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Abstract

The small number of some reactant molecules in biological
systems formed by living cells can result in dynamical
behavior which cannot be captured by traditional determin-
istic models. In such a problem, a more accurate simula-
tion can be obtained with discrete stochastic simulation
(Gillespie’s stochastic simulation algorithm – SSA). Many
stochastic realizations are required to capture accurate
statistical information of the solution. This carries a very
high computational cost. The current generation of graph-
ics processing units (GPU) is well-suited to this task. In this
paper we describe our implementation and present some
computational experiments illustrating the power of this
technology for this important and challenging class of
problems.

Key words: stochastic, SSA, chemically reacting systems,
parallel, GPU

1 Introduction

Chemically reacting systems have traditionally been sim-
ulated by solving a set of coupled ordinary differential
equations (ODEs). Although the traditional deterministic
approaches are sufficient for most systems, they fail to
capture the natural stochasticity in some biochemical sys-
tems formed by living cells (Gillespie 1976, 1977; McAd-
ams and Arkin 1997; Arkin, Ross, and McAdams 1998),
in which the small population of a few critical reactant
species can cause the behavior of the system to be discrete
and stochastic. The dynamics of those systems can be sim-
ulated accurately using the machinery of Markov process
theory, specifically the stochastic simulation algorithm
(SSA) of Gillespie (1976, 1977). For many realistic bio-
chemical systems the computational cost of simulation by
the SSA can be very high. The original form of the SSA is
called the direct method (DM). Much recent work has
focused on speeding up the SSA by reformulating the
algorithm (Blue, Beichl, and Sullivan 1995; Gibson and
Bruck 2000; Schulze 2002; Cao, Li, and Petzold 2004;
McColluma et al. 2005; Li and Petzold 2006).

Often the SSA is used to generate large (typically ten
thousand to a million) ensembles of stochastic realiza-
tions to approximate probability density functions of spe-
cies populations or other output variables. In this case,
even the most efficient implementation of the SSA will be
very time consuming. Parallel computation on clusters
has been used to speed up the simulation of such ensem-
bles (Li et al. 2007). Yoshimi et al. (2005) investigated the
use of field programmable gate arrays (FPGAs). However,
clusters are still relatively expensive to buy and maintain,
and specialized devices such as FPGAs are difficult to
program. Because of the low cost and high performance
processing capabilities of the GPU, general purpose GPU
(GPGPU) computation (GPGPU 2007) has become an
active research field with a wide variety of scientific
applications including fluid dynamics, molecular dynam-
ics, cellular automata, particle systems, neural networks,
and computational geometry (Owens et al. 2005; GPGPU
2007; McGraw and Nadar 2007; Li et al. 2008, 2009).
Before the NVIDIA G80 was released, GPU users had to
recast their applications into a graphics application pro-
gramming interface (API) such as OpenGL, which is a
significant challenge for non-graphics applications. The
Compute Unified Device Architecture (CUDA; NVIDIA
2008a) is a parallel computing architecture which unlocks
the computational power of the GPU to scientific comput-
ing through APIs designed for general-purpose computa-
tion in a C-like language. In this paper, we will show how
to efficiently perform ensemble runs of SSA simulations
for chemically reacting systems on a CUDA-enabled
GPU – the NVIDIA GeForce 8800GTX – and demon-
strate that very substantial speedups are achievable even
for large problems that do not fit in the shared memory.
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108 COMPUTING APPLICATIONS

This paper is organized as follows. In Section 2 we
briefly review the stochastic simulation algorithm and
some basics of parallel computation with the graphics
processing unit. In Section 3 we introduce the efficient
parallelization of the SSA on the GPU. Simulation results
are presented in Section 4, and in Section 5 we draw some
conclusions.

2 Background

2.1 Stochastic Simulation Algorithm

The stochastic simulation algorithm applies to a spatially
homogeneous chemically reacting system within a fixed
volume at a constant temperature. The system involves N
molecular species {S1, …, SN} represented by the dynam-
ical state vector X(t) = (X1(t), …, XN(t)), where Xi(t) is the
population of species Si in the system at time t, and M
chemical reaction channels {R1, …, RM}. Each reaction
channel Rj is characterized by a propensity function aj
and state change vector νj = {ν1j, …, νNj}, where aj(x)dt
is the probability, given X(t) = x, that one Rj reaction will
occur in the next infinitesimal time interval [t, t + dt), and
νij is the change in the number of species Si as a result of
one Rj reaction.

The next reaction density function (Gillespie 2001),
which is the basis of SSA, gives the joint probability that
reaction Rj will be the next reaction and will occur in the
infinitesimal time interval [t, t + dt), given X(t) = x. By
applying the laws of probability, the joint density func-
tion is formulated as follows:

(1)

where a0(xt) =  aj(xt).
Starting from (1), the time τ, given X(t) = x, that the

next reaction will fire at t + τ, is the exponentially distrib-

uted random variable with mean ,

(2)

The index j of that firing reaction is the integer random
variable with probability

(3)

Thus, on each step of the simulation the random pairs
(τ, j) are obtained based on the standard Monte Carlo
inversion generating rules. First we produce two uniform

random numbers r1 and r2 from U(0, 1), the uniform dis-
tribution on [0, 1]. Then τ is given by

(4)

The index j of the selected reaction is the smallest integer
in [1, M] such that

(5)

Finally, the population vector X is updated by the state
change vector ν, and the simulation is advanced to the
next reacting time.

The SSA is a type of kinetic Monte Carlo (KMC) algo-
rithm that is applied to chemical kinetics. Because of the
special structure of chemical kinetics problems it has
been possible to put SSA on a solid theoretical founda-
tion. Because SSA must simulate every reaction event, sim-
ulation with SSA can be quite computationally demanding.
A number of different formulations of SSA have been pro-
posed, in an effort to speed up the simulation (Blue et al.
1995; Gibson and Bruck 2000; Schulze 2002; Cao et al.
2004; McColluma et al. 2005; Li and Petzold 2006). The
most time-consuming step of the SSA is the selection of
the next reaction to fire. The complexity of this step for
the direct method is O(M), where M is the number of
reactions. A fast SSA formulation is something we
call the logarithmic direct method (LDM) because its
complexity for the critical step is O(logM). The LDM
algorithm comes from the literature on kinetic Monte
Carlo algorithms (Schulze 2002). Further efficiency of
the LDM can be achieved by using sparse matrix tech-
niques in the system state update stage (Li and Petzold
2006). In our performance comparisons we use the LDM
with sparse matrix update. The algorithm is summarized
as follows:

1. Initialization: Initialize the system.
2. Propensity calculation: Calculate the propensity

functions ai (i = 1, …, M), and save the intermedi-
ate data as an ordered sequence of the propensities
subtotaled from 1 to M, while summing all the
propensity functions to obtain a0.

3. Reaction time generation: Generate the firing time
of the next reaction.

4. Reaction selection: Select the reaction to fire
next with binary search on the ordered subtotal
sequence.

5. System state update: Update the state vector x by
νj with sparse matrix techniques, where j is the

P τ j, xt t,( ) aj xt( )e
a0– xt( )τ

,=

j 1=

M∑

1
a0 x( )
-------------

P τ x t,( ) a0 xt( )e
a0– xt( )τ

τ 0≥( ).=

P j τ x t, ,( ) aj xt( )
a0 xt( )
--------------= j 1 … M, ,=( ).

τ 1
a0 xt( )
-------------- 1

r1

---- 
  .ln=

aj′ xt( )
j ′ 1=

j

∑ r2a0 xt( ).>
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index of the current firing reaction. Update the
simulation time.

6. Termination: Go back to stage 2 if the simulation
has not reached the desired final time.

When an ensemble (ten thousand to a million realizations
or more) must be generated, the computation can become
intractable even with the best SSA formulation. Thus we
seek to make use of the low-cost, high-efficiency GPGPU.

2.2 Using the Graphics Processor Unit as a Data 
Parallel Computing Device

2.2.1 Modern graphics processor unit The graph-
ics processing unit (GPU) is a dedicated graphics card for
personal computers, workstations, or video game con-
soles. Recently, GPUs with general purpose parallel pro-
gramming capacities have become available. The GPU
has a highly parallel structure with high memory band-
width and more transistors devoted to data processing than
to data caching and flow control (compared with a CPU
architecture), as shown in Figure 1 (NVIDIA, 2008a). This
makes the GPGPU a very powerful computing engine.
NVIDIA reports that the GPU architecture is most effec-
tive for problems that can be implemented with stream
processing and using limited memory. Single instruction
multiple data (SIMD), which involves a large number of
totally independent records being processed by the same
sequence of operations simultaneously, is an ideal GPGPU
application.

2.2.2 NVIDIA 8 Series GeForce-based GPU archi-
tecture NVIDIA corporation claims its GPU as a “sec-
ond processor in personal computers,” which means that
the data parallel computation intensive part of applica-
tions can be off-loaded to the GPU (NVIDIA, 2008a).

We performed our simulations on the NVIDIA 8800
GTX chip with 768 MB RAM. There are 128 stream proc-

essors on a 480 mm2 surface area of the chip, divided into
16 clusters of multiprocessors as shown in Figure 2
(NVIDIA, 2008a). Each multiprocessor has 16 KB
shared memory which brings data closer to the Arithme-
tic Logic Unit (ALU). The processors are clocked at 1.35
GHz with dual processing of scalar operations supported.
Thus the peak computation rate accessible from the
CUDA is (16 multiprocessors × 8 processors/multiproc-

Fig. 1 CPU (left) versus GPU (right) architecture.

Fig. 2 Hardware model.

 at UNIV CALIFORNIA SANTA BARBARA on July 5, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


110 COMPUTING APPLICATIONS

essor) × (2 flops/MAD)1 × (1 MAD/processor-cycle) ×
1.35 GHz = 345.6 GFLOP/s. The maximum observed
bandwidth between system and device memory is about
2 GB/s. All of the benchmarks on the GPU were per-
formed on a single GeForce 8800 GTX GPU card. Like-
wise, we use only a single core of the Intel Core 2 Duo
E6700 2.67 GHz dual-core processor, which makes the
best use of the memory bandwidth.

The limited size of the shared memory of each multi-
processor restricts the range of applications that can
make use of this architecture. Maximizing the use of shared
memory makes better use of the arithmetic units. The
Compute Unified Device Architecture (CUDA) Software
Development Kit (SDK), supported by the NVIDIA
GeForce 8 Series makes this challenging task easier than
previous graphics APIs.

2.2.3 CUDA: a GPU software development environ-
ment The CUDA provides an essential high-level devel-
opment environment with standard C language, resulting
in a minimal learning curve for beginners to access the
low-level hardware. Unlike previous graphics application
interfaces, the CUDA provides both scatter and gather
memory operations for development flexibility. It also
supports fast read and write shared memory to reduce the
dependence of application performance on the DRAM
bandwidth (NVIDIA, 2008a).

The structure of CUDA computation broadly follows
the data-parallel model: each of the processors executes
the same sequence of instructions on different sets of the
data in parallel. The data can be broken into a 1-D or 2-D
grid of blocks, and each block can be 1-D, 2-D or 3-D
and can allow up to 512 threads which can collaborate
through shared memory. Currently the multiprocessor
single-instruction multiple-thread unit manages threads in
warps comprising 32 parallel threads. Threads in a warp
execute the same instructions at one time, thus the
branch divergence in one warp will cause each branch
path execute serially. Because different warps run inde-
pendently, to fully utilize the GPU, we should try to
make the threads in a warp take the same execution path
(NVIDIA, 2008a).

In theory, the CPU and GPU can run in parallel. In
practice, the severe memory limitations of the G80
makes this impossible for all but the smallest problems.
The problem is that if we have two kernels, K1 and K2,
one of which is running on the (single) GPU, then in
order to transfer the data needed by K2 into the GPU
memory while K1 is simultaneously executing, one
would need to partition the already small GPU device
memory into parts. This puts a very severe restriction on
the amount of memory available to each kernel.

3 Implementation Details

3.1 Random Number Generation

Statistical results can only be relied on if the independ-
ence of the random number samples can be guaranteed.
Thus generating independent sequences of random num-
bers is one of the important issues for implementing sim-
ulation for ensembles of stochastic simulation algorithms
in parallel.

Originally we considered pre-generating a large number
of random numbers by the CPU. Because the CPU and
GPU cannot communicate in real time in parallel (the
GPU has to stop to get the data from the CPU and then
continue the computation), we can pre-generate a huge
number of random numbers and store them in the shared
memory and swap back to the CPU to generate more
when they are used up. Alternatively, we could pre-gen-
erate a huge number of random numbers and put them
in the global memory. Both methods will waste too
much time for data access. Furthermore, the Scalable
Parallel Random Number Generators Library (SPRNG;
Mascagni 1999; Mascagni and Srinivasan 2000), which
we use in our StochKit (Li et al. 2007) package for discrete
stochastic simulation because of its excellent statistical
properties, cannot be implemented on the GPU because
of its complicated data structure. The only solution
appears to be to implement a simple random number gen-
erator (RNG) on the GPU. Experts suggest using a mature
random number generator instead of inventing a new one,
because it requires great care and extensive testing to eval-
uate a random number generator (Brent 1992). Thus for
our simulation we chose the Mersenne Twister (Mat-
sumoto and Nishimura 1998; Podlozhnyuk 2008), which
has been designed to address the flaws of previous RNGs
and is now widely used.

The Mersenne Twister (MT), was developed by Makoto
Matsumoto and Takuji Nishimura in 1997 (Matsumoto
and Nishimura 1998), with initialization improved in 2002
(Matsumoto and Nishimura 2002). The MT pseudoran-
dom number generator is based on a matrix linear recur-
rence over a finite binary field and generates the vectors
of fixed word size:

(6)

where, n, m are fixed positive integers and n > m;
(xk)(k = 0, 1, …) are a sequence of vectors with fixed width;

(x |x ) is the w-dimensional vector with the concate-
nation of the w – r most significant of bits of xk and the r
least significant bits of x(k + 1), w is the word size and r is

the separation point; and (x |x ) · A is the multiplica-
tion of the concatenated bit vector with the matrix A

x k n+( ) : x k m+( ) xk
u x k 1+( )

l( ) A k 0 1 …, ,=( )⋅+=

k
u

k 1+( )
l

k
u

k 1+( )
l
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(called the twister); The form of the matrix A is chosen
for quick computation (A is a companion matrix):

(7)

For such an A, the multiplication x · A can be computed
by

x · A = (8)

where a = (a0, a1, …, a(w – 1)).
This method has passed many statistical randomness

tests including the stringent Diehard tests (Matsumoto
and Nishimura 1998). The fully tested sequential MT
random number generator can efficiently generate high
quality, long period random sequences with a high
order of dimensional equidistribution. Because of MT’s
bitwise arithmetic and efficient use of memory, the algo-
rithm is well-suited to the GPU with CUDA. In our
implementation, we use the Mersenne Twister MT19937
with 32-bit word length on the GPU, the modification of
the multithreaded C implementation of MT for GPU sup-
plied by NVIDIA SDK (NVIDIA 2008b). Because of the
iterative nature of the MT, the limitations of the GPU
memory access and the many random numbers needed
simultaneously for each launch of our simulation, it is
hard to parallelize a single MT on the GPU. The genera-
tion of a large number of independent parallel streams
of random numbers is known to be a difficult problem
that is best addressed by experts. Thus we are using the
Dynamic Creation of Pseudorandom Number Generators
(DCPRNG) proposed by MT authors M. Matsumoto and
T. Nishimura in 2000. This method is based on a hypoth-
esis that many PRNG researchers agree with: “A set of
PRNGs based on linear recurrences is mutually `inde-
pendent’ if the characteristic polynomials are relatively
prime to each other” (Matsumoto and Nishimura 2000).
Since our application requires a huge number of random
numbers for even one realization of a simple model, we
put the state vector in the shared memory for random
number generation, to minimize the data launching and
accessing time.

3.2 Parallelism Across the Simulations

NVIDIA reported that stream processing, which allows
many applications to more easily exploit a limited form
of parallel processing, can run very efficiently on the new
GPU architecture. Our focus is on computation of ensem-
bles of SSA realizations, which is a typical stream
processing application. Ensembles of SSA simulations
for chemically reacting systems are very well-suited for
implementation on the GPU through the CUDA. The simu-
lation code can be put into a single kernel running in par-
allel on a large set of system state vectors X(t). The
large set of final state vectors X(tfinal) will contain the
desired results.

The initial conditions X(0) and the stoichiometric
matrix ν originally will be in the host memory. We must
copy them to the device memory by CUDAMemcpy in
the driver running on the the CPU. We minimize the
transfer between the host and device by using an interme-
diate data structure on the device and batch a few small
transfers into a big transfer to reduce the overhead for
each transfer. Next, we need to consider the relatively
large global memory versus the limited-size shared mem-
ory. The global memory adjacent to the GPU chip has
higher latency and lower bandwidth than the on-chip
shared memory. There is about a 400–600 clock cycle
latency to access the global memory compared with four
clock cycles to read or write the shared memory. To
effectively use the GPU, our simulation makes as much
use of on-chip shared memory as possible. We load X(0)
and the stoichiometric matrix ν from the device memory
to the shared memory at the very beginning of the kernel,
process the data (propensity calculation, state vector update,
etc.) in shared memory, and write the result back to the
device memory at the end. Because the same instruction
sequence is executed for each data set, there is a low
requirement for flow control. This matches the GPU’s
architecture. The instruction sequence is performed on a
large number of data sets which do not need to swap out,
hence the memory access latency is negligible compared
with the arithmetic calculation.

The CUDA allows each block to contain at most 512
threads, but blocks with the same dimension and size that
run the same kernel can be put into a grid of blocks. Thus
the total number of threads for one kernel can be very
large. Given the total number of realizations of SSA to be
simulated, the number of threads per block and the
number of blocks must be carefully balanced to maxi-
mize the utilization of computation resources. In addition,
the global memory is not cached, so it is important to
choose the right memory access pattern to achieve maxi-
mum bandwidth, which means we need to align addresses
to 4, 8, and 16 to avoid an uncoalesced addressing prob-
lem. For the stochastic simulation of biochemically react-

A

1

1

·

·

·

1

a0 a1 · · · · a w 1–( ) 
 
 
 
 
 
 
 
 
 
 

.=

shiftright x( ),
if the least significant bit of x is 0,

shiftright x( ) a else,⊕
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ing systems, we utilize a fixed number of threads per block
to efficiently use the limited shared memory. For the best
performance, and whenever possible, all system state vec-
tors and propensities should be stored in shared memory
for efficient frequent access. To put all system state and
propensities in the shared memory, the number P of
threads per block should satisfy (N + M) × 4 × P + α < 16
K, where N is the number of chemical species, M is the
number of reactions, 4 is the size (in bytes) of an inte-
ger/float variable, 16 K is the maximum shared memory
we can use within one block, and α is the shared memory
used by the random number generator (this is relatively
small). For those large systems for which it is impossible
to fit all the data in the limited shared memory for many
threads, we store only the most frequently used data there,
to maximize possible calculation before switching them
out. To run a large number of realizations, we launch
many blocks simultaneously. Up to a point, the perform-
ance increases as the number of blocks increases. This is
because the different warps running on the GPU in turn
can hide the memory latency. But when the number of
threads is large enough to hide the memory latency, fur-
ther increase in the number of threads will slow down the
performance.

In our experiments, we measure the histogram distance
(Cao and Petzold 2006) between the two sets of data for
each species computed on the GPU and the CPU. Suppose
I is the interval that contains all the sample values, I =
[xmin, xmax), and L = xmax – xmin. The interval I is divided

into K subintervals Ii = [xmin + , xmin + ), (i = 1, 2, … K).

The histogram distance between two sets Xi and Yj of
samples is defined as

(9)

where χ(x, Ij) is the characteristic function defined as

(10)

To calculate the histogram distance, we first determine
the min and max values, collect all the points into the
bins and get a raw count of the bin population. Then we
normalize the bin population to a percentage of the points
that lie in that bin (Cao and Petzold 2006). On the GPU,
we use a tree-based approach to do the parallel reduction
within each block. Between blocks, we switch back to
the CPU for each step of the reduction, to get the min and

max. To get the percentage of normalized samples of the
interested species that fall in each bin’s interval, each
thread processes its own species population and adds
itself to the appropriate place in the bin vector. The histo-
gram distance between the GPU and the CPU ensemble
simulations is then compared with the self-distance of
the CPU simulation (the distribution distance of two
ensemble runs done with different random number
seeds) to determine whether they are statistically sig-
nificant. All such ensemble simulations are comprised
of the same number of stochastic realizations, that is,
we choose N = M.

4 Parallel Simulation Performance

The performance of the parallel simulation is limited by
the number of processors available for the computation,
the workload of the available processors, and the com-
munication and synchronization costs. It is important to
note that more processors does not necessarily mean bet-
ter performance. Our simulations were run on a single
NVIDIA GeForce 8800GTX GPU installed on a personal
workstation. The benchmarking on the GPU has been
done on a configuration consisting of the host worksta-
tion and one GPU card. Likewise, the benchmarking on
the CPU was performed on a single core. For the bench-
marking on the CPU, we compiled the code without and
with the SSE extension, where we generate the SSE code
automatically via the compiler without hand-coded assem-
bly. In our tests, both the GPU and the CPU simulations
were done in single precision, because the G80 supports
only single precision. One might legitimately wonder to
what extent this impacts the accuracy of the computation.
To this end, we performed both experiments in double
precision on the CPU, and found that the difference
between the single precision and the double precision
results was not statistically significant (Cao and Petzold
2006) for 100,000 realizations. (The self-distance depends
on the number of realizations.)

Example 4.1. Decay Dimerization Model
The decay dimerization model (Gillespie 2001) involves
three reacting species S1, S2, S3 and four reaction chan-
nels R1, R2, R3, R4

(11)

We used the reaction rate constants from Gillespie
(2001),

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04, (12)

i 1–( )L
K

------------------- iL
K
-----

DK X Y,( )
∑ j 1=

N
χ xj Ii,( )

N
----------------------------------

∑ j 1=

M
χ yj Ii,( )

M
------------------------------------– ,

i 1=

K

∑=

χ x Ij,( )
1, if x Ii ,∈
0, else.




=

S1 0→
S1 S1 � S2 +

S2 S3.→

c1

c2

c3

c4
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and the initial conditions

X1 = 105, X2 = X3 = 0. (13)

The simulation performance has been extraordinary, as
shown in Table 1. For 30,000 realizations, the parallel
(GPU) simulation is almost 200 times faster than the
sequential simulation on the host computer.2, 3 �

In general, as the size of the system increases, the
speed-up of the GPU decreases because of the limited
shared memory. However, most biochemical systems are
loosely coupled. Thus we can make use of sparse matrix
techniques to reduce the memory requirements. Here we
use the Yale Sparse Matrix Format (Golub and Loan
1996). Very large biochemical systems arise when the
model takes into account spatial inhomogeneity. The SSA
is based on the assumption of a spatially homogeneous
system. However, by discretizing the space into cells and
introducing variables associated to the population of the
species in each cell, the SSA can also be applied to spa-
tially inhomogeneous systems. Here we construct a sim-
ple example to illustrate the power of the GPU for this
type of problem.

Example 4.2. Spatially Inhomogeneous Model
This model was introduced by Shnerb et al. (2000) to illus-
trate the difference between the continuous deterministic
approach and the discrete stochastic approach. For con-
venience, we simplified the model slightly by fixing
the position of one species. The model is defined on a 2-
dimensional grid. Species A is initially located at a single
grid point and moves randomly with a given diffusion

coefficient. Species B is initially located in a randomly
chosen area of adjacent grid points, away from the border
regions. The model is simulated over a fixed time period,
to find the spatial distribution of A. Two types of reac-
tions are involved. Species A decays with a constant rate
µ, and divides with rate λ when it meets the catalyst B.
We simulated the model with n = 8, 10, 16, 20. To each
grid cell (labeled (i, j)), we assign variables Ai, j for spe-
cies A and Bi, j for species B. The reactions are listed as
follows

(14)

The diffusion rate for A is µ = 0.5. The decay rate for A is
0.1. The division rate (when A reaches the region occu-
pied by B) is λ = 0.0025. The initial states are set so that
one cell contains a population of 100 of species A, four
cells contain a population of 100 of species B, and the
remainder of the cells contain no A or B respectively.

(15)

To use the shared memory efficiently, in addition to
using the sparse matrix technique we group the M reac-

Table 1
Performance for the dimer decay model.

T × B R ST STsse PT GGPU

16 × 16 256 11.6065 11.3201 0.6354 4.3968

16 × 32 512 23.2192 22.9833 0.6655 8.3978

32 × 32 1,024 46.4077 46.1381 0.6789 16.4556

64 × 32 2,048 92.8379 92.0769 0.7354 30.3889

128 × 32 4,096 185.5898 184.9292 0.9984 44.7435

256 × 32 8,192 371.2942 370.8793 1.8462 48.4103

256 × 64 16,384 742.8669 742.1035 3.6357 49.1821

256 × 96 24,578 1,114.1775 1,113.7827 5.2921 50.6778

256 × 128 32,768 1,477.8368 1,476.4513 6.8798 51.7059

This table shows the performance for the Dimer Decay model, where T × B is the thread number × block number, R is 
the number of realizations, ST is the sequential simulation time, STsse is the simulation time on the CPU with the SSE 
extension, PT is the parallel simulation time, and GGPU is the GFLOPS on the GPU.

Diffusion of A: Ai j, Ai 1± j 1±, ,→
Decay of A: Ai j, 0/ ,→
Division of A: Bi j, Ai j,+ Bi j, 2Ai j,+→

Ai j,
100, i 10 j 10,=,=

0, else



=

Bi j,
100, selected i j, ,
0, else.




=
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tions according to the type of the reaction. We first deter-
mine which group will fire next and then determine at
which grid point that type of reaction will fire. By doing
this, we can avoid saving the propensities in each cell,
which is what is normally done in SSA (Cao et al. 2004;
Li and Petzold 2006). Instead, we keep track only of the
number of species A in each cell, and for species B we
only store the cell position if the population of species B
of that cell is not 0. By doing this, we can dramatically
reduce the number of operations consumed in the calcu-
lation of the propensities, as well as the use of the shared
memory and global memory. The disadvantage is that we
must update the propensities for each group very fre-
quently. We measured the CPU time for 40,000 realiza-
tions. The timing results for different grids are shown in
Table 2. The parallel (GPU) simulation is about 200
times faster than the sequential simulation on the host
computer.

For these computations, we have been able to store all
frequently used reaction rates in shared memory.
Because the shared memory is limited, it is not possible
to store all of the data for a large grid such as 100 × 100
in shared memory. To achieve good performance for
those large models, the key is efficient use of the memory
hierarchy. The basic idea is to block the most frequently
used data on shared memory to minimize the global
memory accesses. In our computation we store only the
reaction rate for each type of reaction, the total popula-
tion of A, the positions of the cells where the population
of B is nonzero, and the population of A in all such cells
with nonzero population of B, plus the cell where A is
initialized. These data are potentially used more fre-
quently during the computation than the population of A
in other cells. With the above data in shared memory, we
can calculate the next time step. To determine which reac-
tion fires next, we first determine the reaction type of the
next firing reaction. Then, to find the position of the next
reaction to fire, we begin by searching the cells that are in
the shared memory, as these are the most likely candi-

dates. If we cannot find the next firing reaction position
in the shared memory, we search the cells in the global
memory. With the above method we can simulate this
model on a large grid with excellent performance. (We
also tried dynamic swapping data between shared mem-
ory and global memory according to the firing frequency,
but the overhead of keeping track of firing frequency for
each cell and data swapping between the shared memory
and global memory actually slows down the perform-
ance.) For large problems, we cannot run too many reali-
zations in parallel, because the device memory of the
GeForce 8800 GTX is also limited (768M). For 5,000
realizations of the 100 × 100 grid, the parallel simulation
is about 50 times faster than the sequential one. �

5 Conclusions

The SSA is the workhorse algorithm for discrete stochas-
tic simulation in systems biology. Often the SSA is used
to generate ensembles (typically ten thousand to a mil-
lion) of stochastic simulations. In this context, even the
most efficient implementations of the SSA can be very
time consuming. The current generation of GPUs appears
to be very well-suited for this purpose. On the two model
problems we tested, we observed speedups of about 200
times for the GPU, over the time to compute on the host
workstation. With this impressive performance improve-
ment, in one day we can generate data which would
require more than six months of computation with the
sequential code on the host workstation.

This technology is not quite ready for the novice user.
Programs must be written to be memory efficient, with
the GPU architecture in mind.
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Notes

1 A MAD is a multiply-add.

2 We note that the compiler-generated SSE code did not yield
much improvement. This may be because of factors such as
the high degree of data dependence from one step to another,
unexpected loop exits involved in the determination of which
reaction will fire first, and non-sequential data accesses due to
the sparse structure of the network stoichiometric matrix.

3 We note that this is still far from the theoretical peak GFLOPS
on the GPU, which is not surprising given the number of non-
floating point operations in discrete stochastic simulation.
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