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Abstract

We have developed a computational framework for accurate and efficient simulation of stochastic

spatially inhomogeneous biochemical systems. The new computational method employs a fractional

step hybrid strategy. A novel formulation of the Finite State Projection (FSP) method, called the

Diffusive FSP (DFSP) method, is introduced for the efficient and accurate simulation of diffusive

transport. Reactions are handled by the Stochastic Simulation Algorithm (SSA).

Keywords: Spatial Stochastic Simulation, Reaction-Diffusion Master Equation, Finite State Projec-

tion

1 Introduction

On the cellular level of biological systems, molecules with small copy number interact randomly. The

resulting fluctuations, or noise, in cellular species, play an important role in cell-cell variability and

cell fate decisions. A classic example is the case of gene regulatory networks where low counts of genes

and mRNA create stochastic effects that result in phenotypic differentiation [1][2]. Much recent work

has focused on the development of efficient computational methods for discrete stochastic simulation

of well-mixed biochemical systems [3]. However, the cell is not a spatially homogeneous environment.

Spatial localization plays an important role in many cellular processes. For example, in the MinCDE
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system of Escherichia coli, stochastic chemical reactions of spatially inhomogeneous species cause

end-to-end oscillations [4]. In discussing the modeling of mutant phenotypes for this system, Feng

and Elf [5] highlight the need for spatial stochastic simulations by noting that their ”results emphasize

that local copy number fluctuation may result in phenotypic differences although the total number

of molecules of the relevant species is high.” Additional examples are found in [6] and [7], among

others.

Spatial stochastic simulation is an extremely computationally intensive task. This is due to

the large number of molecules which, along with the refinement of the discretized spatial domain,

results in a large number of diffusive transfers between sub-volumes. In this paper, we present a novel

formulation of the Finite State Projection (FSP) method [8], called the Diffusive FSP (DFSP) method,

for the efficient and accurate simulation of diffusive processes. Using the FSP method’s ability to

provide a bound on the error, we are able to take large diffusion timesteps with confidence in our

solution. We then show how to construct a fractional step method for spatial stochastic simulation

of reaction-diffusion processes which treats diffusion with DFSP and reactions with SSA.

The dynamics of spatially inhomogeneous stochastic systems are governed by the Reaction-

Diffusion Master Equation (RDME) which was originally proposed and derived in [9]. More recently

it was shown that biologically observed self-organized criticality emerges only when diffusion and

reactions are treated as discrete stochastic processes [10]. This led to the adaptation of Gillespie’s SSA

to spatially inhomogeneous problems, called the Inhomogeneous SSA, or ISSA. In this formulation,

the domain is discretized into subvolumes or voxels. Each voxel is well-mixed so that intra-voxel

reactions are unchanged from the homogeneous case. Diffusive transfers between voxels are modeled

by unimolecular decay and creation events occurring simultaneously in adjacent voxels. The state of

the system is then the number of molecules of each species in each voxel at a given time.

It is important to note that the spatially inhomogeneous stochastic model is formulated on

the mesoscopic scale. The voxel size is bounded by the well-mixed assumption of its mathematical

formulation. We need to choose the length ` of a voxel small enough to capture the desired features

of our system, but large enough so that the system can be considered to be well mixed in each voxel.

Specifically, ` should satisfy ` � Kn/D, where K is the reaction rate constant, n is the number of
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molecules in a given voxel and D = DA + DB is the combined diffusion rates of the reactants [11].

It is possible to reduce the voxel size by correcting the reaction propensities, down to a hard limit of

` ≥ β∞K/D, where β∞ ≈ 0.25272 [12].

Recent efforts have focused on speeding up the ISSA. The Next Subvolume Method (NSM)

[7] is an efficient formulation of the ISSA for reaction-diffusion systems. NSM utilizes the priority

queue structure found originally in the Next Reaction Method [13]. MesoRD [14] is a widely used

implementation of this algorithm. The binomial tau-leap spatial stochastic simulation algorithm

[15] seeks to improve performance by combining the ideas of aggregating diffusive transfers with

the priority queue structure found in the NSM. The Multinomial Simulation Algorithm (MSA)[16]

employs another strategy to improve performance. Noting that fast diffusive transfers between voxels

often dominate the computational cost, MSA aggregates the diffusive transfers. Instead of executing

each diffusive event individually, it calculates the inter-voxel flux of particles by sampling from a

binomial distribution.

Under some circumstances it is possible to treat diffusion deterministically, thus eliminating the

tracking of fast diffusive transfers almost entirely. Reactions are typically handled by the SSA. The

Hybrid Multiscale Kinetic Monte Carlo Method [17] and the Gillespie multi-particle method [18] are

examples of this approach. The adaptive hybrid method for stochastic reaction-diffusion processes

described in [19] and implemented as part of the URDME software [20] integrates multiple methods

for stochastic and deterministic diffusion adaptively for different components of a model.

The remainder of this paper is organized as follows. The next section briefly reviews the math-

ematical background, including the Chemical Master Equation (CME), SSA, FSP, RDME and ISSA

on which our method is built. Section three describes the DFSP method and shows how to combine

it with SSA or tau-leaping for reaction events to solve reaction-diffusion problems. In section four we

present numerical experiments that demonstrate the speed and reliability of the new computational

method. Finally, we conclude with an assessment of the proposed DFSP method, possible applications

and future directions.
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2 Background

In this section we briefly review the CME, SSA, and FSP algorithms for well-mixed chemical reacting

systems, as well as the RDME and ISSA algorithm for spatially inhomogeneous systems.

2.1 CME and SSA

Consider a system involving N molecular species {S1, ..., SN}, represented by the state vector X(t) =

[X1(t), ..., XN(t)]T , where Xi(t) is the number of molecules of species Si at time t. There are M

reaction channels, labeled {R1, ..., RM}, in the system. Assume the system is well-mixed and in

thermal equilibrium. The dynamics of reaction channelRj are characterized by the propensity function

aj and by the state change vector νj = [ν1j, ..., νNj]
T : aj(x)dt gives the probability that, given X(t) =

x, one Rj reaction will occur in the next infinitesimal time interval [t, t+dt], and νij gives the change

in Xi induced by one Rj reaction.

The system is a Markov process whose dynamics are described by the Chemical Master Equation

(CME) [21]

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0)

=
M∑
j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)] , (1)

where the function P (x, t|x0, t0) denotes the probability that X(t) will be x, given that X(t0) = x0

andM denotes the generating matrix for the Markov chain that describes the chemical reactions. For

all but the most simple systems, the chemical master equation is made up of an extremely large or

infinite number (dimension) of coupled ordinary differential equations (ODEs). Rather than evolve

the CME directly, it is common practice to compute an ensemble of stochastic realizations whose

probability density function converges to the solution of the CME. In chemical kinetics, the SSA [22]

is used for this purpose.

At each step, the SSA generates two random numbers, r1 and r2 in U(0, 1) (the set of uniformly

distributed random numbers in the interval (0,1) ). The time for the next reaction to occur is given
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by t+ τ , where τ is given by

τ =
1

a0

ln

(
1

r1

)
. (2)

The index µ of the occurring reaction is given by the smallest integer satisfying

µ∑
j=1

aj > r2a0, (3)

where a0(x) =
∑M

j=1 aj(x). The system states are updated by X(t+ τ) = X(t) + νµ. The simulation

then proceeds to the time of the next reaction. Because the SSA simulates all reaction events in the

system, it can be computationally intensive. Much recent effort has gone into speeding up the SSA by

reformulation [23], [13], [24], use of advanced computer architecture [25], and by aggregating reaction

events to take larger time steps (tau-leaping)[26].

2.2 FSP

The Finite State Projection FSP [8] method directly calculates an analytical approximation to the

solution of the CME, as opposed to simulating an ensemble of trajectories by SSA. It does this

by forming a computationally tractable projection of the full state space and computing the time

evolution of the probability density function in this projection space. The FSP was formulated

to solve spatially homogenous stochastic models, but can be adapted to solve the diffusion master

equation (DME). Techniques for taking advantage of time scale separation in spatially homogenous

chemically reaction system were explored in [27] and [28].

The FSP method determines the approximate probability density vector (PDV) of the popula-

tions in a chemically reacting system by solving the CME in a truncated state space. Two theorems

provide the foundation for the FSP. The first shows that the solution of the projected system increases

monotonically as the size of the projection increases. The second guarantees that the approximate

solution never exceeds the actual solution, and provides a bound on the error. It is important to

note that while the evolution of a trajectory is random, the evolution of the PDV for a given initial

condition is deterministic.

5



For a truncated state transition matrix AJ (see [8] for its construction) and initial truncated

PDV PJ(t = 0), the FSP finds PJ(t) at any time t within any given accuracy ε using the truncated

CME

ṖJ = AJ PJ(t). (4)

Since (4) is a linear constant-coefficient ODE, its solution is given by

PJ(t) = exp(AJt)PJ(0). (5)

Recent work has focused on optimizing FSP through more effective dynamic state space truncation

[29] and more efficient algorithms for solving the resulting equation [30].

2.3 RDME and ISSA

Assume now that the domain Ω in space is partitioned into voxels Vk, k = 1, ..., K. For simplicity of

presentation, we will assume for the moment that the domain is in one dimension. Each molecular

species in the domain is represented by the state vector Xi(t) = [Xi,1(t), ..., Xi,K(t)], where Xi,k(t)

is the number of molecules of species Si in voxel Vk at time t. Molecules in the domain are able to

react with molecules within their voxel, as described in section 2.1, and diffuse between neighboring

voxels. The dynamics of diffusion of species Si from voxel Vk to Vj is characterized by the diffusion

propensity function di,k,j and the state change vector µk,j. µk,j is a vector of length K with −1 in the

kth position, 1 in the jth position and 0 everywhere else: di,k,j(x)dt gives the probability that, given

Xi,k(t) = x, one molecule of Si will diffuse from voxel Vk to Vj in the next infinitesimal time interval

[t, t + dt]. Note that if k = j ± 1 then di,j,k(x) = D/l2, where D is the diffusion rate and l is the

characteristic length of the voxel, and otherwise it is zero. The Diffusion Master Equation (DME)
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can then be written in a form similar to the CME:

∂P (x, t|x0, t0)

∂t
= D P (x, t|x0, t0)

=
N∑
i=1

K∑
k=1

K∑
j=1

[di,j,k(xi − µk,j)P (x1, ..., xi − µk,j, ..., xN , t|x0, t0)− di,j,k(xi)P (x, t|x0, t0)] (6)

where D denotes generating matrix for the Markov chain that describes the diffusion of molecules in

the system.

The usual method of solution of the DME is to simulate each diffusive jump event explicitly,

giving an exact solution. This is the method used by the ISSA and the NSM [7] algorithms. Another

possibility is to use an approximate method to calculate the net inter-voxel transfers due to diffusion.

The MSA [16] does this by realizing that the number of diffusion events conforms to a multinomial

distribution which can be calculated and then sampled. The binomial tau-leap spatial stochastic

simulation algorithm [15] uses a similar technique. In Section 3 we present a novel formulation of

FSP that is used to find approximate solutions to the DME.

Combining (1) and (6) yields the RDME

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0) +DP (x, t|x0, t0) . (7)

The RDME is a linear constant-coefficient ODE, however it has many more possible states than

the corresponding CME and thus is more difficult to solve. Rather than solve the RDME directly, it

is common practice to compute an ensemble of stochastic realizations whose histogram converges to

the PDV of the RDME.

Many of the techniques for accelerating the SSA can be applied to the ISSA; however, the ISSA

remains computationally expensive. The problem is that fast diffusive transfers between adjacent

voxels dominate the computation time and limit the possibility for exploiting parallelism.
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3 The Diffusive FSP Method

The DFSP method is based on two observations. First, diffusion of any one molecule is independent of

the diffusion of all other molecules in the system. Using this independence, we note that the diffusion

of molecules originating in one voxel is independent of the diffusion of all molecules originating in other

voxels. Thus, we can decompose the problem of diffusing molecules in K voxels into K sub-problems,

one for each voxel.

The second observation is that the DME describes a stochastic process, but the DME itself is an

ODE and thus, deterministic. That is, the evolution of a particular trajectory is stochastic, but the

evolution of the PDV describing the ensemble of many trajectories is deterministic. Thus, if we can

solve the DME for a given sub-problem with n molecules for a time step ∆t, then we can re-use this

solution for any other sub-problem with n molecules and time step ∆t. Next we will describe more

rigorously a sub-problem and show how to set up and solve a FSP for such a sub-problem. Note that

to solve the full problem, one needs only to sum the molecule distributions from each sub-problem.

3.1 DFSP

As above, we will consider a problem on a 1D periodic domain that is sub-divided into K equally

sized voxels, each with length l. The kth sub-problem defines a diffusion problem that is initialized

with empty voxels, except for the kth voxel, which contains nk molecules of a given species. This

initial condition is considered a state. The states of the system are defined by unique configurations

of molecules in voxels, with the total number of molecules in the system always summing to nk. The

possible number of states is finite, though extremely large. The PDV enumerates these states and

gives the probability of being in any state at a given time. For the initial condition, it is clear that

the PDV for the system is P (0) = [1, 0, 0...0]T . That is, at time zero, the probability of being in the

state of the initial condition is one, and the probability of being in all other states is zero.

To solve the DME directly for a sub-problem, the DFSP method retains a finite set of states

that carry a high probability and truncates states of little probabilistic importance. To determine

which states to retain, we will walk through the process of diffusing molecules. The initial condition
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forms the first tier. The second tier is defined by the states that can be reached with one diffusion

event from the initial condition. The third tier is defined by the states that can be reached with one

diffusion event from any state in the second tier and is not redundant with states in higher tiers.

In defining each of these states, there is an additional parameter, MAX, that is defined as the

maximum number of voxels a particle can diffuse away from its originating voxel in one time step.

The value of MAX is one less than the number of tiers. All of the states in the last tier are one

diffusive step away from violating the MAX condition. MAX puts a limit on the allowable number

of particles for a sub-problem without violating the error condition, (error < ε). It is important to

note that MAX dictates the amount of memory storage required by the algorithm.

For illustration, consider the situation where a voxel contains 20 molecules at the beginning of a

time step, and MAX = 2; that is, we are tracking diffusive jumps of at most 2 voxels away from the

originating voxel per time step. The initial state is given by x1 = {0, 0, 20, 0, 0}. x1 is the only state

in the first tier. Since we are on a one-dimensional domain, the states reachable in a single diffusive

jump event from x1 are x2 = {0, 1, 19, 0, 0} and x3 = {0, 0, 19, 1, 0}. These two states make up the

second tier. The third tier is comprised of x4 = {1, 0, 19, 0, 0}, x5 = {0, 0, 19, 0, 1}, x6 = {0, 2, 18, 0, 0},

x7 = {0, 0, 18, 2, 0} and x8 = {0, 1, 18, 1, 0}. Note that x1 is reachable from the states in the second

tier, but since that state is found in a higher tier, it is not included in the third tier.

As each tier is added, the corresponding state transitions are included in AJ . After each tier is

added, the truncated system can be solved and the truncated PDV (PJ(∆t)) calculated. Thus, after

adding a tier, we can determine a bound on our error for the current projection (ε). The addition of

states ends when the error bound is below a predetermined tolerance.

To calculate the final state of the system due to diffusion over an interval of ∆t we sample the

PDV by selecting K uniformly distributed random numbers Rk ∈ U(0, 1) and finding the smallest

integer µk such that
∑µk

j=1 PDV [j] > Rk, where PDV [j] is the probability weight of state j. Let

Xs,k(t) = nk be the number of molecules of species s in voxel k at time t and let Tκ(j |n) be the

number of molecules in voxel κ of state xj, given n molecules initially (e.g. x1 = {0, 0, n, 0, 0} if
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MAX=2). Then the discrete time evolution of the system is given by

Xs,k(t+ ∆t) =
MAX∑

i=−MAX

Ti (µk+i |Xs,k+i(t)) . (8)

For a sub-problem with n molecules and a time step ∆t, we can store its PDV and re-use it for all

other sub-problems containing n molecules and time step ∆t. As a result, if we keep a constant time

step, simulating a diffusion process becomes a matter of selecting K random numbers and performing

a look-up and comparison.

To simulate the full RDME, we take a reaction step and then a diffusion step, each of size τD.

Following the SSA, we take a reaction step by evolving the system through reaction events until the

time of the next reaction exceeds τD. We then perform diffusion of the molecules at the end of the

reaction step via the DFSP as described above. At the end of the diffusive step, the simulation time

is t0 + τD. We continue interleaving reaction and diffusion steps until the final time.

3.2 Adaptive Step Splitting

In the case where an initial population for a sub-problem is large enough to exceed the error condition

(ε) for a given MAX, we need to split the step. Rather than split the step in time, we take advantage

of the independence of diffusing molecules and split the sub-problem into several sub-sub-problems.

For example, suppose that the maximum number of particles one can diffuse in τD without violating

the error condition is 10. In this case, we would treat this sub-problem of 20 particles as two sub-sub-

problems of 10 each. The states for each sub-sub-problem are x1 = {0, 0, 10, 0, 0}, x2 = {0, 1, 9, 0, 0},

x3 = {0, 0, 9, 1, 0}, x4 = {1, 0, 9, 0, 0}, x5 = {0, 0, 9, 0, 1}, x6 = {0, 2, 8, 0, 0}, x7 = {0, 0, 8, 2, 0} and

x8 = {0, 1, 8, 1, 0}. We then can reconstruct the solution for the sub-problem by picking a uniformly

distributed random number (as above) for each sub-sub-problem, selecting the corresponding state

and then summing these two sets. It is clear that the states of the sub-problem are all possible

combinations of x1, x2, x3, x4, x5, x6 and x7. While some of these combinations may be redundant,

the number of unique states for the sub-problem of 20 particles has been increased from the original

7. By the first FSP theorem, the solution of the projected system increases monotonically as the size
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of the projection increases; as a corollary, the size of the error must decrease as we add states.

We continue splitting the sub-problems until the error from each sub-problem is less than ε/2L,

where L is the recursion level. In the extreme case of splitting the sub-problem into sub-sub-problems

of one molecule, the combination of states would provide all possible combinations of the original nk

particles in the 2×MAX + 1 voxels of the sub-problem.

The advantage of splitting the sub-problems in this way (as opposed to splitting the time step)

is that we can keep ∆t constant, which allows us to re-use our lookup table. Calculation of the lookup

table is the most computationally expensive part of the algorithm. In order to maximize speed, we

seek to avoid changing the time stepsize whenever possible.

Next we perform an analysis of the adaptive step splitting error control. Consider the case where

we want to calculate a final state of a sub-problem containing 100 molecules of a chemical species

after τD = 0.1 using a local error tolerance of 10−5. If all 100 molecules are moved simultaneously,

then the resulting single step FSP error will be 0.38 and our truncated state space contains 62%

of the probability density. Utilizing the fact that the FSP error has a non-linear relationship with

the number of molecules moved (Figure 1 shows the error as a function of the number of molecules

moved in one timestep), we can split the molecules into smaller groups where the sum of the error of

diffusing the smaller groups is less than the original error. We recursively split a group of molecules

in half if the error to move it in one step is greater than the error tolerance (adjusted for the recursion

level). For 100 molecules, we first split them into two groups of 50 (error of 3.86e − 2), then four

groups of 25 (error of 1.46e − 3), and so on. In total, we will move twelve groups of six molecules

each with error 2.4e− 7 < 10−5/24 = 6.3e− 7 (four levels of recursion), four groups of four molecules

each with error 1.4e − 8 < 10−5/25 = 3.1e − 7, and four groups of three molecules each with error

1.6e− 9 < 10−5/25 = 3.1e− 7 (both with five levels of recursion). The total error is 3.0e− 6 which is

the sum of the error in all of the recursion steps. Using this method, we are able to satisfy the error

tolerance, while continuing to utilize the efficiency of the lookup tables.

[Figure 1 here]
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3.3 Detailed Algorithm Descriptions

State Space Exploration The algorithm to determine the truncated state space is presented in

detail in Algorithm 1. The input parameters are the number nk of particles in the originating voxel

k, and the maximum number of diffusive transfers MAX that a particle can move away from the

originating voxel in one diffusion time step. The state representing the initial condition is that all nk

particles are in the originating voxel. The algorithm is presented for an anisotropic, one dimensional

Cartesian mesh with periodic boundary conditions, and assumes that the number of voxels in any

dimension is large relative to MAX.

Algorithm 1 State Space Exploration

INPUT: nk, MAX, Initial State
OUTPUT: TransitionMatrixn, StateListn

1: initialize: NextTierQueue ← Initial State, Queue ← Ø
2: initialize: StateList ← Initial State, TransitionMatrix ← Ø
3: for Tier ∈ (2, MAX) do
4: Queue ← NextTierQueue

5: NextTierQueue ← Ø
6: for all states s ∈ Queue do
7: for all non-empty voxels v ∈ s do
8: for all inter-voxel transitions d {with probabilities p(d)} originating from v do
9: find state t ← s + d(v)

10: if t /∈ StateList then
11: add t to StateList, add t to NextTierQueue

12: end if
13: TransitionMatrix(s,t) ← p(d)
14: end for
15: end for
16: end for
17: end for
18: Update Diagonal elements in TransitionMatrix

19: Truncate TransitionMatrix so that it is of dimension |StateList|
20: Create absorbing state in TransitionMatrix

We then store the TransitionMatrixn and StateListn for later use. For all cases where the

number of particles in the originating voxel n, such that n is greater than MAX, the structure of the

TransitionMatrixn is constant, and the values in the matrix are linear functions of n. This matrix

is obtained by performing the state space exploration algorithm with n as an unspecified parameter
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constrained to a value greater than MAX. For n < MAX it is still necessary to go through the state

space exploration, because for these values the TransitionMatrixn will not conform to the general

structure.

DFSP diffusion step This is the algorithm for taking a single time step of length τD for a single

voxel k containing nk particles. We assume that TransitionMatrixn and StateListn have already

been calculated and stored, and that MAX and τD are constant. Model parameters for the diffusion

coefficient D and voxel length ` are also used.

Algorithm 2 shows the details of this process. The output of this algorithm is a vector map

where the positions correspond to voxel indices and the values correspond to the number of particles

that have traveled to that voxel from the originating voxel nk via diffusion after an interval of length

τD seconds.

Algorithm 2 DFSP diffusion step with splitting
INPUT: nk, τD, TransitionMatrixn, StateListn, ErrorTolerance
OUTPUT: Output State

1: initialize once: PDVLookupTable, nmax ← ∞, L ←0
2: if nk >= nmax then
3: return Output State ← DFSP Diffusion(bnk/2c,L+1) + DFSP Diffusion(dnk/2e,L+1)
4: else
5: if PDVLookupTable contains nk then
6: PDV ← PDVLookupTable[nk]
7: else
8: PDV ← exp( TransitionMatrixnk

×D/`2 × τD )× [1, 0, 0, · · · , 0]T

9: if PDV[end] > ErrorTolerance / 2L then
10: nmax ← nk
11: return Output State ← DFSP Diffusion(bnk/2c) + DFSP Diffusion(dnk/2e)
12: end if
13: PDVLookupTable[nk] ← PDV

14: end if
15: Generate a random number X ∈ U(0, 1)
16: Find the smallest integer µ such that

∑µ
j=1 PDV[j] > X

17: return Output State ← StateListnk
[µ]

18: end if

Reactions In our computational framework for reaction-diffusion problems, we use a fractional step

method which simulates the diffusive transfers by DFSP and the reaction events by SSA. We begin
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at t0 and calculate the first reaction event. We simulate reactions until the time to the next reaction

would advance the simulation beyond t0 + τD, at which point we forego the last reaction and perform

a diffusion step using DFSP. After the diffusion step, the simulation is at time t0 + τD. This process

is repeated until the simulation is complete.

This process is detailed in Algorithm 3. Inputs to this algorithm are τD, the stoichiometric

matrix ν and the initial state of the system. The calls to DFSP Diffusion use a StateList and

TransitionMatrix that correspond to the geometry and jump propensities of the problem as well as

a specified ErrorTolerance.

Algorithm 3 RDME simulation algorithm using DFSP for diffusion and SSA for reactions

1: initialize system state: X, t = 0
2: Calculate the propensity functions ajk(X) and a0 ←

∑K
k=1

∑M
j=1 ajk(X)

{where M is the number of reactions and K is the number of voxels}
3: Generate two random numbers r1, r2 ∈ U(0, 1)

4: tnext rxn ← t+ 1
a0

ln
(

1
r1

)
5: tnext diff ← t+ τD
6: while t < tfinal do
7: if tnext rxn < tnext diff then
8: Find µr, µx smallest integers to satisfy

∑µx

k=1

∑µr

j=1 ajk > r2a0

9: Update Xµx(tnext rxn) = Xµx(t) + νµr

10: Generate two random numbers r1, r2 ∈ U(0, 1)
11: t← tnext rxn
12: else
13: Xnext ← Ø
14: for k ∈ (1...K) do
15: for i ∈ (1...N) do
16: Xnext ← Xnext + DFSP Diffusion(Xk,i) {diffusion of species i in voxel k}
17: end for
18: end for
19: X ← Xnext

20: t← tnext diff
21: tnext diff ← t+ τD
22: end if
23: Update propensity functions ajk(X) and a0 ←

∑K
k=1

∑M
j=1 ajk(X)

24: tnext rxn ← t+ 1
a0

ln
(

1
r1

)
25: end while
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4 Examples and Analysis

We examine two models to explore the validity, accuracy and speed of DFSP. The first is a model of

pure diffusion. The second is a biologically inspired reaction-diffusion spatial stochastic model.

4.1 Diffusion Example

The first example is composed of a single chemical species diffusing in one dimension. The domain is

periodic (Ω = 12.4µm) and we discretized it into 200 voxels of length ` = 0.062µm. This domain is

equivalent to a circle with radius 2µm, so we will plot the results on the range [−2π, 2π). The initial

condition is a step-function such that each voxel in the range [−2π, 0) has 100 molecules and the

remaining voxels are empty. The chemical species move with a diffusion coefficient of 0.001µm2s−1.

Numerical experiments show that the relaxation time of this system is approximately 7000 seconds

(data not shown). In this example, we use the adaptive step splitting with MAX = 5. Figure 2 shows

the initial condition (dashed blue), a transient state (dotted black) and a final state (solid blue) for

a single sample trajectory of this model.

[Figure 2 Here]

4.1.1 Validation

To test the validity of solving the diffusion example with ISSA or DFSP we solve for the moments

analytically (see Appendix A for derivation). Figure 3 shows the error in the mean and variance as

a function of time for three different sized ensembles of ISSA and DFSP trajectories. The error is

calculated using the L∞ norm (across space) of the difference between the ensemble moments and

the analytically derived moments, divided by the norm of the analytical moment.

Normalized L∞ error(t) =
‖analytical moment(x, t)− ensemble moment(x, t)‖∞

‖analytical moment(x, t)‖∞
(9)

As the ensemble size increases, the error in both the mean and the variance decreases at the same

rate for ISSA as DFSP. Figure 4 shows the error in the mean and variance as a function of voxel size.
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As voxel size decreases, the error decreases. This shows convergence of RDME solution methods to

the analytical solution to the stochastic diffusion equation. Since the ISSA is an exact simulation

method to the RDME while DFSP is an approximate method, this analysis shows that DFSP is just

as valid as the ISSA for these parameter values.

[Figure 3 here]

[Figure 4 here]

To assess the accuracy of DFSP, we treat an ensemble of ISSA simulations as the baseline

distribution because the ISSA is a true realization of the RDME and its ensemble converge to the exact

solution of the RDME. The Kolmogorov distance [31] is a standard measurement of the difference

between two cumulative distribution functions (CDF), it is defined as the largest deviation between

two CDFs. We choose this measure because it compares all the moments of two distributions and is

thus a stronger tool for analysis than methods that use individual moments. We will plot the average

Kolmogorov distance across space (Kmean) sampled at each point in time. This is given by

Kmean(a, b, t) =
1

N

N−1∑
n=0

‖CDFa(n`, t)− CDFb(n`, t)‖∞ (10)

where N is the number of voxels. The CDFa(x, t) is calculated from an ensemble of trajectories

generated by algorithm a (e.g. ISSA or DFSP) sampled at spatial location x at time t. We compare

the Kmean of two independent ISSA ensembles (this is known as the self-distance) at each sampled

point in time with the Kmean of an ISSA ensemble and a DFSP ensemble. If the two Kmean values

are similar, then DFSP is statistically indistinguishable from ISSA for this ensemble size.

Figure 5 shows Kmean values across time for the ISSA self distance and ISSA versus DFSP. We

show results for ISSA versus DFSP for two sets of simulation parameters: the first uses τD = 0.1s,

ErrorTolerance = 10−5 and the second uses τD = 1.9s, ErrorTolerance = 10−3. These results

are for an ensemble size of 105 trajectories. We note that for an ensemble size ≤ 104 DFSP is

indistinguishable from ISSA (data not shown). These results show that for a sufficiently small values

of τD and ErrorTolerance DFSP is a good approximation for ISSA. For the results with τD = 1.9s

16



the adaptive step splitting fails to meet the error tolerance; therefore, as the ensemble size grows the

error accrued by DFSP is no longer negligible. Thus, it is clear that for increasing values of τD and

ErrorTolerance the error in the simulation grows. We will show that it is possible to utilize this

feature of DFSP to trade accuracy for computational performance.

[Figure 5 Here]

4.1.2 Error Analysis

To study the error properties of DFSP, we must first find the limits of our adaptive step splitting error

control method. The contribution from diffusion to the total error should be constant for all values

of τD as long as we are able to move at least one molecule per DFSP diffusion step without violating

our error tolerance. Figure 6 shows a plot of the maximum possible number of molecules moved

per diffusion step of DFSP for various values of τD and a fixed error tolerance of 10−5. To find the

maximum number of molecules we can move for a given τD we compute DFSP matrix exponentials for

increasing molecule counts. The maximum number that can be moved is one less than the number

at which the estimate error first exceeds the tolerance. From this study, we determined that the

maximum value of τD is 0.925s.

[Figure 6 Here]

To measure the error in the simulated ensembles, we integrate the deviation between the K-

distance of DFSP and ISSA and the self-distance of ISSA over space and time, normalized by the size

of the domain.

ErrorτD =

∫ ∫
|DFSPτD(x, t)− ISSA(x, t)| dx dt∫ ∫

dx dt
(11)

where ISSA(x, t) is the K-distance over space and time between two ensembles of 10,000 runs of the

ISSA, and DFSPτD(x, t) is the K-distance over space and time between 10,000 runs of the DFSP

algorithms (with diffusion step τD) and 10,000 runs of the ISSA algorithm. We examine this error

metric for varying values of τD with a fixed error tolerance of 10−5. Figures 7 shows the error as a

function of τD for the diffusion example as well as the G-protein example (discussed in Section 4.2).
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This shows that for this range of values of τD, the error in the diffusion example is constant, and a

function only of the ErrorTolerance parameter.

[Figure 7 Here]

4.2 G-protein Cycle Example

The second example is the pheromone induced G-protein cycle in Saccharomyces cerevisiae. We

have converted the PDE model from [32] into a stochastic model and for brevity reduced it to

ligand, receptor and G-protein species. The ligand level is constant in time but it varies spatially

(a cosine function) with parameters determined experimentally. The ligand binds stochastically with

an initially isotropic field of receptor proteins. The bound receptor activates the G-protein, causing

the Gα and Gβγ sub-units to separate. Gα acts as an auto-phosphotase and upon dephosphorylation,

rebinds with Gβγ to complete the cycle. The spatial domain is identical to the previous model and the

simulation time is set to 100 seconds, as deterministic simulation shows that steady state is achieved

by that time (data not shown). Gβγ is the component farthest downstream from the ligand input and

acts as signal to the downstream Cdc42 cycle and will therefore be the output for this model. Figure

8 shows the constant ligand gradient (left) and the spatial distribution of Gβγ over 1000 runs (right,

mean and standard deviation). See Appendix B for complete description of the reactions.

[Figure 8 Here]

4.2.1 Validation

For the G-protein example, Figure 9 shows the Kmean for ISSA versus DFSP (using τD = 0.1s,

ErrorTolerance = 10−5) for an ensemble size of 105 trajectories. Note that for an ensemble size

of ≤ 103 trajectories, DFSP is indistinguishable from ISSA. For these simulation parameters the

difference between ISSA and DFSP values of Kmean is constant over time, and DFSP Kmean is

consistent across the time span of the simulation. This indicates that the simulation is stable, but

there is an error in the results that shows up as a difference between the DFSP and ISSA curves.

We will discuss the source of this error and provide an analysis in the following section. We also
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show results for τD increased to the CFL limit [33], which is ∼ 1.9s, and ErrorTolerance to 10−3

in an attempt to determine the limits of DFSP’s ability to handle full reaction-diffusion models. For

these parameters the specified ErrorTolerance cannot be met, though the adaptive splitting moves a

single molecule per step. The difference between this curve and the ISSA curve is significantly more,

and is oscillatory in time. This indicates that the simulation results are inconsistent.

[Figure 9 Here]

4.2.2 Error Analysis

Over a given timestep of length τD we first apply the reaction operator (SSA in this case) to the

system, then the diffusion operator (using FSP) is applied to the resulting state of the system. Since

these operators are decoupled an additional splitting error is incurred by the method when reaction

are included. Molecules that react in the timestep are not diffused, and molecules produced by a

reaction in the timestep are diffused for the full length of the timestep.

DFSP applied to the RDME is an operator split method which is a first order Strang-splitting

scheme [34], and as such it is expected that the error should increase approximately linearly with

τD. Figure 7 shows the error as a function of τD. We see that the error in the G-protein example is

increasing approximately linearly with respect to τD and collapses to the error in the diffusion only

system as τD goes to zero, confirming our expectation.

4.2.3 Performance

Figure 10 shows the speedup of DFSP over ISSA and MSA for the G-protein example. The perfor-

mance increase for DFSP over ISSA and MSA is due in part to the difference in the number of times

the reaction propensities must be updated as a result of diffusion events. For one realization, the

expected number of diffusion events in an ISSA simulation is 1.2× 106. Thus the reaction propensi-

ties must be updated approximately 2.4× 106 times (source and destination voxels for each diffusion

event). By numerical experimentation, the average number of reaction events for any of the methods

is ≥ 170, 000. The time to the next diffusion event for MSA is given as the minimum of the time
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to the next reaction step and a predetermined time step, therefore there must be at least as many

diffusion events in an MSA simulation (regardless of stencil) as reaction events. For MSA, diffusion

is done in all voxels, therefore updates need to be done in every voxel at each time step. Therefore,

the expected number of reaction propensity updates in MSA due to diffusion steps is ≥ 3.4 × 107.

For DFSP with τD = 0.1s, 1000 diffusion steps are taken, and the reaction propensities are updated

in every voxel on each DFSP step, resulting in 2 × 105 reaction updates. Therefore, it is reasonable

to expect that for this problem DFSP will be ∼ 102 times faster than MSA and ∼ 10 times faster

than ISSA for τD = 0.1 for this problem. Figure 10 validates this claim.

[Figure 10 Here]

Next we examine the effect of different spatial discretization schemes on performance. Figure

11 shows the computation time as a function of τD for three levels of mesh refinement, and the

computation time for ISSA at each level for comparison. The computation time for DFSP does not

vary as greatly as ISSA for different mesh sizes. In solving for the diffusion step of the algorithm,

DFSP iterates over the voxels in the system and thus should scale linearly with number of voxel. For

comparison, in ISSA the number of diffusion jumps scales as 2/`2. Further calculations show that as

we double the number of voxels the runtime for DFSP doubles, while for ISSA it increases by a factor

of eight. This verifies our expectations.

For N=100, ISSA outperforms DFSP for the range of τD values shown. However for this dis-

cretization level τD can be as large as 3.6s resulting in speedups proportional to the N=200 and

N=400 mesh sizes. For reaction-diffusion systems the fractional step decoupling error is proportional

to τD. Thus for coarse meshes where a large τD is possible, global accuracy constraints may force a

parameter selection such that ISSA performs better than DFSP.

[Figure 11 Here]
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5 Conclusions

DFSP is a powerful new algorithm that yields impressive performance improvements over ISSA. DFSP

provides a means to quantify and control the error, allowing a precise trade-off between accuracy and

performance. Additionally, unlike many hybrid algorithms, DFSP conserves mass.

As multi-core and graphics processing unit (GPU) computing becomes even more prevalent,

the importance of algorithms that are able to take advantage of these new technologies will increase.

DFSP avoids many of the serial limitations imposed on spatial stochastic simulation. We are currently

exploring enhancements that utilize these features. Another advantage of DFSP is that it extends

simply to higher dimensional systems. This will be demonstrated in our future work.

The speedup offered by DFSP enables the simulation on a workstation of ensemble sizes that

were previously feasible only on high performance clusters. It extends the scope of problems that are

computable on high performance clusters. To produce our validation data for the G-protein cycle

model we needed an ensemble of 100,000 runs for statistical accuracy. The DFSP algorithm generated

this data set in 6.2 hours (for τD = 0.1s and error tolerance of 10−5) and 3.8 hours (for τD = 1.9s and

error tolerance of 10−3) on a commodity desktop workstation with a quad-core processor (computing

four trajectories simultaneously). The ISSA data sets were generated on a high performance computer

cluster, so direct comparison is not possible. However, we estimate that each of the ISSA data sets

would take approximately 472 processor hours, or 118 real hours (approximately 5 days) to calculate

on the desktop workstation.
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Appendices

A Analytical solution to the diffusion example

On a one-dimensional infinite domain, if a single molecule is homogeneously distributed in the interval

[a, b) then its probability distribution function p(x, t) is a step function

p0(x) =


1
b−a a ≤ x ≤ b

0 else.

(12)

We can evolve the probability distribution forward in time by solving the diffusion equation

∂p(x, t)

∂t
= D∇2p(x, t) (13)

using (12) as the initial condition. The solution to the diffusion equation on a one-dimensional infinite

domain is the convolution of the initial condition with a Gaussian kernel:

p(x, t) =
1√

2πDt

∫ b

a

1

b− a
exp

(
−(x0 − x)2

2Dt

)
dx0. (14)

Since we seek to compare against numerical solutions solved on a discretized domain, we can use (14)

to find the probability that a single molecule homogeneously distributed in the interval [a, b) (starting

voxel) at t = 0 will be in the interval [x1, x2) (ending voxel) at time t:

P (x1, x2, t |a, b) =
1√

2πDt

∫ x2

x1

∫ b

a

1

b− a
exp

(
−(x0 − x)2

2Dt

)
dx0 dx. (15)

For the solution on the domain [−2π, 2π) with periodic boundary conditions, we can use mir-

roring. Mirroring is a method of translating a periodic domain into an infinite domain by repeating

the initial condition function periodically from (−∞,∞). The problem is then solved by integrating
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across the infinite domain for solutions at points in the original domain:

P (x1, x2, t |a, b) =
∞∑

j=−∞

1√
2πDt

∫ x2

x1

∫ b+4πj

a+4πj

1

b− a
exp

(
−(x0 − x)2

2Dt

)
dx0 dx. (16)

For finite precision of our answer we need take only a finite number of terms

P (x1, x2, t |a, b) =
J∑

j=−J

1√
2πDt

∫ x2

x1

∫ b+4πj

a+4πj

1

b− a
exp

(
−(x0 − x)2

2Dt

)
dx0 dx (17)

where 2J + 1 is a sufficient number of terms for the required precision of our solution.

For the diffusion example, Figure 2, the step function initial conditions is equivalent to homoge-

neously distributing 100 molecules in each of the 100 voxels in the interval [−2π, 0] (for ` = 0.06µm).

If a molecule starts in the kth voxel, and we want to know the probability that it will be within a

given voxel containing the interval [x, x+ `) at time t we can use (17) with the following inputs:

Pk(x, t) = P (x, x+ `, t | − 2π + (k − 1)`,−2π + k`) . (18)

To compare to our numerical solutions we need to find the moments of the population of

molecules in a given voxel at a given time. The generic binomial distribution is a sum of many

independent Bernoulli trials and the mean and the variance of such a distribution are equal to the

sums of the means and variances of each individual trial. A molecule being located within a given

voxel at time t is a Bernoulli trial with probability given by (17) because it is either within the voxel

or it is not. Thus the population u(x, t) of a voxel containing the interval [x, x + `) at any time t

is binomially distributed, and the analytical solution for the mean and variance of the population is

given by

E[u(x, t)] =
100∑
k=1

nk Pk(x, t) (19)

V ar[u(x, t)] =
100∑
k=1

nk Pk(x, t) [1− Pk(x, t)] (20)
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where nk is the initial population of the voxel containing the interval [x, x+ `).

We can use equations (19) and (20) to compare the mean and variance obtained from an ensemble

of runs from ISSA and DFSP.

B G-protein cycle example

These are the equations that describe the reactions of the G-protein cycle example.

Equations

Ø
−→
kRs [R] (21)

[R]
−−→
kRd0 Ø (22)

[L] + [R]
−−→
kRL [RL] + [L] (23)

[RL]
−−−→
kRLm [R] (24)

[RL]
−−→
kRd1 Ø (25)

[RL] + [G]
−→
kGa [Ga] + [Gbg] + [RL] (26)

[Ga]
−→
kGd [Gd] (27)

[Gd] + [Gbg]
−→
kG1 [G] (28)

Rate Constants

kRL = 2e− 03 M−1, kRLm = 1e− 02, kRs = 4/SA, kRd0 = 4e− 04, kRd1 = 4e− 04,

kG1 = 1× SA, kGa = 1e− 05× SA, kGd = 0.1,

Dm = 0.001µm2/s
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Total Populations and Initial Conditions:

SA = 50.2655µm2, V = 33.5µm3,

[R]0 = 10000/SA, [G]0 = 10000/SA,

[L](z) = Lmid + Lslope(z − z0),

Lmid = 2nM, Lslope = 1nM(µm)−1
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Figure 1: Projection error (ε) for varying number of molecules given τD = 0.1s, ` = 0.62µm, D =
0.001µm2s−1. Adaptive step splitting allows us to take advantage of the independence of diffusing
molecules and the nonlinear relationship of projection error to the number of molecules diffused to
reduce the total error of diffusion step over τD by splitting it into sub-sub-problems of fewer molecules
rather than by splitting the time step.
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Figure 2: Solution to a pure diffusion problem with a step function as the initial condition. Plotted
is the state of the system at t = 0s (dashed blue), 500s (dotted black) and 7000s (solid red) for a
stochastic trajectory. The domain is a circle with radius 2µm, subdivided equally into 200 voxels.
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Figure 3: Plot of the Normalized L∞ error (maximum deviation from analytical solution) versus time
in the mean (left) and variance (right) for varying ensemble sizes for both DFSP (τD = 0.1s) and
ISSA (voxel size of 0.06µm) for an ensemble size of 103 trajectories. The error increases with time
(as expected for a discretized solution) at the same rate for both DFSP and ISSA. Additionally, the
error decreases (to the discretization error limit) with increasing ensemble size at the same rate for
DFSP and ISSA.
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(a transient state) for an ensemble size of 103 trajectories. As voxel size decreases, the error in the
mean decreases at the same rate for both DFSP and ISSA. The error in the variance shows a similar
trend, however it also shows increased error for small voxel sizes. This is mostly likely sampling error
due to a constant system population distributed into an increasing number of voxels.
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1.9s (blue line). In this plot the ensemble size is 105, at which point the DFSP solution becomes
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solution is indistinguishable from the ISSA solution for both step sizes (results not shown).
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to the error from the reaction operator. For the G-protein cycle example the error increases linearly
with τD and converges to the diffusion error as τD goes to zero. This is because the error in the
reaction operator is linear with the timestep (τD); as the timestep goes to zero the reaction error goes
to zero.
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Figure 8: Spatial concentration of Ligand (left) and mean and variance of Gβγ molecules count (right)
at t = 100s for a trajectory of the G-protein cycle example. The Ligand gradient is the input to this
model and is constant in time. Gβγ is the output and is time varying.
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Figure 9: The distribution distance for the G-Protein cycle example, the Kmean from (10) at every
100s for 7000s for ISSA-vs-ISSA (green line with dots), ISSA-vs-DFSP with τD = 0.1s (dashed red
line) and τD = 1.9s (blue line). In this plot the ensemble size is 105, at which point the DFSP solution
becomes distinguishable from the ISSA solution for larger time steps. For ensemble sizes ≤ 103, the
DFSP solution is indistinguishable from the ISSA solution for both step sizes (results not shown).
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Figure 10: Speedup of DFSP over ISSA and both MSA stencils (subscript 1 denotes the case where
net diffusion is solved for adjacent voxels, and 2 the case where net diffusion is solved for the two
nearest neighbors on either side) for varying values of τD for the G-protein cycle example. DFSP
presents significant performance increases over ISSA and both MSA stencils for reaction-diffusion
simulation. The speedup is due in part to the number of times the reaction propensity function needs
to be updated due to diffusive transfers. DFSP updates less often than ISSA or MSA. As τD increases,
the number of updates decreases and performance increases.
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Figure 11: Computation time for DFSP with varying values of τD and varying numbers of voxels in
the system with error tolerance of 10−5 for the diffusion example. ISSA computation times for each
of the system sizes is provided for comparison.
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