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Abstract: Insulin resistance is a primary defect underlying the development of type II diabetes.
In healthy conditions, insulin stimulates glucose uptake from the blood stream, but in diseased
conditions the normal metabolic response is impaired. Identifying specific drug targets to restore
insulin sensitivity at the cellular level and developing an effective treatment strategy require
insight into both the biochemical mechanisms involved and the whole signalling network response
to external cues. This study focuses on the consequences of integrating a detailed biochemical
description of the insulin receptor trafficking compartment within a phenomenological model of
the downstream signalling pathway. While the description of the experimental data is preserved
by an iterative procedure of parameter fitting, the dynamic response of the network is highly
modified, as shown by analyzing the complementary information derived from studying both
connection sensitivities and node noise in the network. This is crucial considering the importance
of network dynamics for identifying effective drug targets.
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1. INTRODUCTION

Type II diabetes mellitus is a metabolic disease involving
dysfunction in the regulation of glucose homeostasis. It has
a complex pathology involving both genetic predisposition
and environmental factors, related to sedentary lifestyle
and obesity (Leahi [2005]).

A primary defect underlying the development of this dis-
ease is insulin resistance. While in healthy conditions in-
sulin stimulates glucose uptake from the blood stream,
in disease conditions the normal metabolic response is
impaired (Defronzo et al. [1991]). Adipose tissue, together
with skeletal muscle, play a crucial role in glucose home-
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ostasis. Adipocytes normally bind insulin to their mem-
brane receptors that trigger an intracellular signalling
cascade that ultimately stimulates glucose transporter
GLUT4 translocation to the cell membrane, allowing glu-
cose entrance into the cell (Rosen and Spiegelman [2006]).

Identifying specific drug targets, for example, to restore
insulin sensitivity at the cellular level, and developing
an effective treatment strategy require insight not only
on the whole signalling network response to external
cues, but also on the biochemical mechanisms involved
(Schrattenholz and Soskić [2008]). Protein structures and
protein-protein interactions play a major role in drug
discovery, and structural models are developed hand in
hand with the experimental techniques that make possible
the validation of their predictions (Edwards [2009]).

A detailed description of insulin receptor dynamics has
been presented by Kiselyov et al. [2009]. They developed
a physically plausible model of the receptor activation
starting from the available structural information, and
verified its thermodynamic consistency.



Fig. 1. Schematic of the insulin signalling pathway model.
Symbols and Xi,i∈[1,25] are explained in Appendix
A. Solid arrows represent chemical reactions, black
dashed arrows activation, and red dashed arrows two
negative regulatory feedbacks. ∅ represents GLUT4
production/degradation. Red numbers are the param-
eters that particularly affect GLUT4m, as shown in
Fig. 4.

In this work, we focus on the implications of incorporating
the detailed biochemical description of the insulin receptor
trafficking compartment (Kiselyov et al. [2009]) within
a phenomenological model of the downstream signalling
pathway (Sedaghat et al. [2002]). Integrating these aspects
into a multiscale model allowed in silico simulations to
identify critical kinetic parameter sensitivities and stochas-
tic effect propagation.

2. MODEL

The most detailed currently available model of insulin
signalling pathway was developed by Sedaghat et al.
[2002]. It accounts for the main known processes in-
volved between insulin stimulation and GLUT4 translo-
cation to the cell membrane, whose schematic is shown
in Fig. 1. Briefly, insulin receptor undergoes autophos-
phorylation and activation after insulin binding. Then,
it tyrosine phosphorylates insulin receptor substrate-1
(IRS1), which in turn serves as a docking site for phos-
phatidylinositide 3-kinase (PI3K). IRS1 can also be ser-
ine phosphorylated. The complex IRS1-PI3K catalyzes
the production of phosphatidylinositol 3,4,5-triphosphate
(PI(3,4,5)P3) from phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2). PI(3,4,5)P3 can also be dephosphorylated to
phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Acti-
vation, through phosphorylation, of downstream kinases
Akt and PKCζ is dependent on the concentration level
of PI(3,4,5)P3. GLUT4 is produced and degraded within
the intracellular compartment, and is translocated to the
cell membrane at a rate that is indirectly dependent on
the level of phosphorylated Akt and PKCζ. Two feed-
back loops further complicate the signalling cascade: phos-
phorylated Akt inhibits IRS1 tyrosine dephosphorylation,
while phosphorylated PKCζ inhibits IRS1 serine dephos-
phorylation. This model is considered as a basis for com-
parison in the following discussion.

We modified Sedaghat’s model, building a multiscale
model that accounts for detailed biochemical insulin-
receptor interactions within the receptor compartment
(Kiselyov et al. [2009]). Fig. 2 shows the network of re-
actions included. With respect to the model proposed by
Kiselyov et al. [2009], the number of components in the
network was reduced by considering symmetric insulin-
receptor complexes as the same components in the net-
work. Details on the equations for the receptor compart-
ment are provided in Appendix B. For equations down-
stream in the pathway the interested reader is referred to
Sedaghat et al. [2002].

The parameters of the multiscale model were fitted to
the experimental data presented in Sedaghat et al. [2002],
and a list of parameter values is reported in Appendix
C. All computational simulations were performed using
MATLAB (The MathWorks, Inc.).

Fig. 2. Detailed schematic of the insulin receptor (IR) com-
partment. Circles indicate insulin molecules. Yellow
and red circles represent insulin molecules attached to
either of two binding sites; orange circles are those at-
tached to both sites. IR cyt is the intracellular insulin
receptor. Solid arrows represent chemical reactions,
the dashed arrow downstream activation. The upper
left dotted box includes inactive forms of the receptor,
the lower right contains the active ones.

Fig. 3 shows an example of the temporal profiles obtained
by the two models. Free insulin receptor concentration is in
perfect agreement between the two models, and the bipha-
sic response of PKCζ, reported in the experimental work
by Standaert et al. [1999], is also reproduced. In general,
the description of the experimental data is preserved by
the iterative procedure of parameter fitting.

3. SENSITIVITY ANALISYS

3.1 Methods

To determine if the parameters have an altered impact
on the system’s behaviour, a local sensitivity analysis
(Saltelli et al. [2000]) was performed for both Sedaghat’s
and our multiscale model. The sensitivity coefficients, Si,
were normalized as follows:



Fig. 3. Temporal profiles of free insulin receptor (A),
and activated PKCζ (B), in response to a step of
100-nM insulin, which is removed after 15 minutes.
The dashed line represents results from the multiscale
model; the solid line gives the results from Sedaghat
et al. [2002].

Si =
∂ [GLUT4m]

∂ki

·
ki

[GLUT4m]
(1)

where ki represents the generic model parameter and
[GLUT4m] indicates membrane GLUT4 concentration.
GLUT4m was the chosen output as it is the actual glucose
transporter into the cell, and thus directly correlated
with the ability of the cell to uptake glucose. The mean
sensitivity coefficients, S̄i, over a 15-minute step of 100 nM
insulin stimulation were calculated as in:

S̄i = tf
−1 ·

∫ tf

0

Sidt (2)

where tf = 15min. Fig. 4 shows the results for the
parameters common to both models, in terms of the
difference between the absolute values of in the multiscale
and in Sedaghat’s model.

3.2 Results and Analysis

The results of the sensitivity analysis (Fig. 4) show signif-
icant differences even though the parameters are involved
in parts of the network that are downstream from the re-
ceptor compartment and modelled in the same way in both
models (the parameter numbers are highlighted in red in
Fig. 1). Specifically, in the multiscale model, GLUT4m
has an increased sensitivity to parameters describing IRS1
tyrosine and serine phosphorylation, and PKCζ tyrosine
phosphorylation. A decreased sensitivity is shown to the
parameters involved in both Akt phosphorylation and
dephosphorylation. Interestingly, phosphorylated Akt re-
sulted also in significantly less noise in stochastic simula-
tions, as discussed below. Furthermore, in the multiscale
model parameter 44, involved in the two feedback loops,
is less sensitive.

Since parameter sensitivity is often used to identify which
parameters in the model should be determined more pre-
cisely via expensive biological experiments, the insights
gained by using a detailed network description are po-
tentially very valuable. For example, we discovered that
parameters related to the Akt node are less sensitive than
previously found using the model by Sedaghat et al. [2002].

Fig. 4. Results from local sensitivity analysis. Each circle
represents the difference between the absolute value
of S̄i of the multiscale model and Sedaghat et al.
[2002] with respect to the parameter indicated. The
shaded area represents the region where the difference
between the two models is negligible, assuming a
threshold of 0.12, i.e. the difference is less than 12%.

Fig. 5 shows the temporal profiles of the sensitivity coef-
ficients that showed more remarkable differences between
the two models (Fig. 4). The simulation included a 100nM
insulin pulse for 15 minutes followed by 45 minutes without
insulin.

Fig. 5. Temporal profiles of the normalized sensitivity coef-
ficients for Sedaghat’s model (left) and the multiscale
model (right). The output considered is GLUT4m.
The simulation includes 15 minutes at 100nM insulin
concentration, and 45 minutes at 0 concentration.

Parameter 20 in Sedaghat’s model is more identifiable after
insulin removal than during the pulse, the contrary being
true for the multiscale model (Fig. 5). Thus, these results
underscore the importance of experimental approaches
that design input dynamics to maximize parameter iden-
tifiability (Kwei et al. [2008]).

4. STOCHASTIC SIMULATIONS

4.1 Methods

Previous work has demonstrated substantial intrinsic fluc-
tuations in a stochastic adaptation of Sedaghat’s model
(Kwei et al. [2008]). To investigate the impact of incorpo-
rating detailed receptor dynamics on stochastic noise, we



constructed a stochastic version of the multiscale model.
For details on the conversion of the two deterministic
models into stochastic form, the reader is referred to Kwei
et al. [2008].

An ensemble of 1000 stochastic simulations of both models
was run to get estimates of the mean and standard
deviation of all state variables at several time points. The
coefficient of variation (CV = standard deviation/mean)
was calculated and used as the measure of noise to make
results comparable between the different variables. The
mean coefficients of variation, CV i, over a 15-minute step
of 100nM insulin stimulation were calculated as in:

CV i = tf
−1 ·

∫ tf

0

CVi dt (3)

where index i refers to the different components in the
network.

4.2 Results and Analysis

The stochastic counterparts of the two deterministic mod-
els highlighted differences in the way noise propagates
through the network. When stimulated with a 100nM
insulin pulse input for 15 minutes, the output from the
receptor compartment, (X4 +X8 +X9 +X10) for the mul-
tiscale model, was noisier than in Sedaghat’s model with a
CV ≈ 5.6% compared to CV ≈ 1%. This led to significant
modification of noise in several downstream component
concentrations (Fig. 6), due in part to the effects of the
two feedback loops present in the cascade. One component,
phosphorylated Akt, resulted in significantly less noise, as
shown in Fig. 6.

Fig. 6. Results from stochastic simulations. Each circle
represents the difference between CV of the multiscale
model and Sedaghat et al. [2002] with respect to the
state variable indicated. The shaded area represents
the region where the difference between the two
models is negligible, assuming a threshold of 0.2, i.e.
the difference is less than 20%.

The differences in stochastic noise that can arise by in-
corporating biochemical details into a network model can
have important implications for drug targeting. If the

impact on stochastic fluctuations is not well understood,
an otherwise effective intervention could lead to excessive
fluctuations in the network that trigger unexpected side
effects.

5. DISCUSSION AND CONCLUSION

The development of drugs to pinpoint specific molecular
targets requires knowledge of the biochemical interactions
between the components involved. Due to the highly com-
plex and interactive character of intracellular regulatory
networks, biochemical interactions should be considered
within this context (Kitano [2002], Barabási and Oltvai
[2004]). On the other hand, computational simulations
of network behaviour show that network response is also
affected by the introduction of detailed biochemical mech-
anisms.

As an example, in this work we integrated a detailed
model of insulin-receptor interaction into a phenomeno-
logical description of the signalling cascade that triggers
GLUT4 translocation to the cell membrane promoting glu-
cose uptake. We showed how parametric sensitivities and
stochastic noise in the concentrations in the downstream
network compartment were subsequently modified, despite
the fact that parameters were adjusted to fit the same
experimental data.

Fig. 7. Temporal profiles of the activated insulin receptor
in response to a step of 100-nM insulin, which is
removed after 15 minutes. The dashed line represents
results from the multiscale model; the solid line gives
the results from Sedaghat et al. [2002].

The main consequence of inserting biochemical details into
the original model is the modification of the temporal
profile of the output from the receptor compartment,
(X4 + X8 + X9 + X10) for the multiscale model, shown in
Fig. 7. The experimental data are well described by both
models (Fig. 3). Nonetheless, they do not constrain the
profiles in Fig. 7 that have similar qualitative behaviours,
but are significantly different in the magnitudes of the
maximum concentration reached. This produces the dif-
ferences, analyzed above in terms of sensitivity coefficients
and stochastic noise, in the downstream compartment.



We pointed out how biochemical details affect network be-
haviour analyzing the complementary information derived
by studying both connection sensitivities and node noise
in the network. The behaviour of the whole network model
is highly modified when a compartment is replaced by an
expanded one including more detailed biochemical interac-
tions, unless the experimental data precisely constrain the
connections of this module with the remaining network.
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Appendix A. STATE VARIABLES

The states mentioned in Fig. 1 and in the text are sum-
marized in Tab. A.1. The states mentioned in Fig. 2, X1−

X11, refer to different configurations of insulin receptor, as
explained in Kiselyov et al. [2009].

Table A.1. State variables description

State Description

X12 Unphosphorylated insulin receptor substrate-1, IRS1
X13 Tyrosine-phosphorylated IRS1, IRS1-Yp
X14 Unactivated phosphatidylinositol-3-kinase, PI3K
X15 Activated IRS1-PI3K complex (M)
X16 Phosphatidylinositol triphosphate, PI(3,4,5)P3
X17 Phosphatidylinositol diphosphate, PI(4,5)P2
X18 Phosphatidylinositol diphosphate, PI(3,4)P2
X19 Unactivated protein kinase Akt
X20 Activated Akt, Akt p
X21 Unactivated protein kinase C, PKCζ
X22 Activated PKCζ, PKCζp
X23 Intracellular glucose transporter, GLUT4 cyt
X24 Serine-phosphorylated IRS1, IRS1-Sp
X25 Membrane GLUT4, GLUT4m

Appendix B. MODEL EQUATIONS

Model equations for the receptor compartment are listed
in Tab. B.1. The names of the state variables are given in
Fig. 2, and I represents insulin concentration.

Ẋ1 = (−2(a1 + a2)I − k4)X1 + d1X2 + d2X3 + k
−4X11

Ẋ2 = 2a1IX1 − (kcr + (a1 + a2)I + d1 + k4)X2 + d2X4

+ d2X5 + 2d1X6

Ẋ3 = 2a2IX1 − (kcr + (a1 + a2)I + d2 + k4)X3 + d1X4

+ d1X5 + 2d2X7

Ẋ4 = kcrX2 + kcrX3 − (d1 + d2 + (a1 + a2)I + k4′ )X4

+ d1X8 + d2X9

Ẋ5 = a2IX2 + a1IX3 − (d1 + d2 + 2kcr + k4)X5

+ d1X8 + d2X9

Ẋ6 = a1IX2 − (2(d1 + kcr) + k4)X6 + d2X8

Ẋ7 = a2IX3 − (2(d2 + kcr) + k4)X7 + d1X9

Ẋ8 = a1IX4 + kcrX5 + 2kcrX6 − (2d1 + d2 + a2I

+ k4′ )X8 + d2X10

Ẋ9 = a2IX4 + kcrX5 + 2kcrX7 − (d1 + 2d2 + a1I

+ k4′ )X9 + d1X10

Ẋ10 = a2IX8 + a1IX9 − (d1 + d2 + k4′ )X10

Ẋ11 = k4(X1 + X2 + X3 + X5 + X6 + X7) + k4′ (X4 + X8

+ X9 + X10) + −(k
−4 + k

−5)X11 + k5

(B.1)

The model equations for the downstream reactions were
taken from Sedaghat et al. [2002].

Appendix C. MODEL PARAMETERS

Parameters of the multiscale model are summarized in
Tab. C.1, where parameters from Sedaghat et al. [2002]
are also reported for reference.

With respect to Sedaghat et al. [2002], parameters k5 and
PTP were defined by means of the hyperbolic tangent
function to avoid discontinuities, what negligibly affected
model results:

k5 = k5,1 tanh[−1015(X11 − k5,3)] + k5,2 (C.1)

PTP = (PTP1X20 − PTP2) tanh[1015(X20 − PTP3)]

+ (PTP2 − PTP1X20).
(C.2)



State-dependent parameters from Sedaghat et al. [2002]
were deconvolved as follows:

k9 = k9,1X15 + k9,2 (C.3)

k11 = k11,1X16 − k11,2 (C.4)

k12 = k12,1X16 − k12,2 (C.5)

k13′ = k13′,1X20 + k13′,2X22. (C.6)

Table C.1. Model parameters

No Parameter Sedaghat [2002] Multiscale model

1 k1 (s−1M−1) 106 -
2 k

−1 (s−1) 3.33 · 10−3 -
3 k2 (s−1M−1) 106 -
4 k

−2 (s−1) 3.33 · 10−1 -
5 k3 (s−1) 41.67 -
6 k

−3 (s−1M−1) 3.33 · 10−3 -
7 k

−4 (s−1) 5 · 10−5 3.43 · 10−5

8 k4 (s−1) 5.55 · 10−6 3.82 · 10−6

9 k4′ (s−1) 3.5 · 10−5 4.88 · 10−5

10 k
−4′ (s−1) 3.5 · 10−6 -

11 k
−5 (s−1) 2.78 · 10−20 3.04 · 10−20

12 k6 (s−1M−1) 7.68 · 10−3 -
13 k7/IRp (s−1M−1) 7.73 · 1010 1.24 · 1011

14 k
−7 (s−1M−1) 2.33 · 10−2 3.72 · 10−2

15 k
−8 (s−1) 1.67 · 10−1 8.60 · 10−2

16 k8 (s−1M−1) 1.18 · 1010 6.07 · 109

17 k
−9 (s−1M−1) 7.02 · 10−1 7.45 · 10−1

18 k
−10 (s−1M−1) 4.62 · 10−2 7.88 · 10−2

19 k10 (s−1) 4.94 · 10−2 8.42 · 10−2

20 k
−11 (s−1) 1.16 · 10−1 1.72 · 10−3

21 k
−12 (s−1) 1.16 · 10−1 1.70 · 10−1

22 k
−13 (s−1) 2.78 · 10−3 2.17 · 10−3

23 k13 (s−1) 1.16 · 10−4 9.04 · 10−5

24 k
−14 (s−1) 1.93 · 10−5 2.11 · 10−5

25 k14 (s−1) 1.85 · 10−3 2.03 · 10−3

26 k7′ (s−1M−1) 5.78 · 10−3 4.07 · 10−3

27 k
−7′ (s−1) 1.43 · 10−3 10−3

28 Vmax 20 20
29 Kd 12 12
30 n 4 4
31 SHIP (M) 1 1
32 PTEN (M) 1 1
33 k5,1 (Ms−1) 6.96 · 10−19 1.27 · 10−20

34 k5,2 (Ms−1) 9.74 · 10−19 1.77 · 10−20

35 k5,3 (M) 10−13 10−13

36 k9,1 (s−1) 8.23 · 1012 8.73 · 1012

37 k9,2 (s−1) 2.19 · 10−3 2.32 · 10−3

38 k11,1 (s−1) 4.14 · 10−3 6.17 · 10−5

39 k11,2 (s−1) 1.28 · 10−3 1.91 · 10−5

40 k12,1 (s−1) 4.14 · 10−3 6.1 · 10−3

41 k12,2 (s−1) 1.28 · 10−3 1.89 · 10−3

42 k13′,1 (s−1) 3.83 · 10−5 2.98 · 10−5

43 k13′,2 (s−1) 1.53 · 10−4 1.19 · 10−4

44 PTP1 (M) 1.38 · 10−2 1.38 · 10−2

45 PTP2 (M) 0.5 0.5
46 PTP3 36.36 36.36
47 a1 (s−1M−1) - 5.58 · 105

48 a2 (s−1M−1) - 3.69 · 105

49 d1 (s−1) - 4.72 · 10−3

50 d2 (s−1) - 1.22 · 10−2

51 kcr (s−1) - 3.8 · 10−3

52 τ (s) 90 90


