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ODE METHODS FOR THE SOLUTION OF
DIFFERENTIAL/ALGEBRAIC SYSTEMS

C. W. GEAR" AND L. R. PETZOLD,

Abstract. In this paper we study the numerical solution of the differential/algebraic systems F(t, y, y’)
0. Many of these systems can be solved conveniently and economically using a range of ODE methods.
Others can be solved only by a small subset of ODE methods, and still others present insurmountable
difficulty for all current ODE methods. We examine the first two groups of problems and indicate which
methods we believe to be best for them. Then we explore the properties of the third group which cause
the methods to fail. We describe a reduction technique which allows systems to be reduced to ones that
can be solved. It also provides a tool for the analytical study of the structure of systems.
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1. Introduction. We are interested in initial value problems for the differen-
tial/algebraic equation (DAE)

(1) F(t,y,y’)=O,

where F, y, and y’ are s-dimensional vectors. F will be assumed to be suitably
differentiable. Many of these problems can be solved conveniently and economically
using numerical ODE methods. Other problems cause serious difficulties for these
methods. Our purpose in this paper is first to examine those classes of problems that
are solvable by ODE methods, and to indicate which methods are most advantageous
for this purpose. Secondly, we want to describe the problems which are not solvable
by ODE methods, and the properties of these problems which cause the methods to
fail. Finally, we want to discuss some analytical techniques for rewriting systems in a
form which can be solved by numerical methods.

The idea of using ODE methods for solving DAE systems directly was introduced
in [Gear71], and is best illustrated by considering the simplest possible algorithm,
based on the backward Euler method. In this method the derivative y’(tn/l) at time
tn/l is approximated by a backward difference of y(t), and the resulting system of
nonlinear equations is solved for Y,/I,

(2) F(tn+l, Yn+l, (Yn+l--Yn)/(tn+l--tn)) =0"

In this way the solution is advanced from time t, to time tn+1. Higher order techniques
such as backward differentiation formulas (BDF), Runge-Kutta methods, and extrapo-
lation methods are generalizations of this simple idea.

One of the main advantages in using ODE methods directly for solving DAE
systems is that these methods preserve the sparsity of the system. For example, one
set of DAE systems which is particularly simple to solve consists of systems which are
really ODEs in disguise. If, in (1), OF/y’ is nonsingular, then the system can, in
principle, be inverted to obtain an explicit system of ODEs

(3) y’ =f(t, y).
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However, if gF/Oy’ is a sparse matrix, its inverse may not be sparse. Thus it is preferable
to solve the system directly in its original form. Similarly, it is possible to reduce some
more complex DAE systems to a standard form which, though not as simple as (3),
may be handled via well known techniques. This approach also tends to destroy the
natural sparsity of the system.

The most challenging difficulties for solving DAE systems occur when F/Oy’ is
singular. These are the systems with which we are concerned here. In some sense the
simplest, or at least the best understood, class of DAE systems is that which is linear
with constant coefficients. These systems,

(4) Ay’(t) + By(t) g(t),

can be completely understood via the Kronecker canonical form of the matrix pencil
(A, B). The important characteristic of equation (4) that determines the behavior of
the system and numerical methods is the index of nilpotency of the matrix pencil
(A, B). Numerical methods such as (2) can be used to solve linear and nonlinear
systems of index no greater than one with no great difficulty. Algorithms based on
these methods experience problems when the index is greater than one. We will
introduce a scheme for determining if a system has index greater than one. This scheme
can be used in a code to warn the user of probable difficulty. With some care, techniques
based on higher order methods such as extrapolation can be constructed for solving
systems of the form (4), even if the index exceeds one. We consider these issues in 2.

One might hope that the study of (4) could be used as a guide for understanding
more complicated DAE systems. In general this fails to be true. The structure of the
local constant-coefficient system may not describe the behavior of solutions to the
DAE, for nonlinear or even linear, nonconstant-coefficient systems whose index is
greater than one. Numerical methods which work for (4) break down when the matrices
are time-dependent and the index is greater than one. In fact, we are not aware of
any numerical methods (based on ODE techniques or otherwise) for solving general
linear DAE systems, let alone nonlinear systems. In 3 we examine the structure of
time-dependent problems and show where the difficulties with conventional methods
arise. In the last section we describe some analytical techniques for rewriting systems
in a form which can be solved by numerical methods. These techniques are useful not
only for simplifying systems in practice, but also as theoretical tools for exposing the
underlying structure of high index systems.

2. Problems which can be solved by ODE methods. In this section we study
problems whose index is no greater than one, and linear constant coefficient systems
of arbitrary index. All of these problems are solvable by ODE methods.

The properties of linear constant-coefficient systems (4) are easily understood by
transforming the system to Kronecker canonical form (KCF). For details see [SiEY81].
We give only an overview. The main idea is that there exist nonsingular matrices P
and which reduce (A, B) to canonical form. When P and are applied to the
constant-coefficient problem (4), we obtain

(5) PAQQ-ly +PBQQ-ly Pg(t),

where (PAQ, PBQ) is the canonical form. When A + AB is singular for all values of
,X, no solutions exist, or infinitely many solutions exist. It is not even reasonable to try
to solve these systems numerically in the absence of any additional information about
the solutions to the system. Fortunately, numerical ODE methods reject these problems
almost automatically because they have to solve a linear system involving the matrix
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A + hB (where h is the stepsize and/3 is a scalar which depends on the method and
recent stepsize history); this matrix is singular for all values of h. When det (A + AB)
is not identically zero, the system is "solvable" by the following definition, which was
introduced in [SiEY81]. Here we give it for the time varying linear problem.

DEFINITION. A linear system A(t)y’+B(t)y=g(t) is solvable iff for any
sufficiently smooth input function g(t), solutions to the differential/algebraic equation
exist, and solutions which have the same initial values are identical.

In the following we will deal only with solvable systems.
For solvable systems the KCF form (5) of a constant-coefficient problem can be

written as

(6a)

(6b)

where

y(t) + Cy(t) gl(t),

Eye(t) + y2(t) g2(t),

Q_ly(t) yl(t) gl(t)
y2(t)

Pg(t)
g2(t)

and E has the property that either there exists an integer m such that E 0, E"-1 0
or E is the "empty" (or zero by zero) matrix (where we have assumed for completeness
that O= I). In the latter case, m is defined as 0. The value of m is defined to be the
index of nilpotency of the system. The matrix E is composed of Jordan blocks of the
form

0

and m is the size of the largest of these blocks.
The behavior of numerical methods for solving standard ODE systems (6a) is

well understood and will not be discussed here. Since the systems (6a) and (6b) are
completely uncoupled and the methods we are interested in are linear, it suffices for
understanding (4) to study the action of numerical methods on subsystems of the form
(6b), where E is a single Jordan block. When E is a single Jordan block of size m,
the system is referred to as a canonical (index m) subsystem.

2.1. Index one problems. In the nonlinear case we associate the matrices A and
B with 8F/Oy’ and 8F/Oy, respectively. The pencil (A, B) and its index depend on y,
y’, and t, but in many cases of practical importance, the structure of the pencil is fixed.
For example, the system

y’= f(y, z, t), 0 g(y, z, t),

has index 1 for all y, z and such that [Og/Oz]-1 exists and is bounded.
We will say that a system has uniform index m if the index of the pencil

(A,B) =(F/y’, OF/y) is independent of the points of evaluation of each of the
elements of the pencil. If, in addition, the transformations to canonical form are
sufficiently smooth, index one problems can be handled by the BDF methods. To state
the theorem easily, we need a little notation. Note that (A, B) has 2s9 elements because
F, y and y’ are s-dimensional vectors, and each element is a separate function of

2sZ(2s+l)values of y and y’ and so (A, B) R 2sz(2s+l)-> R 2s2. Let w R The P and Q
which transform (A, B) to canonical form are also functions of w.
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THEOREM 2.1. If
(i) System (1) has uniform index 1,
(ii) Q( w) and Q-l( w) exist and are bounded for all w,
(iii) Q-a(Wl)Q(w2) I + o(11 w211) for all Wl, w2,

then the solution of system (1) by the k-step BDF method with fixed stepsize h converges
to order O(hk) if all initial values are correct and k < 7.

The proof of this theorem is given in [GePe82b]. In fact, the conditions need only
be satisfied in a neighborhood of the solution, as is stated in the referenced proof. It
should also be pointed out that if the index is uniformly zero, it is trivial to prove a
similar result.

While the ODE methods behave basically as expected for the index 1 problems,
there are still some practical difficulties involved in implementing these methods for
this class of problems. Some of these problems are discussed in [Petz81], [Petz82]; we
will not discuss most of these difficulties here.

Most automatic codes for solving DAE systems [Petz82] are designed to handle
nonlinear systems of index -< 1. These codes cannot handle systems of higher index,
and it would be desirable in such codes to detect higher index problems and stop.

It can be done by the following algorithm, described in [Luen77] amongst other
places. This algorithm is an application of a more general one discussed in 4
(Algorithm 4.1) for higher-index problems. We state it as a theorem (whose straight-
forward proof is given in [GePe82b]).

THEOREM 2.2.
(i) If A is nonsingular, the index of (A, B) is zero.
(ii) If A is singular and R is nonsingular such that

RA= A1
0

where the q s matrix A1 has full rank q, then, if the matrix

is nonsingular, the index is one, where

A1

RB= B1

and B is q s.

2.2. Linear, constant-coefficient systems. Systems of index greater than one have
several properties which are not shared by the lower index systems. The properties of
these high index constant-coefficient systems which cause codes to fail are discussed
in much greater detail in [Petz81 ]; we give only a brief outline here. We can understand
many of the properties of (4) and of numerical methods by studying the simplest index
3 problem,

Z g(t), Z’l z2 O, z’2- z3 O.

The solution to this problem is Z "--g(t), z2 g’(t), z3 g"(t). If initial values are
specified for the zi, the solution has a discontinuity unless these initial values are
compatible with the solution. If the driving term g(t) is not twice differentiable
everywhere, the solution will not exist everywhere. For example, if g(t) has a simple
jump discontinuity at some point, z2 includes a Dirac delta function, and z3 includes
the derivative of a Dirac delta.
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What happens when a numerical method is applied to one of these problems? It
is surprising that some of the numerical ODE methods work so well on these problems
which are so unlike ODEs. We can best explain how the methods work by example.
When the backward Euler method is used to solve the simple index 3 problem above,
we find that the solution at time t, is given in terms of the solution at time t,-1 by

(7) Zl,n gn, Z2, (Z1, Zl,n_l)/ h, Z3, (Ze,,, Z2,,,-)/h.
The values of Zl will be correct at all steps (if roundott error is ignored), although the
initial value Zl,0 may be incorrect. If the initial values (which need not be specified for
the original problem but must be specified for the numerical procedure) are inconsistent,
the values of z2,1 and z3,1 are incorrect. In fact, as h 0 they diverge. However, after
two steps we obtain an O(h) correct value of zz,2 because it is obtained by the divided
difference of g(t). Finally, after the third step we obtain a good approximation to z3
which is given by the second divided difference of g(t). After the third step all the
components will be O(h) accurate.

The behavior of a general BDF method is very similar to that of backward Euler
for fixed stepsize as shown in the following theorem, proved in [SiEY81].

THEOREM 2.3. If the k-step, constant-stepsize BDF method is applied to the
constant-coefficient linearproblem (4) with k < 7, the solution is O(h k) accurate globally
after a maximum of m 1) k + 1 steps.

Unfortunately, these results for BDF break down when the stepsize is not constant,
as shown in the next theorem, proved in [GeHP81].

THEOREM 2.4. If the k-step BDF method is applied to (4) with k < 7 and the ratio

of adjacent stepsizes is bounded, then the global error is O(hqmax), where q=
min (k, k- m + 2).

The difficulty can be seen by considering (7) for variable stepsizes. In that case
we get

Zl,n gn, Z2, (Z1, Zl,n_l)/ h,. z3,,, (z2,. z2,.-)/h,.,.
Even after the initial errors have disappeared we find that

Z3,n
(g g,,-1)l h. (gn-1 gn-2)l h.-I

hn
If this were to be an O(h) correct approximation to g the denominator should be
(h, + hn-1)/2. Hence the error is

which is O(1) if h, O(h_l) but h, h,-1.
Although, in principle, a problem of index no greater than 7 could be solved by

the six-step BDF method with variable stepsize, the hypothesis in Theorem 2.4, that
the ratio of adjacent steps is bounded, is not a reasonable model in practice. When a
code is attempting to take the next step, all previous stepsizes are now fixed, and the
next step must be chosen to achieve the desired error. In this model the error of a
BDF formula used for numerical differentiation is O(h), where h is the current stepsize.
Consequently, if the index exceeds 2, the error of one step does not converge as that
stepsize goes to zero, and diverges if the index exceeds 3. This can be seen in the
above example in which the error in z3,,, namely (h,_l/h,- 1)g’,’, behaves like O(hl).

The above results suggest that variable-stepsize BDF is not a suitable method for
solving constant-coefficient DAEs with arbitrary index.
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Fortunately, fixed stepsize BDF methods have an asymptotic expansion of the
global error of the form

N

(8) y(t,h)=y(t)+ E zi(t)hi+O(hN+I)
i--k

where y(t, h) is the numerical solution by a k-step BDF method for k <7 and the
stepsize h (t- to)! n for integer n. This indicates that constant-coefficient linear DAEs
could be solved by extrapolation methods applied to fixed stepsize BDF methods.

Extrapolation is based on computing y(t, h) for N-k + 2 different values of
h (t- to)/hi, 1, 2,. ,N- k + 2 using (8) to compute y(t) under the assumption
that the O(hN+I) terms can be ignored. Techniques such as those discussed in [Deuf80]
can be used to vary the effective stepsize and order, but must be modified to ensure
that all n exceed the value given in Theorem 2.3, namely (rn- 1)k + 1. For this reason
the backward Euler (k 1) is to be preferred. In the extrapolation tableau (see
[Deuf80]) the diagonal and sufficient subdiagonal values must be discarded to avoid
small ni. It is possible that one could obtain an estimate of the index by observing how
many terms must be discarded, but no experiments have been done. In practice, the
use of this technique is complicated somewhat by the possibility of discontinuities in
the function g, and also by the fact that, for higher index systems, the matrices needed
for solving for the solution of the backward Euler formula are likely to be severely
ill-conditioned. This technique is the best approach that we know of for solving linear
constant-coefficient DAE systems.

3. Linear nonconstant-coeflicient systems. In this section we study the noncon-
stant-coefficien linear problem,

(9) A(t)y’(t) + B(t)y(t) g(t).

We explore the underlying structure of these systems, and examine the reasons why
they have proven to be so difficult to solve.

When the coefficients are not constant, as in (9), there are several possible ways
to define the index of the system. We can clearly define the local index, /(t)=
index (A(t), B(t)), whenever the pencil (A(t), B(t)) is nonsingular. We can also define
the global index, when it exists, in terms of possible reductions of the DAE to a
semi-canonical form. By making a change of variables y H(t)z and scaling the system
by G(t), where G(t) and H(t) are nonsingular, we obtain from (9)

(10) G(t)A(t)H( t) z’ + O( t)B(t)H( t) + G( t)A( t)H’ t))z G( t)g( t).

Now, if there exist G(t) and H(t) so that

(11)
G(t)A(t)H(t) !1 0

0 E

G(t)B(t)H(t) + G(t)A(t)H’(t)
c(t) o
o I

and the index of E is m, we will say that the system has global index of m. Note that
the global index is the local index of this semi-canonical form.

Clearly, it is the global index that determines the behavior of the solution. If the
global index is a constant m, we know that n independent initial values can be chosen,
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where na is the dimension of the "differential" part of the system, and that the driving
term can be subject to differentiation m 1 times. (Changes in the index or the structure
of the system are called turning points. Problems with turning points are of importance
in electrical network analysis. See Sastry, et al. [SaDV80] for a discussion in that
context, and Campbell [Camp81] for a discussion of types of turning points.)

The local index in some sense governs the behavior of the numerical method. For
example, if the matrix pencil is singular, then numerical ODE methods cannot solve
the problem because they will be faced with the solution of singular linear equations.
In understanding why numerical ODE methods break .down, it is natural to ask how
the local index and global index are related. The next theorem answers this question.

THEOREM 3.1. If the local index is not greater than one, then it is not changed by
a smooth transformation. Ifthe local index is greater than one, then a smooth, nonconstant

transformation of variables in (9) will yield a system whose local index is two unless
additional constraints are satisfied by the transformation. A restricted set of transforma-
tions will cause the index to be greater than two, or the pencil to be singular. When the
transformation to semi-canonical form (11) is used, this shows the relationship between
the local and global indices.

The proof of this result and some examples can be found in [GePe82a], and also
in [Camp82, Chap. 5].

Whenever the global index exists, we have a good understanding of the behavior
of the solutions to the system. Thus it is important to know if this index exists. That
is, when does there exist a nonsingular scaling and change of variables transforming
(9) to the semi-canonical form (11)?

In [CaPe82] examples are given to show that it is not in general possible to get
the semi-canonical form everywhere with constant E, but that if A and B are analytic,
there do exist analytic G and H for a reduction to (11) with time varying strictly
lower triangular E(t). In this form the index can be seen to change as E(t) changes,
although the dimension of the manifold of solutions (size of C(t)) does not change.
In [GePe82b] it is shown constructively in a misstated theorem that a reduction to form
(11) exists. The construction fails at isolated points but in any closed interval not
containing such points, G and H exist. For many practical problems such a canonical
form exists due to the structure of the matrices.

Since solvable systems are so closely related to systems of the form (11) (where
the singular part of the system has constant coefficients), we might hope that some of
the same techniques which work for solving constant-coefficient problems numerically
might also be effective for general linear problems. Unfortunately, this turns out not
to be the case.

We have seen that the constant stepsize BDF method can be used for constant-
coefficient problems. What happens when it is applied to nonconstant-coefficient
problems? If the local index is two we may have a stability problem depending on the
rate of change of the coefficients. If the local index is greater than two, we almost
always have a stability problem. We want to stress that this is a stability problem and
not an accuracy question, so it does not appear that higher order methods will help.
Also note that it depends on the local index while the behavior of the underlying
equation depends on the global index.

We start by examining the application of the backward Euler method (BEM) to
a linear problem which can be transformed locally to a canonical local index m problem.
The general problem of this form can be written as

(PEO)z’ +(PO)z Pq,
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where the rn rn matrix E is given by

and the matrices P and Q are possibly time-dependent transformations. The BEM
gives the recurrence relation

(12)
or

(13)
where

The true solution satisfies

[PnEQn + hPnQ]zn PnEQnz.-I + hP.q.

Zn SnZn-1 d- Un

S Q-I[E + hI]-IEQ.,

un hO-l[E + hI]-lqn.

h2

(14) z(tn) S.z( t_l) + u. -- S.z,

where z is evaluated somewhere in the interval separately for each component.
Defining the global error e z.-z(t.) we get the usual error equation

h-(15) e. Se._l +- S.z

so the solution is

(16) e1, =-f Si z’.’, + I-[ Seo.
i=1 j=i j=0

The usual ODE argument says that if S 1-[ji Sj is bounded, z,’.’ is bounded, and eo
goes to zero, then we have convergence. However, in this problem we have several
difficulties. The solution may have jump discontinuities so z" may not be bounded, eo
will not usually go to zero because we do not know how to compute the initial conditions,
and Sj may not be bounded. However, the first two of these difficulties can be overcome
in the constant-coefficient case because the nilpotency of E is reflected in the nilpotency
of S S. By direct calculation it can be verified that S" 0 if Q is independent of n.
Consequently, in this case we find that for N> m

h2m-2 h2m-2
2 si+lztv-i------ si+lRiz(17) eN --i=o 2 i=o

where Rzn Zn_ is the "backward" operator. The elements of S (assuming that Q I
without loss of generality) are

0

h-1
S -h2

h-3

-h-2 h-1 0
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from which it follows that

m-2

(18) , si+lR i=-
i=0

0

0

1/h

where D Q’ Q-l, to get

0 0
(20) SnSn_l-- Q-

0 d,lE+O(h)

where dn12 is the (1, 2) element of D,. Hence

0 0
(21) S= NSj+ S QfI N

x I-I (d,12+O(h))

where x is an unimportant element. From this follows.

where- b (1 R)/h is the backward Euler approximation to the derivative operator.
In the nonconstant-coefficient case this proof breaks down because S, is time-

dependent, so perhaps S 0 for all N> n. We will examine the m 2 and m 3
cases to see why this happens. For the 2 x 2 case we find that

(19) S, Q-
0

1/h

Assuming that Q’ exists, we can write

Q,, Q,Q-11)Q,,_ [Q,(QI_ h(QI), + O(h2))]Q,_I
[I + hQ’, 0- + O(h2)]Q,_a

=[I+hD,+O(h2)]Q,_l,

0
0

Qn-1

0 0

1/h 0

which, with (16) implies
N--1

(23) Ilell ghlleolln+ 2 rtu-qhT
/=0

where T => z"ll.
Under the hypotheses given, ell- 0 as h- 0. Q.E.D.
On the other hand, if [d121 > 1, SY diverges and we fail to get convergence. If

d12 1, a more careful analysis is necessary to determine stability. [GeHP81] gives
the example

0 0 1 r/t
y=g

1 Tt Y+ 0 1+7

THEOREM 3.2. If Idl=<c<l and IIQ II, I/Q’II, and IIQ-/lll are bounded for all
j, the BEM converges for the 2 by 2 problem provided the initial error is o(h) and z"
is bounded.

Proof. This follows by observing that (21) permits a bound of the form

(22) IISll KIIQIlIh-I[IQI[N- where I1< 1,

t2 t 0



DIFFERENTIAL/ALGEBRAIC SYSTEMS 725

for which d12 r//(1 + r/) and we get a recurrence relation for z, the second component
of y, of the form

Zn+ Z q- U
1+1

which is obviously unstable if 7 <-1/2.
For the 3 x 3 system with local nilpotency 3,

S,=Q
h 0 0 -1

1 h 0
0 1 h

or

(24) S,= Q-
0 0 0

1/h 0 0
-1/ h2 1/ h 0

The development from this point depends on which of the dij are nonzero. In general,
all are nonzero so we can write SnS,-1 as

(25)

SnSn_l O-l

=QI

0 0 0

1/h 0 0

-1/h2 1/h 0

0 0

1/h d12
-1/h (1-d12)/h

(I+hD,,+O(hZ))
0 0 0

1/h 0 0

-1/hE 1/h 0

0 0 0 0

d13 1/h 0 0

1/h -1/h2 1/h 0

Qn--

On-l(1 + O(h)).

This and (16) imply nonconvergence as h decreases.
An "explanation" of what is happening is as follows. In the constant-coefficient

case for index m we have rn- 1 principal vectors and one eigenvector for the operator
S [E- hI]-lE. One application of this operator maps each principal vector into the
next with an amplification of up to hi-’. The last principal vector gets mapped into
an eigenvector while the eigenvector is annihilated. However, in the nonconstant-
coefficient case there is a transformation between each step, giving rise to the OnO-ll
term which is I + hD, + O(h2). This can add an O(h) multiple of one principal vector
or eigenvector to each of the others. In the m 2 case, the application of $ multiplies
the part of the error in the principal vector direction by O(1/h) and moves it to the
eigenvector. The rotation multiplies this by O(h) and moves it back to the principal
vector again. Thus, it is multiplied by O(1) in each step, so the stability of the process
depends on the magnitude of these mappings. If m _-> 3, one step can amplify an error
by O(h-).

Because of this stability problem, we do not know of any numerical techniques
for the general linear problem (9), let alone the nonlinear problem (1) although some
problems of high index can be solved with constant stepsize BDF methods. The latter
situation could arise if suitable elements of D in (25) are zero so that S 0 for large
enough N-n. A nontrivial example of this appears to be given by the system of five
equations

x’ u, y’ v, u’ Tx, v’ =-Ty + l, x2+y2=1.
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These describe a simple pendulum of length and mass I with unit gravity. The dependent
variables are the distances x and y from the pivot, and the string tension T. The
techniques of the next section can be used to show that this system has a local and
global index of 3. However, after three steps of the BEM at constant stepsize, initial
errors have been experimentally observed to be damped out so the solution is first
order accurate. (This is an example of a problem described by Euler-Lagrange
equations with holonomic constraints for which the local and global index can be shown
to be always at least 3.)

4. Reduction techniques. It is sometimes possible to use analytical techniques to
rewrite the system in a form with lower index which can be solved numerically. In this
section we discuss two reduction techniques. The first is useful for reducing the index
of systems (and also determining their index). The second is actually the idea behind
the technique for constructing the transformation matrices to bring a system into
semi-canonical form.

The first technique is described below for linear systems (9), but it applies directly
to nonlinear problems (1) when F is linear in y’. It has been introduced for solving
problems in optimal control in [Luen77] and [Silv69].

ALGORITHM 4.1.
(1) If A in (9) is nonsingular, then we are done.
(2) Otherwise premultiply (9) by a nonsingular matrix P(t) to zero out a maximal

number of rows of A and permute the zero rows to the bottom to obtain:

11 Bll
B12

y=g(t).

(3) Differentiate the bottom half of the system to obtain the new system

All
B12

Bll y =g(t).

Now apply the process to this new system.

Intuitively, the idea behind this algorithm is that by differentiating the "algebraic"
constraints of the system we can reduce its index without changing the solution to the
system. If this is repeated, as in Algorithm 4.1, eventually we should produce a system
of ODEs which can be solved by numerical methods. That this intuition is correct is
stated in Theorem 4.2 below.

Of course, by differentiating we have introduced a number of constants of integra-
tion, which means that we must determine the correct initial conditions. This can be
done by satisfying the initial system and each of its differentiated forms at the initial
point.

THEOREM 4.2. For solvable linear systems (9) with no turning points, Algorithm
4.1 terminates in m iterations iff the global index is m. Algorithm 4.1 does not terminate

for systems which are not solvable. Proofs of this theorem can be found in [Silv69] and
[GePe82b].

We also note that Algorithm 4.1 can be used to find the local index of a system
by considering the matrices A and B at some time to be constant, and then applying
the algorithm to the resulting system. In this case, the algorithm terminates in m steps
if[ the local index is m. Since by Theorem 3.1 the local index is equal to the global
index if the index is one, the algorithm terminates after one iteration if[ the index is
one. This provides a proof of Theorem 2.2.
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Another possible approach to simplifying the system (9) is based on using the
"algebraic" constraints to solve for some variables in terms of the remaining variables,
and thus reducing the size of the system. We can use this idea to construct a scheme
for reducing solvable linear systems (18) to semi-canonical form. When the algorithm
can be carried to completion, it produces nonsingular time-dependent matrices which
reduce the system to semi-canonical form. When it cannot be completed, the system
is not solvable. We outline the algorithm here for general linear systems. It has been
described in [Camp80] and [SiDe78] for constant-coefficient systems.

ALGORITHM 4.3.
(1) If A in (9) is nonsingular, then we are done.
(2) Otherwise, premultiply (9) by a nonsingular matrix P(t) to zero out a maximal

number of rows of A and permute the zero rows to the bottom to obtain:

All A12
0 0

Bll B12
B21 B22

y=g(t).

(3) Permute the columns of A and B so that BE: is a nonsingular matrix. (It can
be shown that for solvable systems, [B21, B22] has full rank.)

(4) Solve for Y2 B-(g:-B21Y1), and differentiate this expression to solve for
y in terms of Yl and y.

(5) Substitute the expressions for y: and y into the top half of the system, and
rewrite to obtain a system of form (9) for Yl (which is always smaller than the original
system).

(6) Go back to step (1).

Note that while one would probably not want to use Algorithms 4.1 and 4.3 to
solve a system, they are powerful tools both for rewriting a system in a form in which
it can more easily be solved, and for discovering the underlying analytical structure
of a system.

5. Conclusions. This paper has described a number of theoretical results which
depend on the index of a system. In general, the index of a system, like the rank of a
matrix, is not something one should attempt to compute numerically, so what does
the ordinary user with the DAE (1) do?

If the index does not exceed 1, automatic codes such as [Petz82] can solve them
with no trouble. (Theorem 2.1 required constant stepsizes, but nonconstant stepsizes
do not cause difficulty as long as the stability of the BDFmethod is not disturbed.
This is a potential problem in the differential part of the system rather than the algebraic
part. So, Theorem 2.1 was not extended to nonconstant stepsizes to avoid unnecessary
detail, although it will apply under reasonable restrictions on the rate of change of
stepsizesee [GeTu74], for example.)

If the problem has index greater than one, an automatic code will usually fail--the
stepsize is reduced repeatedly but it cannot satisfy its error tolerance criterion. In that
case it would be desirable to apply the technique of Theorem 2.2 to determine if the
failure was due to a high index. An integrator for (1) will have computed approximations
to A =OF/c3y’ and B =c3F/c3y. Theorem 2.2 can be applied to these approximations.
It requires a rank determination which we know is not reasonable. However, if the
problem is "near" to a high index problem, it will cause numerical difficulties. Hence,
in determining the "rank" we should treat values below appropriately scaled error
tolerances as zero. (We have not investigated ways to scale appropriately since we do



728 C. W. GEAR AND L. R. PETZOLD

not yet fully understand how to scale the differential equations.) If Theorem 2.2
suggests that the index is greater than one, the user should be encouraged to reduce it.

The reduction described in Algorithm 4.1 can be applied in many cases because
the index is determined by the nonzero structure of the matrices rather than the actual
values of their entries as in the pendulum example at the end of 3. If we differentiate
the last equation three times, substituting for the derivatives of x, y, u and v from the
earlier equations each time, we arrive at a differential equation for T, so that we have
an explicit ODE system.
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