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Abstract: Advances in high throughput screening experiments have significantly improved our
ability to discover and predict biomarkers for complex diseases. Systems biology approaches
have played a critical role in realizing these improvements by providing computational tools for
modeling such diseases at the network level. Within these tools, statistical scores such as the two
sample t-statistic (t-score) are commonly used to rank genes/features for downstream analyses.
In this paper, we propose a new alternative to the t-score —the ensemble sensitivity (ES) metric
—which is a multivariate strategy to obtain feature rankings. To validate our method, we employ
the COre Module Biomarker Identification with Network Exploration (COMBINER) tool on
publicly available breast cancer gene expression data sets. Top candidates obtained by both
the t-score and ES method serve as an input to COMBINER, which identifies the candidate
biomarkers. Our results, as quantified by the COMBINER-generated area under the ROC curve
(AUC), suggest that the ES approach improves the average AUC and identifies biomarkers with
∼ 93% overlap with known cancer-related genes. In addition, the overlap of genes known to be
associated with cancer that are identified using the two methods is small. This suggests that
our proposed approach captures signals missed by methods relying on the t-score.

1. INTRODUCTION

DNA, proteins, and other small molecules interact within
cells in a complex manner to regulate biological function.
As one of the primary mechanisms for executing this
function, the process of gene expression is responsible for
the synthesis and maturation of all gene products in the
cell. Consequently, the misregulation of this process is
known to be the cause of a broad range of human diseases
(Lee and Young [2013]). Fortunately, recent advances in
high throughput screening technologies have significantly
improved our ability to discover and predict prognostic
and diagnostic disease biomarkers at the gene level. A
crucial step in this task is the identification of differen-
tially expressed genes (DEGs) between healthy and disease
samples. However, this step is not trivial for the follow-
ing reasons. First, gene products function in the context
of interaction networks, where perturbations of a single
gene can be propagated thoughout the network. Thus,
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disease-relevant “driver” DEGs are often accompanied by
distantly related “passenger” DEGs. Second, there is a
high degree of intrinsic variability between gene expression
patterns of differing tissue samples and human patients.
Third, even gene expression measurements from the same
patient or sample are noisy, due to both intrinsic and
extrinsic noise sources present within single cells (Kærn
et al. [2005]), the intercellular environment, and the mea-
surement apparatus. For all of these reasons, it is thus
a significant challenge to robustly identify the small set
of DEGs responsible for a disease phenotype from high
throughput data.

An alternative strategy for identifying disease biomarkers
using genome-scale data falls under the systems biology
paradigm (Ideker et al. [2001], Chuang et al. [2010], Cho
et al. [2012]). Specifically, pathway-based approaches uti-
lize systems-level knowledge in the form of known biologi-
cal pathways to improve biomarker inference. Rather than
identifying only DEGs, these approaches (Breslin et al.
[2005], Lee et al. [2008], Subramanian et al. [2005]) repre-
sent the disease phenotype with a differentially expressed



group of genes, which belong to one or multiple path-
ways. By grouping genes with similar functions together,
pathway-based approaches effectively reduce noise while
also providing a better understanding of the underlying
disease process (Cho et al. [2012]). A common strategy
used by these methods is to first rank genes in each path-
way by a univariate statistical score (e.g. the two-sample t-
statistic or “t-score”) that summarizes its level of differen-
tial expression between healthy and disease samples. Genes
in each pathway are then aggregated together based on
the significance of their scores and a composite score (also
typically univariate) is generated. Finally, a subset of can-
didate pathway biomarkers with the most significant scores
are selected and their predictive performance is evaluated
with a machine learning classifier. However, due to the
noise sources discussed above, some disease-relevant genes
and pathways will exhibit relatively insignificant scores.
In addition, certain genes that are known not to be sig-
nificantly differentially expressed still play important roles
by mediating connections between other disease-associated
genes or pathways (Ideker et al. [2002]). Biomarkers from
both of these classes would be excluded from the first two
steps of pathway-based methods.

In this work, we propose a new multivariate ensemble-
based algorithm to score genes and pathways for biomarker
identification. Our approach employs supervised ma-
chine learning to generate importance scores for each
gene/pathway (hereafter also referred to as “features”) of a
given ensemble. We then quantify the average sensitivity
of these scores by removing one feature at a time (with
replacement) and measuring changes in the remaining
importance scores. Features for which, on average, the
important scores increase are considered biologically rel-
evant. We use this algorithm along with the COre Mod-
ule Biomarker Identification with Network ExploRation
(COMBINER) tool (Yang et al. [2012]) to robustly iden-
tify biomarkers for breast cancer from publicly available
expression datasets. Our results show that, in comparison
with univariate methods like the t-score, use of the ES al-
gorithm leads to improved true positive rates of candidate
biomarkers. In addition, we show that the ES algorithm
identifies known cancer related genes that are largely non-
overlapping with those discovered by univariate methods,
suggesting that our proposed approach captures subtle
biological signals that would otherwise be missed.

1.1 A short overview of COMBINER

COMBINER is a computational tool that enables the
identification of disease gene and pathway biomarkers and
the construction of their associated regulatory network. It
takes multiple cohorts of gene expression data as input
and identifies “core modules” (i.e. reproducible groups
of pathway-associated genes) that best represent the ex-
pression differences between healthy and disease samples,
thus providing insights into the disease mechanism. Briefly,
COMBINER works by first projecting gene expression
data from one cohort (the “inference dataset”) onto known
pathways. Next, a particular aggregation method (e.g.
COndition Responsive Genes [CORG] (Lee et al. [2008]),
Core Module Inference [CMI] (Yang et al. [2012]), Prin-
cipal Component Analysis [PCA] (Jolliffe [2005])) is used
to identify the active members of each pathway. Within

Fig. 1. The flow diagram for COMBINER

each pathway, the expression values of these active mem-
bers are aggregated into an activity score, after which
all activity scores are sorted and the top T “modules”
are selected for downstream analysis. Given the inferred
candidate modules, corresponding pathway activities are
computed using data from the second cohort (“validation
dataset”). As its name suggests, this cohort is used to
train a supervised classifier and validate the predictive
performance of the candidate module biomarkers. Details
of the supervised classification is are follows. First, the
validation dataset is partitioned into k-folds. One of these
k folds is designated as a test set, and the remaining k-1
folds are used to construct the classifier. This partitioning
procedure on the validation dataset is performed 500 times
and thus we construct a total of 500× k-fold different
classifiers. For each classifier, the decision boundary is
constructed using linear discriminant analysis (LDA). We
quantify the quality of the decision boundary using area
under the Receiver Operating Characteristic curve (AUC).
In the consensus feature elimination (CFE) module of
COMBINER, the lowest ranked features are removed and
the set of classifiers are again constructed (see Figure 1).
The process is repeated until the maximum mean AUC is
found. We note that such an method for computing the
maximum AUC is a greedy approach and an optimal so-
lution is thus not guaranteed. Finally, the set of pathways
(and their constitutive active genes) corresponding to the
maximum mean AUC is considered to comprise the core
module biomarkers.

2. ENSEMBLE SENSITIVITY (ES) ALGORITHM

The proposed algorithm represents an alternative to uni-
variate scoring methods (such as the “t-score”) for an
ensemble of N features. The method begins by construct-
ing a supervised classifier using the feature ensemble and
generating an importance score (i.e., classifier weight) for
each feature. We then remove one feature at a time (with
replacement) and estimate the change in scores of all other
features due to this perturbation. We note that removing
a feature from the ensemble is equivalent to projecting the
N-dimensional data onto an (N-1)-dimensional subspace.
After repeating this procedure N times (once for each
feature), we compute the average changes in importance
scores for all features. We consider those features with the



largest average changes to be biologically important in the
disease or process being studied.

Mathematical details of the ES algorithm are as follows.
Let us map the set of N features to a set of integers
{1, 2, ..., N}. Define Sunpert as the vector of importance
scores Si of each feature in the ensemble and Spert as the
importance scores of N − 1 features obtained by removing
the jth feature. For computational ease (see algorithm
below), we increase the dimension of Spert by unity by
inserting Sunpert(j) after the (j−1)th component. The ES
algorithm is given below. Upon completion of the algo-

Algorithm 1 ES algorithm
Sunpert = Si∈T T = {1, 2, ..., N}
Savg = 0N×1

for j= 1 :N do
Spert = Si∈{T−{j}}
Spert(j) = Sunpert(j)
∆ = Spert − Sunpert

Savg = Savg + ∆
end for
Savg = Savg

N

rithm, we sort the average score vector Savg and choose a
subset of features with the largest scores for downstream
analysis. We note that estimation of feature importances
can be further improved by also considering the effects
of removing two or more features at a time. However,
the combinatorial complexity of such an operation grows
rapidly, and the computational cost quickly becomes pro-
hibitive. Thus, as a first approximation, we consider only
the removal of one feature at a time.

3. SIMULATION RESULTS

Here, we demonstrate the applicability of the ES algorithm
on three cohorts of publicly available breast cancer gene
expression data, using COMBINER as an analysis tool.
The human tissue samples for the cohorts were collected
in three different countries, namely the Netherlands (Van
De Vijver et al. [2002]), the United States (USA) (Wang
et al. [2005]) and Belgium (Desmedt et al. [2007]). Each
patient assayed in these datasets were monitored for the
development of metastasis after five years of surgery. Out
of 295, 286 and 198 patients in the Netherlands, USA and
Belgium datasets, respectively, 78, 107 and 35 patients
experienced metastasis. Given that data from each of the
cohorts were collected using a slightly different microar-
ray platform, only genes common to all three data sets
were used in the analysis. We imputed missing data using
the Bioconductor impute package, which implements a
k-nearest neighbors imputation. We obtained biological
pathway information using the MSigDB v4.0 Canonical
Pathways subset (Subramanian et al. [2005], Liberzon
et al. [2011]). For the purposes of this comparison, we
used the CORG method (Lee et al. [2008]) to compute
activity scores for each known pathway. Briefly, the CORG
method first “z-transforms” the vector of expression data
for each gene by subtracting the mean and dividing by the
standard deviation. Next, expression vectors of genes be-
longing to each pathway are ranked in descending order of
their two-sample t-statistics (t-scores) computed between

the healthy and disease samples. Finally, the “pathway
activity” vector is computed by averaging the expression
vectors together starting at the top of the ranked list in
a greedy fashion, stopping when the pathway activity t-
score reaches a local maximum. Thus, the CORG method
identifies the set of genes in each pathway (candidate “core
module”) that provides the (relative) maximum discrim-
inating power for the disease phenotype. In this work,
we sort the candidate core modules by their pathway
activity t-scores and select the top 100 as the input to
COMBINER.

To evaluate the ES method, we first select the top 300
candidate core modules and use the algorithm described
above to choose a subset of size T=100 features. More
specifically, we generate the importance score for each can-
didate core module using adaptive boosting of an ensemble
of 150 tree-based classifiers with a learning rate of 1 (using
the AdaBoostM1 implementation in the bioinformatics
tool box of MATLAB). This use of adaptive boosting
increases the weight of samples that are more difficult to
classify in subsequent trees, leading to a more accurate
overall classifier. We note that in general, adaptive boost-
ing guarantees that the overall performance of an ensemble
classifier is better than that of the individual weak learner
(Freund and Schapire [1995], Polikar [2006]). Ultimately,
each candidate core module receives an importance score
quantifying its contribution to an accurate classifier.

Fig. 2. Comparison of the area under the ROC
curve (AUC) for the t-score and ES algorithm
methods. Given the three data cohorts (Nether-
lands(N), USA(U) and Belgium(B)), a total of six
inference/validation pairs can be made (shown on the
x-axis). Using the inference dataset, we compute the
pathway activities (using the CORG method) and
select the top 300 candidates. Next, a subset of 100
candidates are selected based only on t-scores or using
the EA algorithm. For these candidate core modules,
we recompute the pathway activities using the val-
idation dataset and construct a total of 500 LDA
classifiers. Here we present the classifier accuracy in
term of AUC ± standard deviation, obtained over 100
runs. On average, using core modules selected by the
ES algorithm improves the AUC of the classifier by
approximately 3%.

3.1 Comparison of classification accuracy

Given three cohorts of breast cancer gene expression data
available, six possible inference/validation pairs are possi-
ble: {{N, U}, {N, B}, {B, N}, {B, U}, {U, N}, {U, B}}. In



Threshold=100 Threshold=120 Threshold=220
Cancer gene t-score ES t-score ES t-score ES

Data bases % of N=110 % of N=182 % of N=42 % of N=57 % of N=21 % of N=15
NetPath 40.74 47.80 56.10 50.88 71.43 73.33

Atlas 50.93 43.96 48.78 47.37 52.38 33.33
Census 4.63 7.69 4.88 8.77 4.76 13.33

CANgene 1.85 1.10 2.44 0 4.76 0
G2SBC 68.52 54.94 60.98 45.61 47.62 40.00

COSMIC 8.33 13.19 7.32 5.26 9.52 13.33
KEGG 14.81 20.33 24.39 24.56 42.86 46.67

NCG 11.11 11.54 12.19 10.53 19.05 20.00

Table 1. Enrichment rates of known cancer genes within biomarkers identified using
COMBINER with t-scores only, and COMBINER with the ES algorithm. Candidate
biomarker genes are those that belong to the 95% most frequently chosen “core modules” over
100 runs of COMBINER for a given pair of inference-validation datasets. A common subset of
genes occurring more often than the threshold of {100, 120, or 220} times for every inference-
validation pair is considered to comprise the predicted biomarker genes. N represents the total

number of predicted biomarkers.

No. predicted No. of known Known CG by Known CG Known CG
Biomarkers CG t-score and by only by only

Threshold t-score ES t-score ES ES algorithm t-score ES algorithm

100 110 182 84 142 51 33 91
(76.36%) (78.02%)

120 42 57 34 48 12 22 36
(80.95%) (84.21%)

220 21 15 19 14 2 17 12
(90.48%) (93.33%)

Table 2. Comparison of the statistics of the breast cancer biomarkers predicted by
t-score ranking and ES algorithm ranking. CG represents cancerous genes.

Figure 2 we compare the maximum mean AUC obtained
for the two different sets of top 100 core modules obtained
using either the t-score or ES algorithm rankings. Com-
pared to the t-score ranking, the AUC achieved with the
ES algorithm is better in four out of six cases. The means
of the maximum average AUC over all inference/validation
datasets is 0.9078 and 0.8798 for the ES algorithm and the
t-score ranking, respectively.

3.2 Comparison of the enriched cancer-related genes

The high average AUC indicates that the proportion of
true positive cancer-related genes among all biomarkers
should be large. To obtain the set of predicted biomarker
genes, we perform the following four steps. First, we select
those core modules that were identified by COMBINER in
at least 95/100 runs for each inference/validation pair. Sec-
ond, we collect all the genes in these core modules for each
inference/validation pair. Third, we identify the subset of
genes common to all of the possible inference/validation
pairs. Finally, we define an integer cutoff and select those
genes in the above subset that occur more frequently than
that cutoff.

We used the following databases to perform the cancer
gene enrichment analysis: (1) NethPath (Kandasamy et al.
[2010]) (all cancers), (2) Atlas of Cancer Genes (Huret
et al. [2000]) (all cancers), (3) Census Genes (Futreal
et al. [2004]) (all cancer), (4) CANgenes (Sjöblom et al.
[2006])(breast cancer), (5) G2SBC (Mosca et al. [2010])
(breast cancer), (6) KEGG Pathways of Cancer (Kanehisa
and Goto [2000]) (all cancers) and (7) Network of Cancer
Gene (D’Antonio et al. [2012]) (all cancer). Table 1 shows

the enrichment in our predicted biomarkers of known
cancer-related genes from various databases. We consider
three different cutoffs for selecting biomarkers: 100, 120
and 220. Since a given gene may belong to multiple path-
ways, the total number of occurrences for a given gene
may be higher than the total number of runs. Our results
indicate that as the cutoff is increased, the likelihood that
a predicted biomarker is a true positive also increases.
The table provides the percentage of the total predicted
biomarkers that overlap with different cancer-related gene
databases. In Table 2 we provide the statistics of the
overall true positive predictions made by COMBINER
using different set of input features. For a threshold of 220,
we found that approximately 93 percent (14/15) of the
biomarkers identified using the ES algorithm overlap with
known cancer-related genes. This equates to a 3 percent
improvement in the total percentage overlap versus the t-
score ranking method. Importantly, we also note that the
two ranking methods lead to a small overlap of predicted
biomarkers, suggesting that the two methods capture
complementary signals from the expression data. Further
investigation confirms this hypothesis, as we discovered
that the ES algorithm selects pathway activities that have
relatively lower t-scores. Figure 3 shows these results for
the six different inference/validation data cohorts.

4. CONCLUSION

In summary, we have proposed the ensemble sensitivity
(ES) algorithm, a new strategy for selecting features from
a given ensemble. By computing the average change in
feature importance scores due to the removal of each in-
dividual feature, the ES algorithm provides a multivariate
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Fig. 3. Comparison of pathway activity selection: t-score ranking method versus the ES algorithm. The
x-axis represents a set of pathway activities sorted by t-scores for the given inference set and the y-axis represents
their corresponding scores. The selection process for the core modules begins with the top 100 candidates given
by the t-score method or the ES algorithm. Those modules that are poorly ranked by the LDA classifier are
recursively removed. The candidate core modules leading to the maximum area under the ROC curveare considered
important. Across 100 different runs of COMBINER for a given inference-validation dataset pair, we plot only those
core modules that were selected at least 95 times. (a-f) Inference on set {{N},{N},{B},{B},{U},{U}} and their
corresponding validation datasets {{U},{B},{N},{U},{N},{B}}.

scoring scheme that is not offered by more commonly-used
univariate methods. We compared the ES algorithm to the
univariate t-score ranking method by combining both ap-
proaches individually with the biomarker-predicting tool
COMBINER. Based on an analysis of three human breast
cancer gene expression datasets, we find that the ES algo-
rithm improves the average AUC achieved. In addition, the
biomarkers identified by the two methods have minimal
overlap, suggesting that the two methods are able to cap-
ture two different types of biological signals. Specifically,
the ES algorithm appears to capture features that have
relatively lower statistical discriminative ability but still
have important biological function. Further investigation
into this direction is currently underway.
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