT0=CT18 scenario’s clock ambes daily. Figure 7C summarizes the results.

To compare the full photoperiood to the skeleton photogkenee repeat the experiments for a LDLD
schedule of 1:10:1:12. To predict the stable phase of emtrent, we compute a phase response curve (via
the full model method) to a light pattern LDL=1:10:1. There &wo theoretical stable phase angles of
entrainment (Figure 8A) apg. =CT23.7 (i.e. the first light pulse is associated with dawnj @711 (i.e.
the second light pulse is associated with dawn). In FigurevB88show the number of cycles required to
reset the clock to within 15 minutes dfg,. versus the circadian time associated with ZT0. Experiments
converge tapg. =CT23.4 (filled circles) and tdig. =CT10.7 (empty circles). As with the 1-hour single
pulse entrainment experiments, the system remains on thetidughout the process of entrainment (data
not shown).

Finally, we study the dawn and dusk phases of entrainmergri@#thour LD cycles with photoperiods
of 8, 9, 10, 11, 12, 13, 14, 15, and 16 hours. First, using agegbaty model (Eq. 7) with the full model's
VRC (shown in Figure 9A), we predict the dawn and dusk phagéeanThe predicted dawn anglgg, are
CT5.7, CT4.7, CT3.6, CT2.6, CT1.6, CT0.53, CT23.5, CT2ary] CT21.4, respectively. The predicted
dusk anglapg, is CT13.2 for all photoperiods. Next, we use the full modeldRor 8- to 16-hour pulses
of lights. We predictpg_ will be CT5.3, CT4.3,CT3.3,CT2.2,CT1.2,CT0.2, CT23.5222, and CT21.2
(see Figure 9B). The dusk phase angjies are predicted to be CT12.9 for photoperiods of 8 to 13 houts an
CT13 for photoperiods of 14 to 16 hours (see Figure 9C). Adteraining the full model, the observed dawn
phase angles are CT5.6, CT4.5, CT3.5, CT2.5, CT1.5, CTO2B@T CT22.4, and CT21.3, respectively.

The dusk phase angle is always CT13.
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Discussion

The gated Becker-Weimann model entrains to LD schedules avistable wave form and is the model
we consider for the remainder of paper, refering to it as ftiedel.” Its PRCs (computed with the full
model method) closely match the data in (Comas et al., 200@.trends in phase evolution and averaging
predictions are correct as well. Together these data shawntbdeling the correct velocity response curve
is, at least for this model, sufficient for predicting the dterm response to differing light signals. This
is significant because the PRC shapes change as the durhatightancreases. The model PRC displays
an increase in the delay to advance ratio. As is typical fooeturnal animal, the PRC to a one-hour
light pulse produces an area under the delay rediangreater than the area under its advance region,
A. Comas et al. observed thi@ — D| grew with pulse duration and postulated that the reversédintig
seen in PRCs collected for typical diurnal animals (i&e> D in the 1-hour PRC). With the method of
averaging, it is relatively straight forward to show thastbhould be the case and thfat D is proportional
tow- fg VRC(@p)dg. The agreement between full model PRCs and phase-only FR&Csigport conclusions
drawn from previously published phase-only models (Conmas. £2006; Comas et al., 2007) that longer-
duration PRCs can be predicted from short-duration pulseéPRiere, we are assuming not that the 1-hour
PRC is the basis for computation, but that the VRC, an insiitelly short pulse PRC, is the basis for
computation.

Our simulations show that the steady-state response of dldelris biologically realistic, but that this is
no guarantee that it will re-entrain properly from all inltphase mismatches. In other words, demonstrating
the correct long-term response is not equivalent to derratitgy the correct short-term (24-hour) response.
The full model shows a realistic short-term response anehtezins to the correct phase anglg if the
model returns promptly to the DD limit cycle during each spariod. For the 9 full photoperiod simulations
that result in an incorreapg, , the entrained cycle differs significantly from the DD limitcle.

After a 1-hour pulse of light, the model does return to the iticycle, and simulations using these
pulses are realistic on several levels. First, all methddslwur pulse PRC computation produce nearly
identicalin silico experimental PRCs, which are, in turn, very similaimaeivo (behavioral) PRCs. Second,
the numerical experimental entrainment process flows dowpito the theoretical PTM, a process which,
again, is a reasonable description of the process of enteihseen in behavioral experiments. The data

in Figure 5 provide additional support for the hypothesis\atanabe et al. (2001) that resetting is accom-
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plished within the first day even when the output indicatesga In addition, it supports conclusions from
two-pulse experiments such as those by Best et al. (1999¢hvitdicate that resetting is accomplished
within two hours. In our data it is clear that the phase skittompleted before the end of the cycle at all
sections of the curve; the data from all cycles in all experita aligns with the PTM (see Figure 5B; three
are shown, but the statement is true for all).

In natural light/dark cycles, we expect to see phase veglacirease in the early morning, no adjust-
ments made during the deadzone, and then phase velocityagecin the early evening. The overall phase
adjustment is captured by the 12-hour PRC which should tkarsbd to predict the process of entrainment
from cycle to cycle. The 12-hour PRC is used to compute the FBdmihe full photoperiod entrainment
simulations. Our data show that the PTM consistently ptedigalistic re-entrainment (see Figure 7), but
that the full model simulations are realistic only when thedal returns quickly to the DD limit cycle. For
entrainment simulations beginning in the ranges CTO0 to QIBGT 16 to CT24, the full model simulations
return to the DD limit cycle relatively quickly, follow theTM, and entrain realistically. For example, these
data show a correct phase angle of entrainment and convétge aweek (Yamazaki et al., 2000). It is sig-
nificant that the process of re-entrainment from an animafenment mismatch follows the PTM because
it demonstrates the ability of the clock to be adjusted caausly by light repeatedly and for that action
to be predictable and effective at re-entrainment. Thisides direct support for the VRC dictating phase
response behavior of the clock and the contention that dardask light transitions play no special role
in entrainment. This is consistent with recent step-PR@erpents, the results of which can be sufficiently
explained by the continuous theory, but not by the disct€ta{as et al., 2008).

The relationship between the discrete and continuous iteecan be further understood by compar-
ing PRCs and entrainment for full photoperiods to those keteton photoperiods. Both the 12-hour PRC
(Figure 7A, upper panel) and the two-pulse 1:10:1 PRC (Ei@A) predict dawn stable phase angles of
entrainment relatively close to CTO (CT23.7 for the phosedston and CT1.3 for the photoperiod). This is
readily explained by presence of a deadzone in the VRC —if igunable to change the clock’s velocity
during the middle of the daytime, then we expect the phasentvhiement to be similar whether or not
light is actually shone on the clock in the middle of the dakeTifference in photoskeleton and photope-
riod entrainment is seen in experiments beginning fromelangsmatches between mouse and environment
phases. Only the photoskeleton PRC predicts two stablee@ragles, one in which the 10-hour period of

darkness is considered the “daytime” and the other in whieh12-hour period of darkness is considered
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the “daytime.” This is consistent with behavioral expenmse(Pittendrigh and Daan, 1976). Thus, despite
the predictive power of the skeleton photoperiod, the falbtoperiod is required to ensure that the clock
re-entrains in such a way thBér mRNA peaks during the day.

The relationship between the VRC, the free-running permd, the zeitgeber predicts the stable phase
of entrainment. Our simulations entrain such that the dawechdusk phases of entrainment are accurately
predicted by the VRC-based phase-only model. First, the-fisening period is short, which means we
expect the dusk phase of entrainment to be conserved ovegidgaphotoperiods. The deadzone for this
model is 14 hours wide, allowing it to conserve the dusk plasgle not just over short photoperiods,
but over long photoperiods as well. Figure 9A demonstrdiegphase relationship between photoperiods
of increasing duration and the clock. All photoperiods emter the same section of the delay zone, and
extend as far as necessary into the deadzone. This highltniatbehavior is also predicted by PRCs to long
pulses of light (see Figures 9B and 9C). A long deadzone allwhort-period clock to perfectly conserve
its dusk phase of entrainment — a feature advantageous totarmal mammal needing to forage at dusk.
When only approximate conservation of dusk is necessamyadabne as short as 3 hours may be sufficient
(see Figure 3).

In summary, discrete and continuous entrainment are urbffetie VRC and can be studied using both
the VRC and the PRC to long pulses of light. Further, much efitiuition developed under the discrete
theory can be transferred directly to the continuous thedtgr example, straight-forward prediction of
the phase angle of entrainment — a hallmark of the discreteryh— is also possible within the VRC-
unified theory. In addition, we have shown that the presefigedeadzone is important both functionally
and theoretically. Functionally, the deadzone allows tsheriod clocks to conserve the dusk phase angle
of entrainment. Theoretically, examining the deadzoneaksvwhy it is difficult to distinguish between
continuous and discrete effects using short pulses of (iggw Figure 1). Finally, the implication of this
work is not only a call for more experimentation with longhtgulses (such as those of similar to those of
Comas et al. (2006; 2007; 2008)) but also a re-examinatisharft-pulse experiments in light of continuous
theory. Collection of a VRC would be ideal, but is not straifgrward. However, we suggest phase-only

modeling and careful attention to light gating be used tauaca good approximate VRC.
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Figure Legends

Figure 1. Velocity response curves (VRCSs) in free-run and under gmtreant. A) The VRC has a shape
similar to that of a PRC, but shows changes in the clock’soiglowWhen the VRC is one, then light & 1)
doubles the speed of the clock. The VRC is shown as its changks B) full photoperiod (12:12) and C)
skeleton photoperiod (1:10:1:12) entrainment. D) Showthésdifference between zeitgeber time and the
phase of the clock under both entrainment scenarios (Sokddr the full photoperiod, dashed line for the
skeleton photoperiod). Positive values indicate the matephase is ahead of zeitgeber time. The dark gray
background indicates night in both scenarios. The lighy dpa@ckground from ZT1 to ZT11 indicates the
period of darkness during photoskeleton entrainment.

Figure 2. Input Schematic. Light gates are shown as rectangles, tkeectark as a circle, and input and
feedback are shown as arrows. The external lightlcpasses through the initial gate, which produces an
attenuated light signdd (L). This signal then passes through the phase-dependentdadd, uses clock
components{gc to compute further signal attenuation. The resulBigG, (L), Xsc), which manipulates
the core clockX. The core clock sends output signals to peripheral oszilaihich, in turn, may feed back
to the clock. The output processes are shown in gray and aireahaded in the models under consideration.

Figure 3. Theoretical VRCs of varied shape allow for similar stableg#s of entrainment under dif-
ferent photoperiods. Shown are theoretical VRCs for (AYsperiod and (B) long-period clocks. For each
VRC, a phase-only model was entrained to a 24-hour LD sckedsihg photoperiods of 8 to 16 hours.

The stable dawn and dusk phase angles for (C) short-peridd@nlong-period clocks are drawn with
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gray rectangles in the background. The gray rectanglesatelperfect photoperiodic behavior in which a
short-period clock conserves a dusk phase of CT12 and aderige clock conserves a dawn phase of CTO.

Figure 4. Phase Response Curves for the Becker-Weimann model withdadés. PRCs calculated
with A) the full model method, B) the phase evolution methaxi C) the method of averaging are shown
for light pulses of durations 1, 3, 4, 6, 9, 12, and 18 hourse phase shift is plotted as a function of the
circadian time of the middle of the pulse.

Figure 5. Full Model Entrainment of BWG by a 1:23 LD schedule. A) The P®& 1-hour pulse of
light is shown in the upper panel, plotted with the phaset sisifa function of the circadian time of the onset
of the pulse (ZTO0). The filled triangle shows the predicteabkt phase angle of entrainment (with respect
to pulse onset). The bottom panel shows the number of cyebpsred to converge to (i.e. remain within
0.25 hours of) the stable phase of entrainment. The x-agiesents the circadian time of the clock when
the entrainment experiment begins (i.e. the onset ZTO ofiteelight pulse). B) The phase transitions
are shown for three entrainment experiments — ZT0=CT6 folecy (upper panel), ZTO=CT12 for cycle
1 (middle panel), and ZT0=CT18 for cycle 1 (lower panel). BRbrthree, the dotted line represents the
theoretical PTM, the filled triangle is the predicted staihase angle of entrainment, the black filled circle
is the actual stable phase angle of entrainment, the grelgsirepresent the phase transitions for cycles 1
to 50 of the experiment, and the arrows indicate the gen@edtibn of the phase shifts. C) The process of
entrainment is shown for 25 experiments with the circadiare tof dawn shown for each of the 50 cycles.

Figure 6. Full Model Entrainment of BWG by a 12:12 LD schedule. A) The®® a 12-hour pulse of
light is shown in the upper panel, plotted with the phaset sisifa function of the circadian time of the onset
of the pulse (ZT0). The filled triangle shows the predicteabk phase angle of entrainment. The bottom
panel shows the number of cycles required to converge tar@reain within 0.25 hours of) the stable phase
of entrainment. Experiments converge to the predictedgbéentrainment (circa CTO; filled circles) and
to one approximately in anti-phase (circa CT12; empty e8kl The x-axis represents the circadian time of
the clock when the entrainment experiment begins (i.e. ZB))Theoretical phase transitions are shown
for three entrainment experiments — ZTO=CT6 for cycle 1 argpanel), ZTO=CT12 for cycle 1 (middle
panel), and ZT0O=CT18 for cycle 1 (lower panel). For all thrie dotted line represents the theoretical
PTM, the filled triangle is the predicted stable phase anggmtvainment, the black filled circle is the actual
stable phase angle of entrainment, the gray circles remprése phase transitions for cycles 1 to 50 of the

experiment, and the arrows indicate the general directidheophase shifts. C) The process of entrainment
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is shown for 25 PTM-based simulations with the circadiaretwhdawn shown for each of 50 cycles.

Figure 7. PTM Entrainment by a 12:12 LD schedule. A) The PRC to a 12-tmuse of light is
shown in the upper panel, plotted with the phase shift as etifumof the circadian time of the onset of the
pulse (ZT0). The filled triangle shows the predicted stalilase angle of entrainment. The bottom panel
shows the number of cycles required to converge to (i.e. iremghin 0.25 hours of) the stable phase of
entrainment. The x-axis represents the circadian timeetkhck when the entrainment experiment begins
(i.e. the onset ZTO of first light pulse). B) The phase tramsg are shown for three entrainment scenarios
— ZT0=CTE6 for cycle 1 (upper panel), ZTO=CT12 for cycle 1 (di&panel), and ZTO=CT18 for cycle 1
(lower panel). For all three, the dotted line representshberetical PTM, the filled triangle is the predicted
stable phase angle of entrainment, the gray trianglesgeptéhe phase transitions for cycles 1 to 50 of the
experiment, and the arrows indicate the general directidheophase shifts. C) The process of entrainment
is shown for 25 scenarios with the circadian time of dawn shfaw each of 50 cycles.

Figure 8. Entrainment of BWG by a 1:10:1:12 LDLD schedule. A) The PRGwo 1-hour pulses
of light (separated by 10 hours of darkness) is shown, mlottéh the phase shift as a function of the
circadian time of the onset of the pulse (ZT0). The filledrigkes show the two predicted stable phase
angle of entrainment (with respect to the onset of the firlgg)u B) Shown are the number of cycles each
experiment required to converge to (i.e. remain within hagrs of) the stable phase of entrainment. The
x-axis represents the circadian time of the clock when theagEment experiment begins (i.e. ZTO0).

Figure 9. Entrainment under photoperiods of 8 to 16 hours. (A) The t®&8RC is double-plotted.
The photoperiods (all ending at CT13) are shown in gray negés, with lighter grays for longer photope-
riods. (B) The full model PRCs for 8- to 16-hour pulses of tighe shown, aligned according to the time of
the pulse onset. The ranges of the predicted dawn phasesanglare indicated with arrows. (C) The full
model PRCs for 8- to 16-hour pulses of light are aligned atiogrto the time of pulse offset. The predicted

dusk phase anglgg, is indicated with an arrow.
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Figure 4: Phase Response Curves for the Becker-Weimannl mitddoth gates. PRCs calculated with A)
the full model method, B) the phase evolution method, anch€ntethod of averaging are shown for light
pulses of durations 1, 3, 4, 6, 9, 12, and 18 hours. The phéfsésshlotted as a function of the circadian
time of the middle of the pulse.
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Figure 5: Full Model Entrainment of BWG by a 1:23 LD schedu}d.The PRC to a 1-hour pulse of light
is shown in the upper panel, plotted with the phase shift asation of the circadian time of the onset
of the pulse (ZTO0). The filled triangle shows the predicteabkt phase angle of entrainment (with respect
to pulse onset). The bottom panel shows the number of cyebpsred to converge to (i.e. remain within
0.25 hours of) the stable phase of entrainment. The x-agigsents the circadian time of the clock when
the entrainment experiment begins (i.e. the onset ZT0 ofithelight pulse). B) The phase transitions
are shown for three entrainment experiments — ZT0=CT®6 folecy (upper panel), ZT0=CT12 for cycle
1 (middle panel), and ZTO=CT18 for cycle 1 (lower panel). Bbrthree, the dotted line represents the
theoretical PTM, the filled triangle is the predicted staitl@se angle of entrainment, the black filled circle
is the actual stable phase angle of entrainment, the grelgsirepresent the phase transitions for cycles 1
to 50 of the experiment, and the arrows indicate the gen@edtibn of the phase shifts. C) The process of
entrainment is shown for 25 experiments with the circadiare tof dawn shown for each of the 50 cycles.
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Figure 6: Full Model Entrainment of BWG by a 12:12 LD schedule The PRC to a 12-hour pulse of
light is shown in the upper panel, plotted with the phaset sisifa function of the circadian time of the onset
of the pulse (ZT0). The filled triangle shows the predicteabk phase angle of entrainment. The bottom
panel shows the number of cycles required to converge tar@reain within 0.25 hours of) the stable phase
of entrainment. Experiments converge to the predictedgpbfentrainment (circa CTO; filled circles) and
to one approximately in anti-phase (circa CT12; empty e8kl The x-axis represents the circadian time of
the clock when the entrainment experiment begins (i.e. ZB))Theoretical phase transitions are shown
for three entrainment experiments — ZTO=CT6 for cycle 1 argpanel), ZTO=CT12 for cycle 1 (middle
panel), and ZT0=CT18 for cycle 1 (lower panel). For all thrée dotted line represents the theoretical
PTM, the filled triangle is the predicted stable phase anfgatvainment, the black filled circle is the actual
stable phase angle of entrainment, the gray circles reprédse phase transitions for cycles 1 to 50 of the
experiment, and the arrows indicate the general directidheophase shifts. C) The process of entrainment
is shown for 25 PTM-based simulations with the circadiaretwhdawn shown for each of 50 cycles.
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Figure 7. PTM Entrainment by a 12:12 LD schedule. A) The PR&1@-hour pulse of light is shown in the
upper panel, plotted with the phase shift as a function ottreadian time of the onset of the pulse (ZTO0).
The filled triangle shows the predicted stable phase angknwiinment. The bottom panel shows the
number of cycles required to converge to (i.e. remain wihzb hours of) the stable phase of entrainment.
The x-axis represents the circadian time of the clock wheretitrainment experiment begins (i.e. the onset
ZTO0 of first light pulse). B) The phase transitions are showantliree entrainment scenarios — ZT0=CT®6 for
cycle 1 (upper panel), ZT0O=CT12 for cycle 1 (middle paneld ZTO=CT18 for cycle 1 (lower panel). For
all three, the dotted line represents the theoretical PTbifitled triangle is the predicted stable phase angle
of entrainment, the gray triangles represent the phassiti@rs for cycles 1 to 50 of the experiment, and
the arrows indicate the general direction of the phasesst} The process of entrainment is shown for 25
scenarios with the circadian time of dawn shown for each afy&les.
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Figure 8: Entrainment of BWG by a 1:10:1:12 LDLD schedule.TAe PRC to two 1-hour pulses of light
(separated by 10 hours of darkness) is shown, plotted watipliase shift as a function of the circadian time
of the onset of the pulse (ZT0). The filled triangles show e predicted stable phase angle of entrainment
(with respect to the onset of the first pulse). B) Shown arentireber of cycles each experiment required
to converge to (i.e. remain within 0.25 hours of) the stalilage of entrainment. The x-axis represents the
circadian time of the clock when the entrainment experinbegins (i.e. ZT0).

30



1 —
o 05
2]
c
g
7 0
&)
4
)
g -0.5¢
o
()
> -1t
_15 L 1 L 1 J
0 6 12 18 18 24
B
c 2
0f:
e N > .
n n
3 S 2K
© © e
< < R
o o
-4
-6
0 6 12 18 24 0 6 12 18 24
Onset of Pulse (CT) Offset of Pulse (CT)

Figure 9: Entrainment under photoperiods of 8 to 16 hour3.Ti#e model's VRC is double-plotted. The
photoperiods (all ending at CT13) are shown in gray recesghith lighter grays for longer photoperiods.
(B) The full model PRCs for 8- to 16-hour pulses of light arewh, aligned according to the time of the
pulse onset. The ranges of the predicted dawn phase apglesre indicated with arrows. (C) The full
model PRCs for 8- to 16-hour pulses of light are aligned atiogrto the time of pulse offset. The predicted
dusk phase anglgg, is indicated with an arrow.
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