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Abstract—The study of influence, persuasion, and user senti-
ment dynamics within online communities has recently emerged
as a highly active area of research. In this paper, we focus on
analyzing and modeling user sentiment dynamics within a real-
world social media such as Twitter. Beyond text and connectivity,
we are interested in exploring the level of topical user posting
activity and its effect on sentiment change. We perform topic-wise
analysis of tweeting behavior that reveals a strong relationship
between users’ activity acceleration and topic sentiment change.
Inspired by this empirical observation, we develop a new gener-
ative and predictive model that extends classical neighborhood-
based influence propagation with the notion of user activation.
We fit the parameters of our model to a large, real-world Twitter
dataset and evaluate its utility to predict future sentiment change.
Our model outperforms significantly (1 order of magnitude in
accuracy) existing alternatives in identifying the individuals who
are most likely to change sentiment based on past information.
When predicting the next sentiment of users who actually change
their opinion (a relatively rare event), our model is twice more
accurate than alternatives, while its overall network accuracy
is 94% on average. We also study the effect of inactive users
on consensus efficiency in the opinion dynamics process both
analytically and in simulation within the context of our model.

I. INTRODUCTION

The proliferation of social media, forums, and communities
has brought about networks that propagate news, opinions,
and stances on a scale and speed that has never been seen
before. Websites such as Facebook and Twitter produce novel
information daily – not only in terms of friendship relations
among users, but also abundant metadata (such as timestamps,
tags, and links) as wells as textual and rich media content
including users’ updates and opinions. The textual information
and tags within these datasets reveal users’ sentiments on
topics, as well as the influence of their network neighbors.
Hence, studies of influence within networks are of natural
importance with applications ranging from targeted advertising
to the prediction of election results or the stock market.

Existing research has focused on the theoretical analysis
and modeling of sentiment dynamics and influence within
networks [1], [2], [3]. In this paper, we focus on sentiment
dynamics in the context of a real-world network dataset, and
specifically, incorporating behavioral traits such as timing and
activity information available for users. Posting activity is
a valuable source of information that reflects the temporal
interest and attention of a user. By extending our analysis
beyond the traditional text and user connectivity, we find a
strong new connection between topic-based user activity levels,
and changes in sentiment.

We hypothesize that a drastic change in the online activity
level of a user is a precursor for a shifting sentiment/opinion.
For example, in the period before elections, undecided voters
may sway to one side on a given issue thanks to televised
debates, political campaigns and their social neighborhood.
Naturally, such voters who become increasingly polarized will
express their opinion by posting more often than on average
in public forums and social media. Similarly, dissatisfaction
with a favored politician may decrease the number of posts of
supporters from their normal levels.

We first set out to validate our hypothesized relation
between change in activity and sentiment, based on empirical
user behavior in Twitter. We discover a strong relationship
between a user’s acceleration in topic-based activity, and a
subsequent change in the same user’s topic sentiment (corre-
lation values fifty times greater than expected at random). User
and neighbors activity acceleration couples much stronger with
future opinion shifts than the raw activity levels.

Building on our empirical observations in Twitter, we
develop a new generative model for sentiment dynamics within
social networks. Our model integrates both user activity ac-
celeration, as well as neighborhood sentiment state in order
to better fit and predict future changes of opinion. Similar
connections between user sentiment and user message activity
exist in the sociology literature: Henry et al [4] demonstrate
that opinion and interest are more dynamic during activity-
ramping phases of a topic, while Newman et al. [5] relate
topic-based thresholds for user attention to topic activity.
These connections, combined with our empirical evidence
from Twitter, are the inspiration for our novel activity-based
model for opinion dynamics.

When fitted to a real-world Twitter dataset, our model
generates opinion dynamics which closely mirror the actual
network behavior. It identifies users who are likely to change
opinion an order of magnitude more accurately than a recently
introduced alternative [1]. When predicting the next sentiment
state of all users in a network our model achieves an average
of 94% accuracy, while for users who change opinion it is
twice more accurate than alternatives.

We make three main contributions in this work: (i) We
demonstrate the relationship between opinion change and
users’ topic-based activity acceleration within a real-world
network. (ii) We introduce a new model for activation-based
sentiment dynamics and analyze the effect of inactive users
on the efficiency of reaching sentiment consensus. (iii) We
demonstrate the applicability and accuracy (2 orders of magni-



tude higher than alternatives) of our model for future sentiment
change prediction in Twitter.

II. RELATED WORK

Numerous prior studies focus on detecting positive/negative
sentiment within user posts in social media [6], [7], [8]. These
techniques are mainly concerned with static networks, and
utilize both text processing, as well as graph and network-
based approaches (for details see the Supplement [9]). Our
approach focuses on the dynamics of sentiments as opposed to
determining the sentiment state of a user/message. As such, our
model is complementary to text- or network-based sentiment
classification.

Exisiting opinion diffusion models employ Markov chain
theory, neighbor opinion averaging, and others [2], [3], [10].
The majority of the previous work revolves around the con-
nection between network structure and user sentiment, with
individuals being influenced by their network neighbors’ opin-
ion, a phenomena explored in more detail for Twitter in [6].
Manipulation and control of user opinion and the effect of
“stubborn” users have been the target of further research
on the the established models [11], [12]. Unlike previous
approaches that are limited to two sentiment/opinion states,
the Kimura model [1] allows for the inclusion of more than 2
opinion labels by extending a basic voter model [13], where
every node probabilistically copies its state from one of its
neighbors. Different from all previous models, our goal is
to incorporate the activity acceleration of network users for
improved predictive power of future sentiment change.

The importance of user activity and its influence on multi-
ple aspects of network behavior have been realized by Wilson
et al [14], demonstrating that frequency of interaction may
impact information flow within a network. Patterson et al [3]
introduced a new opinion dynamics model, weighing network
links according to interaction frequency. In [15], changes in
individual user activity patterns were related to user interest.
Sociologists have also discovered links between topic-based
activity changes and user’s opinion/interest in a topic. For
example, a study in [4] discovered that users were more
likely to focus attention on a topic when the level of topic-
based activity was undergoing rapid acceleration, as opposed
to simply correlating to high activity value levels. Despite
the realization of the importance of user activity for opinion
dynamics, the relation between per-topic activity changes and
sentiment shifts has not been investigated within the context of
large-scale real networks. Our model and analysis contributes
to this important research area.

III. DATA

Network and posts from Twitter. For our evaluation, we
crawled Twitter (via its API) to obtain text, hashtag, and times-
tamps from posted tweets, as well as the follower structure
among users. Our crawl began from a set of 10 randomly
selected seed nodes whose recent posts had contained one or
more of the topics listed in Table I. For each visited user, we
obtained all available tweets, and proceeded to followees in a
breadth first search manner. In this way, a complete collection
of Twitter posts and information to which crawled users are
exposed can be collected. Our crawled dataset includes 48M

TABLE I: Statistics for Topic-Based Datasets

Topic # of Tweets # of Users # of Hashtags # of Graph Links
Obama 100,939 2,510 10,856 602,339

GOP 100,203 2,108 10,756 529,032

Liberal 51,474 2,072 5,632 532,589

Romney 8,321 1,045 1,879 172,509

Limbaugh 9,200 1,089 1,252 195,306

tweets sent across 6 years and 26M users. Approximately
12.4M of the crawled tweets contain hashtags (user-defined
annotations of their post).

Detecting message and user sentiment. In order to study
and model the change in topic sentiments across time within
our data, we must first discover individual user sentiments
within a fixed time point based on their posted content.
To this end, we utilize two recently introduced sentiment
mining techniques [16], [8] to label tweets with sentiment.
As mentioned previously, numerous methods for discovering
sentiment within text have been proposed, including averaging
word polarity [17], topic-based analysis of words, emoticons,
hashtags, and context information [7]. In this paper, we employ
the techniques introduced in [16] because of their specializa-
tion to Twitter data, as well as the model introduced by Srivatsa
and colleagues [8] because of its high classification quality.
Extending the latter techniques, by incorporating emoticons
and other textual/network features or better classification al-
gorithms, may improve the quality and predictive power of
our model. However, such directions are not within the scope
and target of the current study.

We adopt a hashtag-based approach to identify broad
“topics” within a Twitter dataset, similar to methods introduced
in [16]. Hashtags, words prefixed by a hash symbol #, are
widely used within tweets (26% of tweets within our collected
dataset contained hashtags), and frequently identify concepts,
subjects, and sentiment information contained within the text
(for example #obama, or #awesome).

We annotate individual tweets following the approach
in [8], [16]. Details of how we apply the approach to our
dataset are available in the Supplement [9]. Given tweet
sentiment, we determine the user-level sentiment within a
time period (3 months) by aggregating the sentiments of all
the user’s tweets within the same period. Users who sent
25% more positive (than negative) tweets are classified as
having a positive sentiment for that quarter, and similarly for
negative. All other cases were classified as neutral. The result
of this preliminary sentiment analysis step is a time series of
sentiment states for each user within out dataset.

We apply the user sentiment classification to our Twitter
dataset to obtain user sentiments across time for five separate
hashtag topics within: #Obama, #GOP / #Republican (repre-
sented in figures hereafter as “#GOP”), #Romney, #Liberal /
#Democrat (represented hereafter as “#Liberal”), and #Lim-
baugh. These five topics were chosen based upon their high
opinion volatility and intensity. Table II presents the sizes and
features for the obtained topic-based subnetworks. To help
validate the sentiment classification results, we compared the
individual tweet classifications with a set of 1000 randomly
selected tweets, manually annotated to be either positive,
negative, or neutral in opinion. From this comparison, we



Measure Obama GOP Romney Liberal Limbaugh
PCC w/ User Activity,

0.15 0.08 0.12 0.02 0.18
PCC(δi(t), Ai(t))

PCC w/ User
0.52 0.47 0.51 0.47 0.48Activity Change

PCC(δi(t), Ci(t))

PCC w/ Neighbors’
0.23 0.17 0.24 0.16 0.26Activity Change

PCC(δi(t), CNi
(t)

Critical Value
0.01 0.02 0.03 0.03 0.03

(0.05 probability)

TABLE II: Pearson Correlation Coefficient between changes
in topic-specific user activity, and changes in sentiment
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Fig. 1: Percentage of tweets classified as positive, negative,
and neutral for topic “Obama”.

found an overall accuracy of 85.6%, slightly higher than the
accuracy found in [8], emphasizing the utility of combining
both hashtag-level and tweet-level sentiment information for
sentiment classification.

IV. SENTIMENTS ANALYSIS OVER TIME

In this section we analyze user sentiments over time and
their relationship to acceleration of topic-wise activity. Given
our crawled and sentiment-annotated Twitter networks per
topic, we analyze the sentiment evolution for the period from
2009 to the beginning of 2012 at a time scale of a quarter (3
months). Each included user is associated with a time series of
sentiment states xi(t), xi(t) ∈ {Pos,Neu,Neg} and another
time series of topic-wise activity levels Ai(t).

Figure 1 shows the fraction of users’ tweets of each
sentiment over time for the obama topic. The percentage of
positive messages has a peak in the beginning of 2009, and the
percentage of negative tweets has increased since, surpassing
the positive in late 2011. These general trends mirror those
seen in user polls and statistics1, helping to further confirm
the effectiveness of the sentiment classification.

Next, we turn our attention to user activity analysis. Let
Ai(t) denote the number of topic-based messages a user
ui posts in time period (quarter) t. The relative difference
(acceleration) of user ui’s topic-based messages per quarter t is
defined as Ci(t) = |Ai(t−1)−Ai(t)|/max(Ai(t−1), Ai(t)).
User ui’s neighborhood relative acceleration CN(ui)(T ) is
similarly measured as:

CN(ui)(t) =
|
∑
uj∈N(ui)

|Aj(t− 1)| −
∑
uj∈N(ui)

|Aj(t)||
max(

∑
uj∈N(ui)

|Aj(t− 1)|,
∑
uj∈N(ui)

|Aj(t)|)

1Gallup Polls: http://gallup.com/poll/113980/gallup-daily-obama-job-
approval.aspx
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Fig. 2: Distributions of fraction of users changing opinion in
all time periods (a) and user activity (b) for quarter 20 across
all topics. Merely 5% of the users change their opinion in Q20.

where N(ui) is the set of neighbors of user ui. Let also
δi(t) denote the binary time series taking a value 1 if xi(t) =
xi(t − 1) (i.e. the user changes sentiment at time t) and 0
otherwise.

Table II shows the Pearson Correlation Coefficient (PCC)
among δ(t), A(t), C(t) and CN (t) averaged across all users
in our topics of interest. All three user activity series correlate
significantly (as compared to the corresponding critical values
shown in the last row). Two random variables (with no
correlation) would have a 95% probability of PCC greater
than a critical value or lower i.e. the critical represents the
score at which the null hypothesis (random variables with
no correlation) could be rejected with 95% probability. We
observe a high correlation between the change in user activity
and change in sentiment, with the PCC value on the topic
of obama over 50 times higher than expected at random. On
the other hand, the correlation of activity level (Ai(t)) and
sentiment change δi(t) per topic is much weaker (close to
random). This corroborates our hypothesis that the change
in activity levels relates to a higher susceptibility to opinion
change. The neighborhood acceleration is also significantly
(well separated from random) correlated with sentiment change
across all topics.

We also analyze the observed fraction of users who change
sentiment at a given time. Figure 6(a) shows the distribution
of the fraction of users changing sentiment per quarter (period
of 3 months) in all topics. The distribution decreases exponen-
tially with most quarters observing few changed opinions. The
average fraction of users who change opinion within a quarter
is on average less than 5% of all active users. User-specific
activity levels Ai(t) within a quarter also exhibit a skewed
distribution, with a large fraction of “inert” non-active users
in any given period. Figure 6(b) summarizes the distribution of
activity levels across topics in the 20th quarter of our dataset
(the quarters observe similar behavior).

V. ACTIVITY-BASED MODEL

As we saw in the previous section, activity acceleration
(change) is correlated with sentiment change. Classical net-
work models for opinion formation rely on the assumption
that all nodes are active at every step of the opinion dy-
namics process. As we demonstrated in the previous section
(see Fig. 6), this is an unrealistic assumption for real-world
online social media such as Twitter, where very few users
are actively participating (change opinion) in the sentiment
formation process at a given time. By incorporating the notion
of inactive users in existing opinion dynamics models, we
first demonstrate that converging to opinion consensus may



be significantly slowed and, in general, consensus may not
be guaranteed. Hence, we develop and evaluate a model that
predicts realistic short-term opinion dynamics based on user
activity acceleration.

A. Activation-based opinion dynamics

Since we have access to a real network and actual activity
and sentiment dynamics, we can model the probability of
users “not participating” in the opinion formation process.
In established models such as DeGroot’s [2], a user makes
a decision for their sentiment based on their neighborhood
and/or previous sentiment states. In our model, a user ui is
further associated with an activation probability ai(t) at time
t that controls the likelihood of participation in the opinion
dynamics process at time t. First, we analyze the effect of such
activation probability on the speed of convergence to consensus
of the opinion dynamics process, while in the second part
of this section we tie the activation probability ai(t) to the
acceleration of user activity Ci(t).

In the following analysis, we augment DeGroot’s [2] model
with activation probability. The original model postulates that
a node’s opinion xi(t + 1) at time step t + 1 depends only
on the previous opinion of its neighbors Ni(t− 1), where the
neighborhood includes the node itself. All neighbors affect a
node according to the edge strength encoded in the stochastic
adjacency matrix W : x(t + 1) = W ∗ x(t), where x(t) is
the real-valued opinion vector at time t and W is the row-
stochastic adjacency matrix.

Patterson and colleagues [3] show that a necessary and
sufficient condition for consensus is that W is primitive, i.e.
1 is a simple eigenvalue of W and all other eigenvalues have
a smaller than 1 absolute value. Another way to state this
condition from a graph-theoretic point of view is that the graph
corresponding to W needs to be strongly connected. The rate
at which the opinion vector approaches consensus depends on
the second eigenvalue of W . Let the deviation from consensus
sentiment x̄(t) be defined as the difference vector of every
node’s sentiment state from the average sentiment state at time
t, i.e. x̄i(t) = xi(t)− x̃(t). Then an ε consensus is defined as
reaching a time t such that ||x̄(t)||/||x̄(0)|| < ε. The number
of rounds required to reach ε-consensus for all active nodes is

log ε
log λ2(W ) [3].

We extend the basic model by incorporating an activa-
tion probability ai(t) for each node and time capturing the
likelihood of this node participating in the opinion dynamics
process:

x(t+ 1) = diag(a(t))Wx(t) + (I − diag(a(t)))x(t),

where diag(a(t)) is a diagonal matrix holding the activation
vector and I is the identity matrix. At time t a user either
participates in the consensus process with probability ai(t)
or remains with the same opinion with probability 1 − ai(t).
Admitting the activation probability to be 1 for all time steps
and nodes is equivalent to adopting the basic DeGroot model.
We focus on the cases in which the a(t) 6= 1̄, and evaluate its
effect on convergence and efficiency.

We can rewrite the activation model as

x(t+ 1) = [diag(a(t))W + I − diag(a(t))]x(t) = W ′(t)x(t),

|   |U

 x(t+1)

 δ(t+1)

 β N
t

a(t)

 γa(t)

 x(t)

Fig. 3: Figure representing the relationships between the intro-
duced model’s variables and parameters using plate notation.

where W ′(t) = diag(a(t))W + I − diag(a(t)) is the time-
dependent adjacency matrix incorporating activation. In the
case of constant activation probability for all nodes and time
steps, i.e. 0 < ai(t) = α ≤ 1, W ′ is primitive (or equivalently
corresponds to a strongly connected graph) if and only if W
is primitive. As a result, the introduction of constant non-zero
activity probability does not affect the existence of eventual
consensus.

We also show that there is a significant overhead in the
time to reach consensus due to “inactivity”. We define the
overhead of reaching an ε consensus oα, as the ratio of number
of steps to reach consensus in our activation based model with
(i.e. α ≤ 1) and the number of steps required if all nodes
are active α = 1 (i.e. the original DeGroot model). We can
show the following relationship between the overhead and the
activation α:

Theorem 1. [Activation Consensus Overhead] For a fixed
activation 0 < ai(t) = α ≤ 1, the overhead to reach ε

consensus is oα = log(λ2(W ))
log(αλ2(W )+1−α) , where λ2(W ) is the

second eigenvalue of the original adjacency matrix W .

Proof: For ai(t) = α, 0 < α ≤ 1, W ′ simplifies to
W ′(t) = αW + (1 − α)I . Note, that the uniform activity
assumption leads to W ′ being a scaled (by α) and translated
(by 1 − α) version of W . For such transformations, the
eigenvalues of the two matrices are shifted and scaled in the
same manner, i.e.

λ(αW + (1− α)I) = αλ(W ) + 1− α. (1)

Then, using 1, we can derive the overhead as:

oα =
log ε

log λ2(W )
/

log ε

log λ2(W ′)
=

log(λ2(W ))

log(αλ2(W ) + 1− α)
.

For fixed second eigenvalue 0 < |λ2(W )| < 1, the
overhead oα increases exponentially for decreasing activation
probability α, meaning that the consensus rate slows down
very fast with decreasing α. Intuitively, this is due to the fewer
number of nodes behaving according to the original DeGroot
model.

While we can show convergence and bound the overhead
for a fixed activation probability, this is not possible for a
general activation that changes per user and across time. In
fact, one can design a trivial schedule of a(t) such that
convergence is never achieved, by keeping all nodes inactive,
or deactivating the prevailing sentiment nodes’ neighbors just
before ε consensus is reached. In our real-world data, very



few nodes tend to update their sentiment/opinion at every
round. In addition, the activation is related to the topic-wise
activity acceleration which may change arbitrary at every time
step and, in a real-world network, may be affected by exter-
nal channels (traditional media, personal information/opinion
exchange, etc). As a result, we study the practical utility of
our model for predicting future sentiment changes in short
intervals, as opposed to stationary behavior upon convergence.

B. Model for prediction of short-term sentiment change

In what follows, we adapt our activity-based model for
short-term prediction of sentiment change in Twitter. We
consider a discrete state space (as opposed to continuous and
without loss of generality) and tie the activation probability
to the acceleration of topic-based posts. Since sentiment states
(positive, neutral, negative) are not equally likely, we learn
their effect in a node’s neighborhood from past data. Following
the observation that activity and sentiment changes are related,
we now turn to instantiating our activation model such that it
captures this observation in real data. As we discussed earlier,
we make the Markovian assumption that the next sentiment
state of a user depends only on the current state of the network
and the activation probability, governed by the acceleration of
topic based activity levels.

Our generative model updates the opinion of δ(t+1) users
that are most likely to change their sentiments xi(t+1) at time
t+1. An overall figure displaying the relationships between the
parameters and variables within our model, for each network
user ui ∈ U can be seen in Figure 3. We describe in detail
each portion of this model in what follows.

Number of Changes. Within our generative model, the vari-
able δ(t) represents the expected number of changed opinions
likely to occur in the graph within a time step. For our real
data, we train this value using linear regression and the average
activation of users at the previous time step ā(t). The linear
dependence of δ(t) is controlled by the parameters γ (i.e.
δ(t) = γ1ā(t−1)+γ2). Dependence on more signals from the
previous time stamp can be considered, but for out Twitter data
using the average activation from the previous period resulted
in the best predictive accuracy (see experiments).

Updating the opinion of a single user. To produce each
individual’s next state within the evolving opinion network
x(t + 1), a two-step process is employed. First, a user is
randomly selected, according to their activation probability
a(t), to change their opinion. Second, the next state opinion
of this user, xi(t + 1) is selected using the current state of
the node, xi(t), and a log-linear model parametrized by 1) the
current states of neighbors in its neighborhood (N(t)) and 2)
a vector of coefficients β.

Consider a network of users U = ui, |U | = n with
m possible user states X = xi, |X| = m and a user ui’s
current state at time t denoted xi(t). Recall that Ai(t) is the
number of topic-specific messages sent by user ui at time t
while her activity acceleration is denoted by Ct(ui). We define
the activation probability as ai(t) = Ct(ui)/

∑
uk∈U Ct(uk).

If user ui is selected to have her state change, we build a
feature vector fi, representing the current states of the users
in its neighborhood N(ui) counting the frequency neighbor

sentiments state:

fi(j) = |{uk ∈ N(ui) ∧ xt(uk) = xj}|,∀j = 1..m

Similar frequency histograms have been used in previous
graph models, such as majority voting models [13], which
update the new state based on the most frequent previous state,
or value-weighted voting models [1], which use a weighted
combination of the histogram values. In our case, we choose to
combine the histogram values (similar to the value-weighted
voting models), adopting a log-linear model to estimate the
probability of each next state:

Prt(xt(ui) = xj) =
1

Z
eβj ·fi(j), j = 1..m,

where β is a coefficient vector parameter, and Z =∑m
j=1 e

βj ·fi(j), j = 1..m is a normalization factor. This
model is also known as logistic regression, and is commonly
used to predict categorical variables (in our case, the user
opinions) based on continuous predictor variables (the number
of opinions among neighboring users).

VI. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our activity-based model,
we implement its algorithm in Java, fitting it to our Twitter
dataset. To obtain the β coefficients, we regress using a
training set spanning August 2006 to December 2011. We then
predict future opinion evolution for two separate quarters (Q1
2012: Jan–Mar 2012, and Q2 2012: Apr–June 2012). For both
time periods, their previous quarter’s network snapshot was
obtained as a starting point, and the introduced model used to
generate new sentiment dynamics upon it.

We compare our predictions with those obtained from
the recently introduced opinion prediction model by Kimura
et al. [1] which utilizes a modified voter model of opinion
dynamics. To allow for fare comparison of accuracy between
these two models and the actual network evolution, the precise
number of user sentiment changes δ(t) is used for each quarter,
and both models are separately run until this number of
changes is produced. On average ∼ 200 changes per quarter
were observed.

Predicting users who would change sentiment. Before com-
paring prediction of future sentiment states, we compare the
accuracy of predicting which nodes are most likely to change
their sentiment. Figure 4 shows the ROC50 curves obtained by
choosing the top-k most likely users to change their opinion.
We compare the users predicted by either our Acceleration-
based model (the users with the highest acceleration, Ci(t)),
the Kimura model and a random baseline (selecting random
users). The predicted users are compared to the actual set of
users who change their opinions. The ROC50 curve (which
continues until the first 50 false positives) is used rather than
the full ROC curve, as it is generally viewed as a more useful
measure in cases where the true negatives greatly outnumber
the true positives [18]. As can be seen from Figure 4, activity
acceleration is a much better predictor than the Kimura’s model
and random user selection.

Future sentiment prediction. Next, we evaluate the prediction
of next sentiment states again in comparison to Kimura’s
approach and a random model. The random model selects
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Fig. 4: ROC50 curves (TP as a function of FP) for prediction of
users who change opinion according to our Acceleration model
(Accel), the Kimura approach and Random user selection.

uniformly a node to change opinion and it’s new opinion state.
For the sake of fair comparison the number of changes in each
quarter, δ(t), is assumed to be given (as the Kimura approach
has no method for estimation of this value). We report results
on learning δ(t) in the following subsection.

Figure 5 shows the results for running the competing
models on the five different topics across two separate quarters.
“Global Accuracy” at each timestep is defined as the percent-
age of correctly predicted users sentiments for the whole graph:

Accglobal =
|{xt+1(ui)|xm,t+1(ui) = xg,t+1(ui)}|

|{xg,t+1(ui)}|
,

where xm,t+1(ui) is the predicted sentiment state, at time t+
1, for user ui using model m, and xg,t+1(ui) is the actual
sentiment state, at time t + 1, for user ui from the original
Twitter graph.

Since only a small fraction of the network changes opinion
in each quarter on average (see Fig 6), we also analyze the
accuracy of changes made by each model. These “Accuracy
of Changes” are computed as the percentage of changes by
model m that switched users to a correct new opinion:

Accchanged =
|{ym,t+1(ui) = xg,t+1(ui)}|

δt+1

where ym,t+1(ui) are the sentiments of nodes whose opinions
actually changed from time t to t+ 1, using model m.

As can be seen from Figure 5, our introduced model
(“Activity Model”) has a high accuracy in predicting Global
future sentiment evolution, consistently outperforming both
Random and Kimura’s model. The average of Accglobal across
the topics and quarters is 94%, a significant increase when
compared to an average Overall Accuracy of 86% for the
Kimura, and 80% for the Random. In addition, the accuracy
of changes made by our Activity model far outperform the
alternatives, having an average accuracy of 50%, as opposed
to 18% for the Kimura and 7.5% for Random. In fact, the
accuracy of opinion changes in the Activity model are up
to 87 times higher than that of Kimura (in topic limbaugh
for Q2), and 110 times higher than that expected at random,
(for topic romney, in Q2). This highly significant increase

in the quality of prediction results helps to emphasize the
effectiveness of user activity acceleration as an indicator for
user opinion change.
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Fig. 5: Comparison of models across all nodes (Global Accu-
racy left), and only for nodes who change sentiment (Accuracy
of Changes right) in Q1 and Q2 of 2012.

Figure 6 compares the overall per-quarter L1 error for
negative and positive predicted fractions with actual values
acriss topics. The activity model dominates Kimura, except
for an overestimation of positives in gop at the expense of
neutral.

Changed sentiment δt estimation. In the sentiment prediction
experiments we assumed that the actual number of users
who change opinion δt at time t is known. This assumption
ensures a fair comparison to the Kimura model which does
not have a mechanism of estimating this number. However,
both when predicting future states of real networks or when
generating sentiment dynamics according to our model, one
needs to estimate δt. We propose to learn its dependence
on the previous state of the network. In general, one can
use different characteristics of the network’s previous state
including distribution of activity levels A(t−1), distribution of
acceleration C(t− 1), previous fraction of changed opinions,
etc. For our data, we experimented with learning a linear
regression model for δt based on past data on average activity
Ā(t− 1) and acceleration C̄(t− 1). A regression model using
acceleration C̄(t− 1) results in 20% lower root-mean squared
error than regressing on raw activity levels Ā(t − 1) (0.0403
v.s. 0.032 respectively). A regression model based on both
variables does not decrease the error further. Hence, we utilize
a linear regression model (parametrized by γ) for δt as a
function of the acceleration C̄(t− 1). For other datasets, one
can turn to more complex models to learn the fraction of
changed opinions.

Simulating sentiment dynamics. Apart from predicting future
sentiment dynamics for real networks of known user activity,
our model can also be employed for generating realistic
dynamics in synthetic networks. We study the model’s behav-
ior under different activation regimes assuming independent
randomized node activation. Given a fixed network structure,
we generate activation probabilities according to a truncated
exponential distribution a(t) ∼ Etr(λ), P [ai(t) > 1] = 0 with
an average activation ā(t) = 1/λ. In order to control for the
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Fig. 6: L1 error from the actual fraction of negative (left) and
positive (right) nodes in obama for Q1 2012.

fraction of activated users at any given time, we set γ = [|U |, 0]
and hence the activated fraction Frac = δ/|U | = 1/λ is expo-
nentially distributed with the same average (|U | is the number
of nodes in the network). We use three states (Pos,Neu,Neg)
with symmetric transition factors β and uniform representation
of the states at time 0.

Figure 7(a) presents the average progress to sentiment
consensus ε. Recall that progress is tracked as ||x̄(t)||/||x̄(t)||
and lower values correspond to being closer to consensus.
The different traces correspond to different expected frac-
tions of activated users (Frac). We average the behavior of
50 sentiment dynamics evolution instantiations in 1000-node
random preferential attachment networks. When all users are
expected to be active (Frac=1.0E0), consensus is reached in
as few as 10 time steps. For decreased fractions of activated
users (between 1.0E0 and 1.0E-2) the overhead for reaching
consensus increases, while when only a few nodes are expected
to change opinion at a time (1.0E-3) consensus is not reached
within 500 time steps. Figure 7(b) shows an example sentiment
dynamics generation trace for the regime Frac=1.0E-3.

VII. CONCLUSION

In this paper, we proposed a novel user activity-based
model for topic-specific sentiment evolution in social media
networks. We analyzed a large Twitter dataset and discovered
a significant connection between user activity acceleration
and changes in user sentiment (correlations 50 times higher
than expected at random). Following these observations, we
introduced a novel activity-based generative and predictive

model for opinion dynamics. We generalized existing models
by incorporating the possibility of inactive users and showed
both theoretically and in simulation that opinion consensus
is reached slower due to inactivity. When employed to pre-
dict future user sentiment evolution, our model’s prediction
accuracy dominates (by 1 order of magnitude) that of recently
introduced alternatives. It is capable of predicting the next
sentiment state with 90% (averaged over all users) and 50%
(averaged over hard-to-predict users who change opinion)
accuracy. These results help confirm the utility of user activity
acceleration as an important precursor to sentiment change,
and the ability of our model to capture the sentiment dynamics
within real-world social media networks.
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I. ANNOTATING INDIVIDUAL TWEETS

We annotate individual posts following the approach in [1],
[2]. Tweets are grouped by topic based on included topic
hashtags. For example, tweets relating to the topic of president
Barack Obama contain the hashtag #obama within them.
The topic-related tweets often contain other hashtags which
we assign a preliminary sentiment probability (positive and
negative) using the Multinomial Naive Bayes classifier method
introduced in [1]. This classifier is trained on a document
set consisting of positive / negative tweets discovered using
manually collated sets of strongly positive and negative topic-
based hashtags (for example “#voteForObama” or “#impea-
chObama”). The results from the classifier give the sentiment
probabilities on a per-tweet basis (in other words Pr(t = s),
the probability that tweet t has sentiment s), but may be
extended to the contained hashtags in order to obtain the
probability of any hashtag h, having sentiment s using the
following equation:

Pr(h = s) =

∑
t∈Th

Pr(t = s)

|Th|
, (1)

where Th is the set of all topic-based tweets which contain the
hashtag h within them.

The hashtag-level sentiments are obtained using the itera-
tive technique introduced in [2]. Initial sentiments for a hashtag
are fixed using the previously mentioned manually collated
set of positive and negative seed hashtags, as well as the
probabilities calculated using Equation 1 for all other hashtags.
Then, an iterative process based on Relaxation Labeling (RL)
from [2] is utilized to update co-occurring hashtags’ sentiment
values to all hashtags (except the manually collated fixed
hashtags) until convergence.

We compute the final sentiment annotation (positive, neg-
ative, or neutral) for each tweet as a linear combination of
the polarities of its contained hashtags. We apply a sentiment
threshold rendering tweets with sentiments exceeding |0.75| as
positive or negative respectively and the rest as neutral.

II. DISCUSSION AND FUTURE EXTENSIONS

For our analysis, we assume a set of user states, X =
{P,N,R}, indicating whether a user has a positive, negative,
or neutral (Pos,Neg,Neu) sentiment on a particular topic. How-
ever, this model can extend to work with larger sets of states.

In addition, our model can be fit to a particular network by
finding the unknown coefficients, β using multinomial logistic
regression on historical data. This allows for the estimation
of expected number of changes and next user opinion given
the current network state. The parameter γ can be similarly
learned using linear regression.

In this model, we ignored the influences of media or
individuals outside the network on influencing users’ opinions.
Taking into account these external factors, however, may lead
to more realistic and accurate models in the future. Addition-
ally, previous research has shown that “interaction networks”,
composed of links between individuals who interact together,
can be better indicators for user relationship and analysis than
the following networks of users [3]. Further work could look at
the connection between interaction, as opposed to following,
relationships, and sentiment change, integrating this into an
extended generative model.

III. MORE RELATED WORK

Here we discuss a longer list of message classification
methods. They have either focused specifically on Twitter [4],
[5], [6], [2], [7] or on other social media websites [8], [9],
[10], [11], [1]. In particular, the work of Tan et al. [5]
introduced multiple related Twitter sentiment classification
approaches, each of which combined message-level processing
with a hashtag-graph based approach. By utilizing the fact that
hashtags contained within the same tweets tend to indicate
similar sentiments, they were able to obtain methods with accu-
racies of almost 80% while predicting sentiment within tweets.
In addition, it has been found that training classifiers in a
topic-dependent manner can further increase their performance
during sentiment classification, as well [7]. Our approach is
complementary to all the above as it focuses on the dynamics
of sentiments as opposed to determining the sentiment state of
a specific user/message.

There have also been many recent models in the area of
opinion dynamics and information spread. Influence models
such as Independent Cascade and Linear Threshold have been
applied to real-world data [12], [13], [14], [15].
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