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Abstract

The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the Stochastic Simu-

lation Algorithm (SSA) in which the spatially inhomogeneous volume of the system is divided into

homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffu-

sive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when

the system is such that diffusive transfers occur much more frequently than chemical reactions. In

this paper we present the Multinomial Simulation Algorithm (MSA) which is designed to, on the

one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on

the other, to handle small reactant populations with greater accuracy than deterministic-stochastic

hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately

conditioned binomial random variables for representing the net numbers of molecules diffusing from

any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the

benefits of the algorithm.
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I. INTRODUCTION

The idea of treating a spatially inhomogeneous chemically reacting system as a collection

of smaller interacting subsystems has appeared in the literature since the 1970s under a few

names, notably the “Reaction-Diffusion Master Equation”1 and the “Multivariate Master

Equation”2. The theory has been explored by Nicolis and Prigogine2. The reaction-diffusion

approach has been confirmed against results obtained by Direct Simulation Monte Carlo3

and reactive hard sphere molecular dynamics4. Widespread awareness of the Multivariate

Master Equation approach was achieved through its inclusion in the classic texts of Gardiner5

and Van Kampen6.

At this mesoscopic level of description, a system consists of a list of molecular species,

and reactions which couple them as reactants or products. The system state, x, is given by

the number of molecules of each species. It evolves from the initial condition through the

firing of reactions, whose stochastic rates are known as propensity functions. The forward

Kolmogorov equation governing the flow of probability from one state to another in time is

called the Master Equation.

The Stochastic Simulation Algorithm (SSA)7,8 is the technique commonly used to sample

the Chemical Master Equation (CME), which governs the evolution of homogeneous, or

well-stirred, systems. There exist several implementations of the exact SSA, for example

the Direct Method, the First Reaction Method8, and the Next Reaction Method9. Much

effort has gone into developing approximations to the exact SSA, e.g. tau-leaping10 and the

Slow Scale SSA11.

In the inhomogeneous setting, a system is divided into subvolumes, each of which is

assumed to be homogeneous. Reactions occur in each subvolume as in the homogeneous

case, and the populations in neighboring subvolumes are coupled by diffusive transfers,

treated as unimolecular reactions1,12,13. The probability of the system being in any given

state at any time is then given by the Multivariate2,3 or Reaction-Diffusion Master Equation

(RDME)1. We call the SSA as applied to the inhomogenous setting the “Inhomogeneous

SSA” (ISSA). Analogously to the SSA, the ISSA can also be implemented in different ways.

An implementation based on the Next Reaction Method was used by Isaacson and Peskin,14,

the Next Subvolume Method was developed by Elf15,16, and the Null Process technique was

developed by Hanusse and Blanche17. However, even optimized versions of the ISSA can be
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prohibitively slow for some systems, and in particular in the presence of fast diffusion.

In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed

to outperform the ISSA in just this type of scenario: when diffusive transfers greatly out-

number reaction events. The MSA is a stochastic-stochastic hybrid method which is based

on separating chemical reactions, which are treated in the usual SSA way, from diffusive

transfers, which are treated by an approximate stochastic process. The MSA computes the

net diffusive transfer from each subvolume to its neighbors in a given time step. In this sense

it is similar to the τ -leaping method, but with some important differences. In τ -leaping,

each reaction channel which consumes a given species fires independently of the other chan-

nels consuming that species, so it is possible that the sum of the molecules of a species

removed by all channels which consume it will be greater than the number of molecules that

were present in the beginning of the time step. That is to say, in τ -leaping the number of

molecules of a given species which are available to be consumed by a given event in a given

time step is not adjusted as a result of the firing of other events which consume that species

in that time step. The MSA has the important property that it conserves the total num-

ber of molecules across subvolumes by reducing the number of molecules of a given species

available to be consumed by a given event in a given time step by the number of molecules

of that species already consumed by other events in that time step.

A number of authors18–20 have proposed deterministic-stochastic hybrid methods in which

diffusion is treated deterministically everywhere, and reactions are treated stochastically.

These methods are applicable when the diffusing species are present everywhere in large

population, but often this is not the case. The MSA is capable of obtaining spatial resolution

even in the low population case.

The MSA is different from the Gillespie Multi-Particle (GMP) method of Rodriguez et

al.21, another stochastic-stochastic hybrid method, in two ways. First, although the MSA

also relies on a type of operator splitting to separate reactions and diffusive transfers, it

interleaves reactions and diffusions differently from the GMP method. We feel that our

approach is better justified theoretically, and possibly more accurate. Second, the GMP

method uses Chopard’s multi-particle method22 to simulate diffusion. According to this

method, molecules from one subvolume are uniformly randomly distributed among the im-

mediately neighboring subvolumes at each diffusion step, and the macroscopic diffusion

equation is recovered in the limit λ → 0, where λ is the subvolume’s side length. In the
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MSA, molecules from one subvolume are also distributed among the neighboring subvolumes,

but the probabilities used for that are multinomial.

Rossinelli et al.20 presented two methods: Sτ -Leaping is a stochastic algorithm which

employs a unified step for both the reaction and diffusion processes, while the hybrid Hτ -

Leaping method combines deterministic diffusion with τ leaping for reactions. As in homo-

geneous τ -Leaping23, the difficulty in spatial τ -Leaping is choosing a time step that simul-

taneously satisfies the leap condition, i.e. that the propensities do not change substantially

during the leap (an accuracy condition), but also has a low likelihood of causing the popula-

tion to become negative. The choice of diffusion time step for the MSA is also limited by an

accuracy condition, but the way in which the jump probabilities are conditioned eliminates

the problem of negative population.

Jahnke and Huisinga25 note the role of multinomial random variables in their paper on

the analytical solution of the Chemical Master Equation for closed systems which include

only monomolecular reactions. Our treatment of diffusion (which is indeed a monomolecular

problem) in the MSA is based on an exact multinomial solution of the master equation for

diffusion, although in the interest of efficiency we truncate that solution.

Finally, the same stochastic process theory which forms the early steps of the deriva-

tion of the MSA appears in a non-spatial context in Rathinam and El Samad’s paper on

the Reversible-equivalent-monomolecular τ (REMM-τ) method24. REMM-τ is an explicit

τ -leaping method, which approximates bimolecular reversible reactions by suitable unimolec-

ular reversible reactions, and considers them as operating in isolation during the time step

τ . The MSA and REMM-τ apply to distinctly different physical systems, but they share

a common mathematical foundation, namely an exact, time-dependent stochastic solution

for the reversible isomerization reaction set S1 ! S2. In the present work we generalize

that solution to the reaction set S1 ! S2 ! . . . ! Sn, for n > 2, and we also develop

approximations to make the calculations practical. The n = 2 solution expresses the in-

stantaneous populations of the species as linear combinations of statistically independent

binomial random variables. Our n > 2 generalization takes the form of linear combinations

of statistically independent multinomial random variables – hence the name of the MSA.

The remainder of this paper is organized as follows: In Section II we develop multinomial

diffusion for one species in one dimension in the absence of any reactions. In Section III we

extend this to an arbitrary number of species, and add reactions to obtain the Multinomial
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Simulation Algorithm; we then present simulation results and evaluate the algorithm’s per-

formance in one dimension. In Section IV we describe the algorithm for two dimensions and

present some simulation results. We conclude with a discussion of how the algorithm can

be used as part of a larger adaptive simulation strategy.

II. DIFFUSION IN ONE DIMENSION

A. Theoretical foundations

In this subsection we derive the foundations of the Multinomial Simulation Algorithm.

For simplicity we do this for a one dimensional system.

Suppose we have a one dimensional system of length L which contains only one chemical

species. Consider n subvolumes of equal size, l = L/n, which we index from left to right

1, 2 . . . , n. Initially, subvolume i contains ki molecules of a given chemical species, distributed

randomly and uniformly. Now suppose that κ is defined as follows:

κdt ≡ the probability that a molecule will jump to an adjacent cell (1)

in the next infinitesimal dt.

This parameter is taken to be κ = D/l2, where D is the usual diffusion coefficient of

the chemical species, because then, in the limit l → 0, the master equation for discrete

diffusion becomes the standard diffusion equation. In this diffusion equation, D is the

phenomenologically defined diffusion coefficient, and its solution has a Gaussian form whose

variance grows as 2Dt.

Define the probabilities

p(n)
ij (t) ≡ the probability that a randomly chosen molecule in cell i at time 0 will be

found in cell j at time t > 0, (i, j = 1, 2, ..., n). (2)

Since these n2 probabilities satisfy the n relations:

p(n)
i,1 + p(n)

i,2 + ... + p(n)
i,n = 1, (i = 1, 2, ..., n), (3)

only n(n − 1) of them will be independent.

To find these probabilities, note that in an infinitesimal time dt there will be effectively

zero probability of more than one molecule jumping between adjacent cells. If the boundaries
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of our system are reflective (i.e. diffusive jumps between subvolumes 1 and n are not allowed),

then the addition and multiplication laws of probability yield

pi1(t + dt) = pi1(t) × [1 − κdt] + pi2(t) × κdt,

pij(t + dt) = pi(j−1)(t) × κdt + pij(t) × [1 − 2κdt] + pi(j+1)(t) × κdt,

(j = 2, . . . , n − 1)

pin(t + dt) = pi(n−1)(t) × κdt + pin(t) × [1 − κdt] (4)

The first equation in (4) means: {The probability that a molecule will be in subvolume 1

at time t + dt given that it was in state i at time 0} is equal to the sum of {the probability

that the molecule was in subvolume 1 at time t, given that it was in subvolume i at time 0

and it did not jump away from subvolume 1 in the next dt} plus {the probability that the

molecule was in subvolume 2 at time t, given that it was in subvolume i at time 0 and it

jumped from subvolume 1 to subvolume 2 in the next dt}. All other routes to subvolume 1

at time t + dt from a subvolume other than 1 or 2 at time t will be second order in dt (and

will thus make no contribution when (4) is later converted to an ODE).

If the boundaries of our system are periodic (i.e. subvolumes 1 and n communicate), then

we have

pi1(t + dt) = pin(t) × κdt + pi1(t) × [1 − 2κdt] + pi2(t) × κdt,

pij(t + dt) = pi(j−1)(t) × κdt + pij(t) × [1 − 2κdt] + pi(j+1)(t) × κdt,

(j = 2, ..., n − 1)

pin(t + dt) = pi(n−1)(t) × κdt + pin(t) × [1 − 2κdt] + pi1(t) × κdt (5)

The discussion which follows can be made independent of boundary condition by using

the concept of the Laplacian matrix of a graph. There is an isomorphism between the

discretization of our system into subvolumes, and a directed graph (a collection of vertices

and directed edges). Each subvolume of our system can be represented by a vertex. We

can then connect with a directed edge those vertices which correspond to allowable diffusive

transfers. The resulting graph G is just another representation of our original system,

with vertices denoting the possible locations of molecules, and edges denoting the possible

transitions (diffusive jumps) between those locations. When our system has n subvolumes

and periodic boundary conditions, then the resulting graph is Rn, the so-called ring graph
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with n vertices; a system with n subvolumes and reflecting boundary conditions yields Ln,

the line graph (see Figure 1).

[FIG. 1 about here.]

Equations (4) and (5) both lead to the general set of differential equations

dp(t)

dt
= −κLGp(t), (6)

where

p(t) =















pi1(t)

pi2(t)

...

pin(t)















(7)

and LG is the so-called Laplacian matrix of the graph G ∈ {Ln, Rn}, with entries:

LG(i, j) =























number of neighbors of i, if i = j

−1, if i &= j, and i is adjacent to j

0, if i &= j, and i is not adjacent to j

(8)

For the initial condition p(0), the solution to (6) is

p(t) = V · e−λκt·V −1·p(0) (9)

where V is the matrix of eigenvectors of LG, and

e−λκt ≡

















e−λ1κt 0 . . . 0

0 e−λ2κt . . . 0
...

...
. . .

...

0 0 . . . e−λnκt

















(10)

where λi (i = 1, ..., n) is the ith eigenvalue of LG.

Now we introduce the random variables

M (n)
ij (ki, t) ≡ the number of the ki molecules in subvolume i at time 0 that will

be in subvolume j at time t, (i, j = 1, 2, . . . , n). (11)
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These n2 random variables satisfy the relations

M (n)
i1 (ki, t) + M (n)

i2 (ki, t) + . . . + M (n)
in (ki, t) = ki (i = 1, 2, . . . , n) (12)

so only n(n − 1) of them will be independent. We choose the independent variables to be

M (n)
ij (ki, t) for i &= j. There will be n such statistically independent sets.

Consider first the (n− 1) variables M (n)
1j (k1, t) for j = 2, . . . , n. These are statistically in-

dependent of the (n−1)2 variables M (n)
ij (ki, t) for i, j = 2, . . . , n, because individual molecules

move independently of each other, but the M (n)
ij (ki, t) are not statistically independent of

each other.

Denote the joint probability density function of the (n−1) subvolume 1 random variables

by

P (1;n)
2,...,n(m12, m13, . . . , m1n; k1, t) ≡ Prob{M (n)

1j (k1, t) = m1j for j = 2, . . . , n}. (13)

From the addition and multiplication laws of probability we have:

P (1;n)
2,...,n(m12, m13, . . . , m1n; k1, t) =

k1!

m12!m13! . . .m1n!(k1 − m12 − m13 − . . . − m1n)

×
[

(

p(n)
12 (t)

)m12
(

p(n)
13 (t)

)m13

. . .
(

p(n)
1n (t)

)m1n

(

1 − p(n)
12 (t) − p(n)

13 (t) − . . . − p(n)
1n (t)

)k1−m12−m13−...−m1n

]

. (14)

The second factor on the right hand side is the probability that, of the k1 molecules in

subvolume 1 at time 0, a particular set of m12 of them will wind up in subvolume 2 at time

t, and a particular set of m13 of them will wind up in subvolume 3 at time t, and so on, with

the remaining k1 − m12 − m13 − . . . − m1n molecules remaining in subvolume 1 at time t.

The first factor on the right hand side of (14) is the number of ways of choosing groups of

m12, m13, . . . , m1n molecules from k1 molecules. The joint probability function (14) implies

that the random variables M (n)
1i for i = 2, . . . , n, are multinomially distributed. We now
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observe that (14) is algebraically identical to:

P
(1;n)
2,...,n(m12,m13, . . . ,m1n; k1, t) =

k1!

m12!(k1 − m12)!

(

p
(n)
12 (t)

)m12
(

1 − p
(n)
12 (t)

)k1−m12

× (k1 − m12)!

m13!(k1 − m12 − m13)!

(

p
(n)
13 (t)

1 − p
(n)
12 (t)

)m13
(

1 − p
(n)
13 (t)

1 − p
(n)
12 (t)

)k1−m12−m13

× . . . ×
(k1 − m12 − . . . − m1(n−1))!

m1n!(k1 − m12 − . . . − m1n)!





p
(n)
1n (t)

1 − p
(n)
12 (t) − . . . − p

(n)
1(n−1)(t)





m1n

×



1 − p
(n)
1n (t)

1 − p
(n)
12 (t) − . . . − p

(n)
1(n−1)(t)





k1−m12−...−m1n

(15)

The significance of (15) is that it immediately implies the conditioning

P
(1;n)
2,...,n(m12,m13, . . . ,m1n; k1, t) = P

(1;n)
2 (m12; k1, t) × P

(1;n)
3|2 (m13|m12; k1, t)

× . . . × P
(1;n)
n|2,...,(n−1)(m1n|m12, . . . ,m1(n−1); k1, t) (16)

where

P
(1;n)
2 (m12; k1, t) = PB

(

m12; p
(n)
12 (t), k1

)

, (17)

P
(1;n)
3|2 (m13|m12; k1, t) = PB

(

m13;
p
(n)
13 (t)

1 − p
(n)
12 (t)

, k1 − m12

)

, (18)

. . .

P
(1;n)
n|2,...,(n−1)(m1n|m12, . . . ,m1(n−1); k1, t) =

PB

(

m1n;
p
(n)
1n (t)

1 − p
(n)
12 (t) − . . . − p

(n)
1n (t)

, k1 − m12 − . . . − m1n

)

(19)

with PB the binomial pdf

PB(m; p, n) =
n!

m!(n − p)!
pm(1 − p)n−m

The physical interpretation of this result is as follows: the number m12 of the k1 molecules

in subvolume 1 at time 0 that will be found in subvolume 2 at time t, irrespective of the

fates of the other (k1−m12) molecules, can be chosen by sampling the binomial distribution

with parameters p(n)
12 (t) and k1. Once the number m12 has been selected in this way, the

number m13 of the remaining (k1−m12) molecules that will be found in subvolume 3 at time

t can be chosen by sampling the binomial distribution with parameters p(n)
13 (t)/(1−p(n)

12 ) and
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(k1 − m12). This procedure can be repeated to generate the remaining m1i for i = 4, . . . , n

as samples of the binomial distribution with parameters given by (19).

Equations (17-19) show how to generate the time t fates of the molecules that are in

subvolume 1 at time 0. The time t fates of the ki molecules in subvolume i at time 0,

for i = 2, . . . , n, are independent of those in any other subvolume, and the procedure for

determining them is analogous.

B. Some additional approximations

At this point it may seem that we have specified an algorithm for generating the number

mij of molecules moving from subvolume i to subvolume j in time t for all i &= j. However this

algorithm has a serious drawback, which renders it practically unusable: it requires O(n2)

samples of the binomial distribution per time step. Generating O(n2) binomial samples

is likely to be a prohibitive computational burden, even for modest n. Furthermore, each

(n − 1) of the samples are dependent, limiting any speedup that may be obtainable by

parallelizing the binomial sample generation.

In this section we take three steps to obtain an algorithm which does not have this

quadratic complexity disadvantage. First, to obtain linear complexity, we limit the distance

any molecule can diffuse in a single time step. Second, to maintain accuracy in spite of this

approximation, we impose an upper limit on the time step. Third, to scale the algorithm to

large system sizes, we approximate the diffusion probabilities of systems of arbitrary size n

by those of a small, finite system of size n̂.

Step 1: Ideally, rather than O(n2), we would prefer to generate only O(n) binomial

samples per time step. This can be achieved if we restrict where molecules can go: if a

molecule, rather than having n choices of destination subvolume, instead only has a constant

number of choices, then only O(n) binomial samples per time step will be required. By

neglecting subvolumes outside a radius s of the subvolume of origin, we reduce the number

of binomial samples required from (n− 1)2 (with each (n− 1) dependent) to 2sn (with each

2s dependent).

Step 2: For an algorithm based on a limited diffusion radius to be accurate, the size

of the time step must be restricted. The time step restriction should satisfy the following

condition: the probability of a molecule jumping from subvolume i to any subvolume beyond
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a radius of s subvolumes away from i in time ∆t, should be less than or equal to a given

ε. This probability per molecule per time step represents the error from “corraling” the

molecules within a radius of s subvolumes from their subvolume of origin in any given time

step. We will denote this error e(n)
i , where the subscript i refers to the subvolume of origin,

and the superscript (n) refers to the total number of subvolumes in the system. In the

case of a periodic system, the subscript i can be dropped (as it will be in Figure 2), since

the diffusion probabilities, and therefore the error, are identical for all origin subvolumes.

Generally (for both periodic and reflective boundaries) the probability that a molecule will,

in time ∆t, diffuse more than s subvolumes away from its original subvolume i is

e(n)
i (s,∆t) = 1 −

∑

j∈J(i,s)

p(n)
ij (∆t) (20)

where J(i, s) is the set of subvolumes within a radius of s subvolumes from i (including i).

Thus, if we are willing to incur e(n)
i (s,∆t) ≤ ε error in probability per molecule per time

step, we can restrict the distance a molecule can travel from subvolume i in time ∆t, to s

subvolumes from i in either direction by taking the time step ∆t to be less than or equal to

∆tmax, where ∆tmax is given by the solution to e(n)
i (s,∆tmax) = ε.

The elements pij(t) of p(t) (Eq. 9) are probabilities which are always functions of the

product κt, where κ depends on the diffusion coefficient of the molecular species. Thus, in

practice, the maximum time step ∆tmax will always be a function of κ.

Step 3: We have shown how to reduce the complexity of the algorithm by limiting the

diffusion radius to s, and how to ensure that a level of accuracy ε is satisfied by limiting the

time step ∆t. But up to this point our analysis has depended on the system size n. We will

next show how the dependence on the system size n can be dropped, allowing the algorithm

to be applied to systems of arbitrary size.

[FIG. 2 about here.]

For t ≤ ∆tmax it is possible to find a system size n̂, such that the probabilities p(n)
ij (t), for

j ∈ J(i, s), are nearly indistinguishable for all n > n̂. The error, being a function of these

probabilities (see (20)), will also be indistinguishable for all n > n̂. To illustrate this, consider

four systems with periodic boundary conditions and n = 4, 5, 6 and 8 subvolumes. Figure 2

shows the probability of going past a radius s = 1, i.e. the error e(n)
i (s = 1, t), for these

systems. These probabilities were obtained analytically using Mathematica to solve (9).
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A series expansion (again, performed using Mathematica) reveals that for all n = 4, 5, 6, 8,

e(n)
i (s = 1, t) = (κ∆t)2+O((κ∆t)3). Thus for small κ∆t we do not expect these probabilities

to have significantly different values. Indeed, for probability ≤ 1% (horizontal black line),

there is almost no visible difference in the error if we compare these systems; for n past

n̂ = 4, the error does not appreciably increase with increasing n.

The same pattern holds for the probabilities p(n)
11 (t) and p(n)

12 (t), individually. As t → ∞,

p(n)
ij (t) → 1

n
, i.e. the probabilities tend to a uniformly random distribution. When we

perform a series expansion, we see that, for all n, the p(n)
11 (t) share a leading term which is

O(1), the p(n)
12 (t) share a leading term which is O(κ∆t), and so on. Thus, for small κ∆t,

consistent with ε = 1%, these probabilities, which we will use directly in the algorithm, are

also indistinguishable for n > n̂ = 4.

This observation suggests a way to scale the algorithm to arbitrary system sizes, given a

desired per molecule per time step error of ε = 1% (horizontal black line): since for all n > 4,

ei(n)(1, t) ≈ e(4)
i (1, t) for κ∆t consistent with ε, then the probabilities with superscript n̂ = 4,

corresponding to a system with 4 subvolumes, can be used in place of the probabilities of

any larger system.

In addition, the observation that e(4)
i (1, t) ≈ (κ∆t)2 suggests that for s = 1 we can choose

a conservative maximum time step consistent with a level of error less than or equal to ε by

satisfying

∆t ≤
√
ε/κ (21)

This gives a formula for choosing the time step.

To summarize, the steps that must be followed in order to obtain a practical algorithm

from the theory of the previous section are as follows:

1. Choose a diffusion radius s, and a given level of error ε;

2. Choose ∆tmax to satisfy e(n)
i (s,∆tmax) = ε, as a function of κ (for s = 1 use (21); for

s > 1 similar formulas exist);

3. Find n̂ which satisfies e(n)
i (s,∆t) ≈ e(n̂)

i (s,∆t), ∀n > n̂ and ∆t ≤ ∆tmax.
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C. Implementation of the algorithm

There is one practical consideration in the implementation of the algorithm which we have

not yet addressed. Because the sum total of the probabilities of the events which can occur

in the simulation must be unity, the probability e(n)
i (s,∆t) of going beyond the diffusion

radius must be reassigned to an event which can occur during the simulation. Where should

we reassign this probability?

According to our tests, two different strategies work best in two distinct cases. If the

subvolume of origin i is an interior subvolume, the best accuracy is achieved by adding

1
2e

(n)
i (s,∆t) to the two probabilities of going as far away as possible from i in either direction.

In a periodic system, all subvolumes fall in this category.

For reflective boundary systems, we have found that if the subvolume of origin i has a

boundary close to it, the best accuracy is achieved by adding e(n)
i (s,∆t) to the probability

of staying in subvolume i.

This distinction makes it clear that we need a shorthand notation for the probabilities

we will use in the implementation of the algorithm. Thus we define

p̂ij(t; s,∆t) ≡the system-size independent probability that a single molecule

which was in subvolume i at time 0, will be in subvolume j (22)

at time t, as it will be used in the algorithm with s and ∆t

For example, for an interior subvolume i and diffusion radius s = 1, the formulas are

given by

p̂i,(i+1)(t; 1,∆t) = p̂i,(i−1)(t; 1,∆t) ≡ p(n̂)
i,(i+1)(t) +

1

2
e(n̂)

i (1,∆t) (23)

For a subvolume directly abutting a reflective boundary on one side, we modify the proba-

bility of staying in that subvolume, yielding the formula

p̂ii(t; 1,∆t) ≡p(n̂)
ii (t) + e(n̂)

i (1,∆t) i = 1, n (24)

We are now ready to give the procedure for approximate multinomial diffusion for

a system with n subvolumes, each of length l, and a single species X with diffusion

coefficient D. The algorithm first computes the 2sn values of the variables ∆Xij , for

i = 1, . . . , n and j = i ± 1, . . . , i ± s, giving the number of molecules which will move

from subvolume i to a subvolume j, to the right (j = i + 1, . . . , i + s) or to the left
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(j = i − 1, . . . , i − s) of i. A second loop then applies these population changes to

the state Xi, i = 1, . . . , n, and finally the time is incremented. The function B(p, n)

generates random numbers distributed according to the binomial distribution with pa-

rameters p and n (Eq. 20). For the sake of simplicity, we will present the algorithm for s = 1.

Algorithm 1. Diffusion in one dimension with diffusion radius s = 1

Choose s and ε

Calculate ∆tmax as a function of ε, s, and κ = D/l2

Choose ∆t ≤ ∆tmax

while t ≤ tfinal do

for i = 1 to n do

∆Xi(i+1) = B
(

p̂i(i+1)(∆t), Xi

)

∆Xi(i−1) = B
(

p̂i(i−1)(∆t)

1−p̂i(i+1)(∆t) , Xi −∆Xi(i+1)

)

end for

for i = 1 to n do

Xi = Xi −∆Xi(i+1) −∆Xi(i−1) +∆X(i+1)i +∆X(i−1)i

end for

t = t +∆t

end while

D. Error analysis for s = 1

Of the three steps outlined in Subsection IIB, steps 1 and 3 represent approximations,

and each one introduces some error to our simulation. We can gain some intuition about the

relative magnitude of the two errors by revisiting Figure 2. The error from the restriction of

the diffusion radius to s (step 1) is given by the e(n̂) curve. The error from the approximation

of the probabilities of an arbitrary-sized system by the probabilities of a n̂-sized system (step

3) is given by the difference between the e(n̂) curve and the e(n) curves with n > n̂. In this

example n̂ = 4. While the step 1 error is plainly large (but less than ε), the step 3 error is

negligible by comparison.

We have already pointed out that the error per molecule per time step due to the re-

striction of the diffusion radius (step 1), for a system with periodic boundaries and s = 1,
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is O((κ∆t)2). The case of reflective boundaries is a little more difficult to analyze, but the

answer turns out to be the same.

In a system with reflective boundaries, and s = 1, we recognize that we will have to

consider three “classes” of subvolumes. Class 1 contains the two subvolumes closest to

the boundary (subvolumes 1 and n); Class 2 contains the two subvolumes which are one

subvolume removed from the boundary (2 and (n − 1)); Class 3 contains the remaining

subvolumes (subvolumes i with 3 ≤ i ≤ (n − 2)), which we shall call “interior” subvolumes.

Where the subscript i on the error e(n)
i previously denoted the subvolume of origin, we will

now parenthesize (e(n)
(i) , i = 1, 2, 3) it to denote the class of subvolume.

The probabilities of diffusing away from each class of subvolume are given by different

formulas. The interior subvolumes (indexed 3, . . . , (n−2)) are assumed to be sufficiently far

from the boundary so that they do not “feel” its effect. Their diffusion probabilities will be

taken to be those from a periodic system. Figure 2 has already shown us that n̂ = 4 for a

periodic system. Thus, for the class 3 (interior) subvolumes of a reflective boundary system

we have error

e(4)
(3) =1 − (p(R4)

11 − 2p(R4)
12 ) = p(R4)

13 (25)

where the superscript R4 denotes that the probabilities are taken from a periodic system

(“R” stands for “ring”) with 4 subvolumes. We have already detailed in Subsection IIB

that this error is O((κ∆t)2), and that to achieve an error level ε we must satisfy (21).

To decide on a value for n̂ for class one and class two subvolumes, we need to consult

the error from reflective boundary systems with n = 4 and n = 6 subvolumes. These can be

obtained analytically in the same way that we obtained the periodic boundary probabilities,

using Mathematica to solve (9). The class one errors (for subvolumes indexed 1 and n) are

given by:

e(4)
(1)(1,∆t) =1 − (p(L4)

11 − p(L4)
12 ) = p(L4)

13 + p(L4)
14 (26)

e(6)
(1)(1,∆t) =1 − (p(L6)

11 − p(L6)
12 ) = p(L6)

13 + p(L6)
14 + p(L6)

15 + p(L6)
16 (27)

where the superscripts L4 and L6 represent probabilities from the reflective boundary system

(“L” stands for “line”) with 4 and 6 subvolumes, respectively. Performing a series expansion

15



on these errors gives

e(4)
(1)(1,∆t) =

1

2
(κ∆t)2 − 2

3
(κ∆t)3 +

7

12
(κ∆t)4 − 2

5
(κ∆t)5 +

41

180
(κ∆t)6 + O((κ∆t)7) (28)

e(6)
(1)(1,∆t) =

1

2
(κ∆t)2 − 2

3
(κ∆t)3 +

7

12
(κ∆t)4 − 2

5
(κ∆t)5 +

11

48
(κ∆t)6 + O((κ∆t)7) (29)

Two things are notable. First, the errors differ in the sixth and higher order terms. This

means that they are practically indistinguishable, and that we can take n̂ = 4. Second, the

leading term is O((κ∆t)2), as it was for class three, but the coefficient is 1
2 , i.e. half that of the

error for class three. We could have foreseen that using the following reasoning: molecules

from class one subvolumes have half as many opportunities to leave their subvolume of origin

as do molecules from interior subvolumes. From this observation we conclude that the error

in class one subvolumes, being approximately half that of class three subvolumes, will not

impose a further limitation on the time step.

Our reasoning for class two subvolumes (indexed 2 and (n− 1)) is completely analogous.

The errors for n = 4 and n = 6 are

e(4)
(2)(1, t) = 1 − (p(L4)

22 − p(L4)
21 − p(L4)

23 ) = p(L4)
24 =

1

2
(κ∆t)2 + O((κ∆t)3) (30)

e(6)
(2)(1, t) = 1 − (p(L6)

22 − p(L6)
21 − p(L6)

23 ) = p(L6)
24 + p(L6)

25 + p(L6)
26 =

1

2
(κ∆t)2 + O((κ∆t)3) (31)

Since they differ in higher order terms, we shall use n̂ = 4. Since the leading term in the

error is half that of class three subvolumes, it will not restrict the time step further.

E. Stability analysis for s=1

The per molecule per time step error due to the diffusion radius restriction is a local

error. In this section we show that the global error (i.e. the error at any given time in a

fixed interval as ∆t → 0) in the simulation mean is bounded and O(κ∆t).

The expected value of a binomial random variable B(p, n) is np. Given x molecules in a

subvolume, and probabilities p̂(∆t) of jumping either left and right in time ∆t, we can say the

following: The number of molecules that will jump to the right in the next ∆t is B(p̂(∆t), x).

This implies that the mean number jumping to the right in the next ∆t is p̂(∆t)x. If we

are given that r of the x molecules do jump to the right, then the number of the (x − r)

remaining molecules that will jump to the left in the next ∆t is B(p̂(∆t)/(1− p̂(∆t)), x− r).

This implies that the mean number of the x molecules that jump to the left, given that r of

16



those x molecules have jumped to the right, is [p̂(∆t)/(1− p̂(∆t))][x− r]. We can eliminate

this conditioning by using the iterated expectation formula (E(X) = E(E(X|Y ))). Then the

mean number of molecules jumping to the left, unconditionally, reduces to p̂(∆t)x, the same

as jumping to the right, unconditionally.

Extending this idea to the full system, we can obtain an update formula for the mean

population evolving through multinomial diffusion with s = 1. The condensed form of the

update formula is

XN+1 = (I + B)XN (32)

where XN is the state (as a column vector) at time step N , I is the identity matrix,

and B is the matrix with elements: −(p̂i,(i+1)(∆t) + p̂i,(i−1)(∆t)) on the ith row of the

diagonal; p̂(i−1),i(∆t) on the (i, (i − 1)) subdiagonal positions; p̂(i+1),i(∆t) on the (i, (i + 1))

superdiagonal positions; and zeros everywhere else.28

The next-nearest neighbor diffusion probabilities p̂i,(i+1)(∆t) and p̂i,(i−1)(∆t) can be series

expanded, and shown to be κ∆t + O((κ∆t)2). Update formula (32) can then be written as

XN+1 = (I +∆tB̂ + O((κ∆t)2))XN , where

B̂ = κ





















−1 1 0 . . . 0 0 0

1 −2 1 . . . 0 0 0
...

. . .
...

0 0 0 . . . 1 −2 1

0 0 0 . . . 0 1 −1





















(33)

As shown in the previous section, the error per molecule per time step is O((κ∆t)2). Thus

the mean population satisfies a forward-time, centered-space approximation to the diffusion

equation, as we would expect. Standard results from the numerical analysis of PDEs (26)

yield stability as ∆t → 0 on a fixed time interval, and convergence to accuracy O(κ∆t).

The stability criterion for forward-time centered-space solution of the diffusion equation is

∆t
(∆x)2 ≤ 1

2D
. In our case, this criterion is automatically satisfied due to the accuracy condition

(21).

F. Diffusion radius s=2

Thus far we have mainly discussed the situation in which the diffusion radius is s = 1.

Increasing the radius to s = 2 subvolumes on either side of the subvolume of origin, while
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maintaining same error ei(1,∆t) ≤ 1%, will yield a longer κ∆tmax ≈ 0.4.For s = 2, ε = 1%,

and periodic boundaries, we have n̂ = 6, and e(6)(∆t) = 1
3(κ∆t)3 +O((κ∆t)4). For reflective

boundaries, there are four classes of subvolumes, numbered in increasing order from the

closest to the boundary (class one) to the interior subvolumes (class four). Class four

subvolumes again dominate the error and determine the step-size restriction.

Because the choice s = 2 doubles the number of binomial samples required for a single

time step, it will also increase the computational time required per time step, by a factor

of two. In a diffusion-only setting, the s = 2 algorithm will take one quarter as many steps

as the s = 1 algorithm, and will require half as much computational time. However, as

we will show in the Simulation Results section, once reactions are added to the mix, the

computational and accuracy advantages of the s = 2 algorithm will only manifest themselves

in situations where reactions are spaced overwhelmingly farther apart than diffusive transfers.

III. REACTION-DIFFUSION IN ONE DIMENSION

A. The algorithm

Our stated goal was to create an algorithm which will be faster than the ISSA for sys-

tems in which diffusion is much faster than reaction, and still accurately represent small

population stochastic phenomena. We are now ready to describe this algorithm, which we

call the Multinomial Simulation Algorithm. It incorporates Algorithm 1 for diffusion in one

dimension as one element, while its other element is the firing of reactions according to the

usual SSA scheme.

The system is divided into the usual n subvolumes of length l, but now contains

more than one species. The state is given by the matrix X, where Xij is the popula-

tion of the jth species in the ith subvolume. The diffusion coefficient of the jth species

is Dj . The reaction propensity functions αir give the propensity of the rth reaction

in the ith subvolume, and a0 is the total reaction propensity α0 =
∑n

i=1

∑R
r=1 αij.

The variable U represents a uniform random number in the interval (0, 1). The time to

the next reaction is given by τ , while the maximum time step for diffusion is given by ∆tmax.

Algorithm 2. Reaction-diffusion in one dimension
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Choose s and ε

Calculate ∆tmax as a function of ε, s, and maxi{κi = Di/l2}

while t ≤ tfinal do

Calculate total reaction propensity α0 =
∑n

i=1

∑R
r=1 αir

Pick time to next reaction as τ = − ln(U)/α0

Pick indices i (subvolume) and j (reaction) of next reaction as in the SSA

if (t + τ) ≤ tfinal

Remove reactants of reaction j in subvolume i

reacted = True

else

τ = tfinal − t

end if

tmp = 0

while (τ−tmp) ≥ ∆tmax

Take a ∆tmax diffusion jump for all species (See Algorithm 1)

tmp = tmp +∆tmax

end while

Take a (∆t = τ−tmp) diffusion jump for all species (See Algorithm 1)

if reacted is True

Add products of reaction j in subvolume i

reacted = False

end if

t = t + τ

end while

Unlike the GMP method21, which performs diffusion steps at time-points which are com-

pletely decoupled from the times at which reactions fire, the MSA couples the diffusion and

reaction time steps. First, the time τ to the next reaction, as well as the type and location

of the reaction, is chosen. Then the reactants are immediately removed, and diffusive steps

are taken until time τ is reached. Then the products of the reaction appear. This may seem

somewhat strange, but it is the least complicated and most accurate strategy we have found.

In our tests we have found that the alternative of both removing the reactants and producing

the products at the beginning of the reaction step is less accurate. The alternative of doing
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both at the end of the step is not an option, as there is no guarantee that the reactants will

still be at the same location after diffusion has occurred.

B. Simulation results and error analysis

We have three goals in this section: a) to establish that the multinomial method gives

qualitatively correct results, b) to quantify the performance of the multinomial method

compared to the ISSA, and c) to quantify the error between the multinomial method and

the ISSA.

The MSA and ISSA codes on which the results in this paper are based are written in

ANSI C, and the two methods are driven by a common problem description file. The ISSA

implementation is based on the direct method, with only the most obvious optimizations:

avoiding the recalculation of diffusion propensities for species which did not change in the

previous time step, and of reaction propensities in subvolumes which were not touched in

the previous time step. We use the shorthand MSA(s) for the MSA with diffusion radius

set to s.

We have already laid out the logic by which the probabilities p̂ij(t; s = 1, κ∆t) were

derived. The s = 2 probabilities were chosen completely analogously. These diffusion

probabilities depend on the elements pij(t) of the matrix p(t) from (9), which we obtained

analytically using MATLAB’s symbolic computation toolkit.

1. The A+B annihilation problem

The A+B annihilation problem, which has been previously used as a test problem for two

implementations of the ISSA15, is given by the reaction

A + B
k→ ∅

We consider a one-dimensional domain of length L = 40, with reflective boundaries at the

ends, subdivided into n = 100 subvolumes. We set k = 10. Initially 1000 molecules of species

A are evenly distributed across the system, while 1000 molecules of species B are located in

the leftmost subvolume. Both species have diffusion coefficient D = 5. The maximum time

step is chosen to be consistent with error ε = 1%, i.e. such that (D/l2)∆tmax = 0.1 for the
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MSA(1), and (D/l2)∆tmax = 0.4 for the MSA(2). We run ensembles of 1000 simulations to

final time tf = 100.

Figure 3 shows the population means for species A and B, vs time and space, of 1000

simulations of the A+B annihilation problem. The plots correspond to the ISSA (top), the

MSA(1) (middle), and the MSA(2) (bottom). Recall that in this problem B molecules in

the left end of the system diffuse to the right and annihilate the uniformly distributed A

molecules. It is plain to see that the qualitative agreement between the ensemble means of

the methods is good.

[FIG. 3 about here.]

To quantitatively assess the error between ISSA and MSA results, we use the Kolmogorov

distance. For two cumulative distribution functions, F1(x) and F2(x) the Kolmogorov dis-

tance is defined as

K(F1, F2) = max
all x

|F1(x) − F2(x)| (34)

and it has units of probability.

Figure 4 shows the Kolmogorov distance in space and time. The bottom plot gives what

is known as the ISSA “self-distance”27, which is the amount of “noise” we expect to see in

an ensemble of a given size (here 1000 realizations) due to the natural fluctuations in the

system. This is found by calculating the Kolmogorov distance between two ISSA ensembles

of the same size which were run with different initial seeds.

[FIG. 4 about here.]

It is interesting to note that the error is highest at the location of the wave-front of B

first coming in contact with and annihilating A. That is where reactions are happening the

fastest, in response to the molecules that have managed to diffuse the farthest. The MSA

“corrals” molecules closer to their subvolume of origin, introducing an error in the location of

the molecules. But it also introduces another error by decoupling reaction from diffusion in a

way that makes reactions happen later than they would by the ISSA. In the ISSA, molecules

can move into a neighboring subvolume and begin being considered as reaction partners to

the other molecules in that subvolume much earlier than in the MSA, according to which

molecule transfers between subvolumes are lumped together into groups of preferrably more

than 10 (for s = 1) or 20 (for s = 2).
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2. The Fisher problem

The Fisher problem, which has been used as a test problem for the Sτ - and Hτ -leaping

methods20, is given by the reversible reaction

X
A
!
B

X + X

X can represent, for example, an advantageous gene, in which case the Fisher equation

models its spread. We initially place a total of X0 molecules of species X in the left 10%

of a reflective boundary system. If the reaction rate coefficients A and B are balanced with

the diffusion coefficient D of X, then the system displays a wave-front which moves to the

right. We use A = 0.01, B = 0.00081, and D = 50000. The time step is again chosen to

achieve ε = 1% level for both MSA methods.

The ratio rmethod=(diffusive steps (MSA) or jumps(ISSA))/(reactions) is very informative.

When we consider rISSA, corresponding to an ISSA simulation, we can get a sense of, on

average, how much more frequent diffusive jumps are than reactions for a given problem.

The MSA works by lowering the number of algorithmic steps necessary to perform diffusion,

i.e. collecting many diffusive jumps into a single diffusive step. Thus the ratio rMSA(s) for

an MSA simulation will be much smaller than for the corresponding ISSA simulation, and

is approximately proportional to the speedup we expect to see when going from an ISSA

simulation to an MSA simulation. Figure 5 gives this ratio for simulations of the Fisher

system at varying initial populations X0 and subvolume number n.

[FIG. 5 about here.]

The speedup observed in an MSA simulation compared to the corresponding ISSA sim-

ulation is computed as the ratio (CPU time taken for the ISSA simulation)/(CPU time

taken for the MSA simulation). Figure 6 shows the speedup for the Fisher problem. Note

that the diffusion/reaction ratio of Figure 5 is a good predictor of the speedup. For the

MSA(1), the diffusion/reaction ratio is approximately 10 times larger than the speedup.

For the MSA(2), they differ by about a factor of 20. (The 20:10 ratio between the MSA(1)

and MSA(2) is exactly as expected, since the MSA(2) requires the generation of twice as

many binomial samples). This means that the computational cost of performing a single

multinomial diffusion step is approximately equal to the computational cost of performing
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10 or 20 ISSA diffusive jumps. Thus we expect to see an improvement in performance due

to using the MSA in cases where diffusive jumps outnumber reactions by more than an order

of magnitude.

[FIG. 6 about here.]

It is straightforward to compute the Kolmogorov distance between the ensemble distribu-

tions of a given species, in a given subvolume, at a given time. However, it is often the case

that we need the distance between the ensemble distributions of a given species, at a given

time, but over the entire spatial domain. In this case the random variable is a vector with

as many elements as there are subvolumes. For this purpose we “average” the Kolmogorov

distance over the spatial domain according to the formula

〈K(F1(x), F2(x))〉n =
1

n

n
∑

i=1

K(F1(xi), F2(xi)) (35)

where n is the number of subvolumes. This “average” Kolmogorov distance satisfies two

desirable properties: first, it has units of probability; second, it can be used for comparing

across results on the same system with a different spatial discretization.

In Figure 7 we plot the space-averaged Kolmogorov distance (Eq. 35) for the ISSA (bot-

tom), the MSA(1) (top), and the MSA(2) (middle). The simulations are of the Fisher

problem, for increasingly fine discretization (i.e. increasing number of subvolumes n) and

initial population density X0. We note that the error of the MSA(1) is approximately twice

that of the MSA(2). We also note that, although the speedup from using the MSA is mono-

tonically increasing as the number of subvolumes and the initial population increases (Figure

6), the space-averaged error presents no such monotonic behavior. In fact, based on the top

plot, corresponding to the s = 1 method, one could argue that the error increases up to

a point, and then shows a downward trend. This inflection point, the peak of the error

curves, appears to be correlated with a population density per subvolume of about 50-100

molecules, for the s = 1 method.

[FIG. 7 about here.]

IV. REACTION-DIFFUSION IN TWO DIMENSIONS

We have also implemented the MSA(1) for two dimensional systems. The MSA(2) is

considerably more complicated than the MSA(1) in two dimensions, so we did not implement
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it.

The test problem we used was a two-dimensional version of the A + B annihilation

problem. We considered a system with 30× 30 subvolumes of side length l = 0.04, reaction

rate k = 10, and the diffusion coefficients of A and B taken to be D = 2. The time step

was chosen to satisfy the usual error level of ε = 1%. The system was initialized with 9000

uniformly distributed A molecules, and 9000 B molecules placed in the lower left subvolume.

Ensembles of 500 simulations were run to final time tf = 0.2.

Figure 8 shows the qualitative agreement in the mean of the ISSA and MSA(1) ensembles

at the final time. Figure 9 shows the (non-space averaged) Kolmogorov distance, a measure

of error in the top plot and noise in the bottom plot, also at the final time.

[FIG. 8 about here.]

[FIG. 9 about here.]

V. DISCUSSION

We have introduced a new method for efficient approximate stochastic simulation of

reaction-diffusion problems. Where diffusion alone is concerned, the multinomial method

has two sources of error: (a) the error from the truncation of the diffusion radius of molecules

(step one), and (b) the error from the approximation of transition probabilities for systems

of arbitrary size by the transition probabilities for systems of finite size (step three). The

second source of error is negligible compared to the first, which for s = 1, is O((κ∆t)2).

When coupled with reactions, the multinomial method yields the Multinomial Simulation

Algorithm. The MSA has an additional source of error, which is similar to that observed in

τ -leaping methods. Like τ -leaping methods, the MSA assumes that for specific intervals of

time, while diffusion is, in fact, still occurring, the propensities of reactions are not changing.

This is clearly an approximation. While τ -leaping methods constrain the size of their time

step via the “leap condition” in a way that ensures that the error from this approximation

is below a certain level, the MSA has no such condition. In fact, the MSA’s computational

efficiency hinges on leaping over as many diffusive transfers as possible. If those transfers

are occurring in a system near diffusional equilibrium, the efficiency comes at no cost in

accuracy. If, however, the diffusive transfers are contributing to the smoothing out of a
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sharp gradient, whose species can participate in reactions, then the MSA will incur an error

from the assumption that, between the time when the reaction propensity is calculated and

the time, location, and type of the next reaction are decided, and the time at which that

reaction fires, reaction propensities have not changed. The A + B annihilation problem and

the Fisher problem were chosen because they represent this most challenging scenario for

the MSA, as they do for partial differential equation simulation methods which depend on

operator splitting.

The derivation of a two dimensional version of MSA(2), three dimensional versions of

MSA(1) and MSA(2), and versions of the MSA for more complicated spatial decompositions,

is, in principle, straightforward. One must simply substitute the appropriate Laplacian

matrix into equation 6. However, our implementation of 1D MSA(1) and MSA(2) and 2D

MSA(1), as discussed in this paper, hinged on obtaining an analytical solution of equation

9 via Mathematica. Solving equation 9 analytically becomes more difficult as the size of

the Laplacian increases. Thus, this hand-crafted approach for obtaining the probability

functions on which the MSA depends was neither efficient nor practical enough to pursue

for 2D MSA(2) and 3D MSA(1) and MSA(2). Since the method has now been shown to

work, we intend to devote some time to finding the best way to implement it for arbitrary

dimensionality and diffusion radius.

The MSA is efficient in situations where diffusive transfers substantially outnumber re-

action events. The likelihood of this condition being satisfied can be easily assessed by

comparing the magnitudes of the total diffusion propensity and the total reaction propen-

sity. This simple criterion can serve as a reliable indicator for when the MSA should be used

in an adaptive MSA-ISSA code.
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List of Figures

1 Boundary conditions and the resulting graphs. The solid arrows show the
allowed diffusive jumps.

2 A plot of e(n)
i (s = 1, t) versus κ∆t, for a system with periodic boundaries, and

different values of n. The horizontal black line indicates error per molecule per
time step ε = 1%. Note that increasing the system size does not appreciably
change the error.

3 Mean population of 1000 runs vs time for the Annihilation problem. The
methods are, from top to bottom, the ISSA, MSA(1), and MSA(2). The
units are molecules per subvolume.

4 The Kolmogorov distance (units of probability) between ISSA and MSA(1)
(top), ISSA and MSA(2) (middle), and the ISSA “self distance” (bottom),
for the Annihilation problem.

5 The ratio rISSA/rMSA(s), where rmethod =(diffusive steps or
jumps)/(reactions), for the Fisher problem. The top plot gives rISSA/rMSA(1),
while the bottom plot gives rISSA/rMSA(2) We vary the initial population
X0 and number of subvolumes n.

6 Speedup over the ISSA of MSA(1) (top) and MSA(2) (bottom), for the Fisher
problem.

7 The space-averaged Kolmogorov distance between ISSA and MSA(1) (top),
ISSA and MSA(2) (middle), and the ISSA “self distance” (bottom), for the
Fisher problem. These results are based on ensembles of size 1000, varying
the number of subvolumes n and initial population X0.

8 The mean of ensembles of 500 hundred simulations of the Annihilation prob-
lem in two dimensions at tf = 0.2, obtained via the ISSA (top) and the two-
dimensional MSA(1) (bottom). Recall that species A is uniformly distributed
throughout the volume, while B is injected at the lower left hand corner, and
diffuses throughout the volume. The units are molecules per subvolume.

9 The (non-space averaged) Kolmogorov distance between ensembles of size
500, for the Annihilation problem in two dimensions. The top plot gives the
error between the ISSA and MSA(1), while the bottom plot gives the ISSA
self-distance. The units are probability.
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