
Core Module Network Construction for Breast Cancer 
Metastasis* 

 

Ruoting Yang1,  Bernie J. Daigle Jr2, Linda R. Petzold1,2,3, and Francis J. Doyle III1,4  
1Institute for Collaborative Biotechnologies 

 2 Department of Computer Science,3Mechanical Engineering 
 4Chemical Engineering 

University of California, Santa Barbara 
 Santa Barbara, CA 93106-5080, USA 

{ruoting & petzold & doyle}@engr.ucsb.edu, bdaigle@gmail.com 
Corresponding author 

 

                                                           
* This work is supported by U.S. Army Research Office (PTSD Grant W911NF-10-2-011). 

 Abstract - For prognostic and diagnostic purposes, it is crucial 
to be able to separate the group of "driver" genes and their first-
degree neighbours, (i.e. "core module") from the general "disease 
module". To facilitate this task, we developed a novel 
computational framework COMBINER: COre Module 
Biomarker Identification with Network ExploRation. We applied 
COMBINER to three benchmark breast cancer datasets for 
identifying prognostic biomarkers. We generated a list of "driver 
genes" by finding the common core modules between two sets of 
COMBINER markers identified with different module inference 
protocols.  Overlaying the markers on the map of "the hallmarks 
of cancer"  and constructing a weighted regulatory network with 
sensitivity analysis, we validated 29 driver genes.  Our results 
show the COMBINER framework to be a promising approach for 
identifying and characterizing core modules and driver genes of 
many complex diseases. 
 
 Index Terms - Biomarker, Microarray, Network, Sensitivity. 
 

I.  INTRODUCTION 

 DNA microarray technology has been widely used to 
uncover global gene expression signatures for complex 
diseases.  In recent years, several gene signatures have been 
identified for predicting the risk of breast cancer metastases, 
including Wang et al.'s 76 gene signatures [1] and Agendia's 
MammaPrint chip of 70 gene signatures [2].   Typically, the 
gene signatures are chosen from the top differentially expressed 
genes (DEGs) in a single dataset.  The large heterogeneity of 
different datasets often results in poor reproducibility of DEGs 
and thus even worse reproducibility for gene signatures.  For 
example, there are only 3 overlaps between MammaPrint's 70-
gene and Wang's 76-gene signatures. 

 To enhance reproducibility, biological pathways have been 
used to group DEGs into functional clusters.   These pathways 
often contain many genes with various sub-functions, while 
only a few genes associated with a particular sub-function, (i.e. 
a functional submodule) is typically differentially expressed.   
Thus, these small submodules are often overlooked statistically 
and an overlapped pathway may have different submodules.    

To specifically focus on relevant submodules, we propose a 
new pathway inference method that extracts the most important 
subset of each pathway, typically consisting of a few DEGs.   

The significances of the submodules can be compared using 
their Pathway Activities (PAs), which are vectors aggregating 
the information of all genes expressed in a pathway [3-7].  
However, there are two challenges for comparing a PA in 
different datasets.  First, different submodules often result from 
applying the same pathway inference approach to different 
datasets.  Second, even if comparing the same submodules in 
different datasets, it is difficult to identify an appropriate 
statistical significance threshold for PAs.   

In light of these challenges, we proposed a multilevel 
validation framework entitled COre Module Biomarker 
Identification with Network ExploRation (COMBINER)[8]. 
COMBINER uses a pathway inference method to find 
candidate submodules in a designated inference dataset, and it 
cross-validates the submodules using supervised classification 
with consensus feature elimination (Fig. 1).  If a PA also scores 
highly in most of the other cohorts, we consider it to be 
consistently differentially expressed in the disease of interest.  
Finally, we collect the validated submodules together as a "core 
module", and use them to construct regulatory networks based 
on various disease phenotypes.  By this way, the changes of the 
disease can be characterized using different properties of the 
networks.  

Essentially, the "core module" consists of  "driver" genes 
[9] and their first-degree neighbors [10] (Fig.2). These genes 
are the most invariant part of a general disease module [9], 
while the remainder are considered downstream passenger 
genes [9]. 

To illustrate its utility, we apply COMBINER to three 
benchmark breast cancer datasets.  We generated a list of driver 
genes by finding the common core modules between two sets 
of  COMBINER markers identified using different module 
inference protocols.  We then explore the roles of the driver 
genes in the hallmarks of cancer, and we reconstruct a 
weighted regulatory network composed of functionally 
coherent modules. Finally, we validate the importance of these 
driver genes using network and sensitivity analysis.  

 
 

II.  METHODS 
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A.   Gene, pathways, interactome and cancer databases 

 We used three large breast cancer metastasis datasets from 
different countries of origin: Netherlands [11], USA [1], and 
Belgium [12], to evaluate our method.  The Netherlands, USA, 
and Belgium datasets contain 295, 286, and 198 microarrays, 
respectively, with 78, 107, and 35 metastatic samples.  These 
datasets contained both lymph-node negative and positive 
disease patients with differing estrogen receptor (ER) types, as 
well as patients receiving chemotherapy and hormonal therapy.  
We performed a two-tailed t-test on the gene expression values 
of each dataset to distinguish between metastatic and non-
metastatic patients, using a significance threshold of p-value  
0.05.  Because of the high heterogeneity of the datasets, no 
false discovery rate adjustment was applied.  

We obtained pathway information from the MsigDB v3.0 
Canonical Pathways subset [13], which contains 880 pathways 
collected from seven hand-curated pathway databases including 
KEGG, Reactome, and Biocarta.  To decrease redundancy, we 
applied pathway filtering to remove bulky pathways such as 
KEGG Pathways of Cancer.  This resulted in a pathway dataset 
containing 624 pathways with 5,155 genes assayed in all three 
benchmark datasets.  Among all pathway associated genes, 
only 83 DEGs overlapped between all three breast cancer 
datasets.      

We compared three gene signatures to our identified core 
module markers: Subnetwork markers (1162 genes) ([3], 
www.cellcircuits.com); MammaPrint's 70-gene signature (G70) 
(70 genes) [2]; and Wang's 76-gene signature (G76) (76 genes) 
[1].  The reference cancer genes for enrichment analysis were 
collected from datasets including NetPath [14], Atlas of Cancer 

Genes [15], Census Genes [16], CANgenes [17], G2SBC [18], 
and KEGG Pathways of Cancer [19].   

B.   Core Module Inference 
 As illustrated in Fig. 3, given a pathway consisting of n 
genes with their normalized expression values  {z(g1),…, z(gn), 
we rank them in descending order of their absolute t-scores.  
The DEGs are those genes with p-value  0.05 in a two-tailed 
t-test.  The resulting ordered DEGs {g1,… gi, ..., gn} with 
normalized expression {z(g1),…,z(gn)} are then used to 
construct pathway activity. If there is no DEG in a pathway, the 
pathway activity is set to zero.  The activity of {g1,… gj}  is 
defined as the weighted sum of their gene expressions 

 1
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i score ii
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where 1 min( , 20)j n .  We limited the largest marker size to 
20.  Then the pathway activity PK with its module {g1,…, gK} is 
determined by the maximum activity  
 arg max( ( ))score jK t P , (2) 

C.   Reproducibility power 
 The reproducibility power of a pathway inference method 
in an inference-validation pair datasets can be measured by 
Cscore 
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where i
IP  is the ith PA in descending order in the inference 

dataset, and i
VP  is its corresponding PA in the validation 

 
Fig. 1 COMBINER infers candidate submodules from biological pathways in any designated inference dataset, and cross-validates the submodules using 
supervised classification with consensus feature elimination.   Finally, the validated submodules make up the "core module".  To identify the "driver" genes, we 
reassemble the resulting core module markers into a regulatory network reflecting interactions between pathways. 
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dataset. A pathway inference method is more reproducible; if 
the identified pathway activities provide similar discriminative 
power for all independent datasets (i.e. they return higher 
average Cscores over all inference-validation pairs).   For the 
breast cancer datasets, the overall reproducibility is given by 
the average Cscore of the inferred pathways over all six 
inference-validation pairs.    

 
Fig. 2 The core module is the most invariant part of a general disease module,  
consisting of  "driver" genes and their first-degree neighbors  The remaining 
members of the disease module are considered passenger genes.  
 

D.   Consensus Feature Elimination (CFE)  
 To improve stability in feature selection, supervised 
classification methods with Consensus Feature Elimination 
(CFE) [20, 21] were used to rank pathway activities.  As 
illustrated in Fig. 4, starting with 100 features, we generate 100 
alternative 5-fold random splits of samples, upon which we 
construct 500 classifiers and compute their mean AUCs (Area 
Under Receiver Operating Characteristic Curve).  The features 
were ranked by average square weight 2500

1
= / 500j

j
w w . 

The lowest ranking AUC was removed recursively until the 
maximum mean AUC was reached.  The above procedure was 
repeated 100 times, selecting the most frequently occurring best 
features.  Seven methods were compared in this work, 
including CMI, CORG[6], Mean [5], Median[5], PCA 
(Principal Component Analysis) [4], LLR(Log likelihood 
Ratio, [7]), and Individual Gene.  

E. Cancer gene enrichment analysis 
 The cancer gene enrichment analysis assesses statistical 
significance of cancer genes in a gene signature.  Assuming the 
total number of genes N, cancer genes M, and signature genes 
J, the probability of having more than K cancer genes in a 
signature follows a hypergeometric distribution:  
 

0
(#  of cancer genes ) 1

i M i
K J N J

Mi
N

C CP K
C

      (4) 

 
Fig. 2 An illustration of Core Module Inference.  The CMI method combines 
both up- and down-regulated subset of genes in a pathway by reversing the sign 
of  downregulated gene expression values.   
 
F. Weighted network  

  Our resulting core module can be used to construct a large 
scale network by incorporating protein-protein interaction data.  
However, the task of identifying interaction strength at the 
transcriptional level still remains.  In general, the dynamics of 
genes x=[ x1, x2, ..., xn]T can be represented by a simple linear 
model[22], 
 Ix A x Bu       (5) 

where IA  is an asymmetric network structure matrix 
characterising the interactions of genes 
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where the coefficient ija  stands for the influence of gene j on i, 
and iia is the degradation rate of gene i. ija is non-zero if and 
only if a direct protein-protein interaction exists between gene i 
and j.    u=[ u1, u2, ..., um]T represents the disturbances of the 
disease applied to the network. The input matrix B collects all 
disturbances on the genes.  
 In this work, we assume that disturbances only occur in the 
early stage of the disease.  Thus, the gene interaction dynamics 
eventually converge to a non-zero steady state, i.e., 

0IA x [22].  We rescale the interaction strengths ija  , 
i j with the degradation rate, i.e., /ij ij iia a , which then 
represent the scaled strength of an edge of the network.  In this 
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case, without transient disturbances, the system (5) can be 
rewritten as  

 ˆ ( )Ix A x f x       (7) 

with

12 1

21 2

1 2

1
1ˆ

1

n

n
I

n n

A , 0ij if and only if an edge 

exists between gene i and j.     

Because ˆ 0IA x , the scaled strength 0ij  can be solved by 
minimizing the following cost functions, for any  

2ˆ arg min(|| || ), , 1,..., .D D
ij i ij j

i j
x x i j n       (8) 

where D
ix , i = 1, ..., n, is the gene expression in the disease 

state.  
G. Network sensitivity analysis 

 With the estimated scaled strength in Eq (8), we can 
investigate the sensitivity of these strengths in the 
neighborhood of the disease state Dx , thus determining the 
influence of the strengths to the entire network.   

Define sensitivity matrix 
( )

( ) i

ij

dx t
S t

d
[23] for all 0ij , 

, 1,...,i j n . Combining Eq (8), the sensitivity matrix can be 
solved as follows,  

 f fS S
x

; (0) 0S .      (9) 

Integrating Eq. (9) for a short interval [0, t1] in the 
neighborhood of the mean gene expression for each disease 
phenotype,   we can compute the sensitivity matrix 1( , ( ))ijS x t  
of the disease state. The sensitivity matrix is then normalized to 

( )
( )

( )
iji

ij i

dx t
S t

d x t
, which measures the deviation of 

( )ix t caused by a unit change of the coefficient ij .   
 
We define two measures to score the overall sensitivity of a 
node (gene) and an edge (protein-protein interaction) with 
respect to the entire network.   
1. Overall gene sensitivity 1 is the sum of absolute normalized 
sensitivities 1( , ( ))ij iS x t  of node i over all edges.  

1 1
0

( ) | ( , ( )) |
ij

i ij ix S x t , for all 0ij       (10) 

2. Overall interaction sensitivity 2 is the sum of absolute 
normalized sensitivities 1( , ( ))ijS x t over all nodes from an 
edge.  

2 11
( ) | ( , ( )) |n

ij ij ii
S x t       (11) 

Larger overall sensitivity values imply a greater influence of a 
gene or an interaction upon the entire network.   

 
 
Fig. 3 We first generated 100 alternative 5-fold random splits of samples, upon 
which we construct 500 classifiers with their AUCs and weight vectors.  Each 
feature is then ranked by its average square weight.  The lowest ranking feature 
was removed recursively until the maximum average AUC was achieved.  This 
procedure is repeated 100 times, and the most frequently occurring marker set 
was regarded as the final set of markers. 
 

III.  MAIN RESULTS 

A. Core Module Inference improves reproducibility and 
classification accuracy 
Enhanced reproducibility between independent datasets is one 
of the most important benefits of performing pathway 
inference.  We compared our CMI approach with five other 
inference methods [4-6] as well as individual genes using C-
scores (See Method section C).  CMI showed two-fold 
increased reproducibility over the related CORG method [6] 
and about a 10-fold improvement over other methods [8].  
Furthermore, CMI also exhibited better overall accuracy when 
compared to the other methods [4-7] coupled with 
COMBINER and Linear Discriminant Analysis (LDA) or 
Support Vector Machine (SVM) with CFE  [8]. 

B.   Core module markers enrich cancer-related genes  
Both COMBINER run using PA vectors identified by 

CMI (CMI-COMBINER) and by CORG (CORG-COMBINER) 
showed much higher enrichment of cancer-related genes in 
their biomarker signatures  [8].  Specifically, CMI- and CORG-
COMBINER showed up to 4-fold increased enrichment over 
subnetwork markers [3] and up to 30-fold enrichment over 
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other gene signatures [1, 2].  For known breast cancer genes, 
they exhibited up to 4 fold enrichment over the other methods   
[8].   
 
C. Core module markers highlight the hallmarks of cancer 
 As shown in Fig. 5, the COMBINER-discovered 
biomarkers are overlaid on the hallmarks of cancer [24, 25], 
which integrate the common intracellular signalling pathways 
of cancer subtypes.  The core module markers from CMI and 
CORG are listed in normal and italic fonts, respectively, while 
the common markers are in bold.  Red/green color denotes up-
/down-regulation. The remaining proteins in the pathways are 
abstracted as unlabeled nodes.  Fig. 5 shows that the identified 
core modules cover all of the hallmarks, demonstrating the high 
specificity of COMBINER.  CMI-COMBINER uniquely 
identified anti-apoptosis and JAK-STAT cascades, while 
CORG-COMBINER found anti-growth factors and death 
factors.  Moreover, among 35 common markers between CMI- 
and CORG-COMBINER core modules (Table I), we 18 of the 
common markers are directly involved in the hallmarks of 
cancer.  These genes include growth factors, survival factors, 
and members of the cell cycle and extracellular matrix.  It is 
also notable that a few well-known mutant genes, including 
cyclin D1 and p53, may play an important role in connecting 
other signatures [3], but they showed insignificant gene 
expression profiles in all three breast cancer datasets.   

Fig. 5 COMBINER biomarkers overlap with well-known cancer-related 
signalling pathways.  The core module markers from CMI and CORG are listed 
in normal and italic fonts, respectively, while the common markers are in bold.  
Red/green color denotes up-/down-regulation.  The remaining proteins in the 
circuit are abstracted as unlabeled nodes. 
 

TABLE I 
COMMON MARKERS BETWEEN CMI- AND CORG-COMBINER 

Symbol Entrez Description 
BRCA1 672 breast cancer 1, early onset 
FOS  2353 v-fos FBJ murine osteosarcoma viral oncogene 

homolog 
CCNA2 890 cyclin A2 

MYC 4609 v-myc myelocytomatosis viral oncogene homolog 
(avian) 

CCNB2 9133 cyclin B2 
CCNE2 9134 cyclin E2 
CDC45 8318 cell division cycle 45 homolog 
GRB2 2885 growth factor receptor-bound protein 2 
JAK1 3716 Janus kinase 1 
VAV3 10451 vav 3 guanine nucleotide exchange factor 
NFKB1 4790 nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 1 
NFKBIA 4792 nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha 
PIK3CA 5290 phosphoinositide-3-kinase, catalytic, alpha 

polypeptide 
PIK3CG 5294 phosphoinositide-3-kinase, catalytic, gamma 

polypeptide 
GNG12 55970 guanine nucleotide binding protein (G protein), 

gamma 12 
CHEK1 1111 CHK1 checkpoint homolog 
BCL2 596 apoptosis regulator Bcl-2 
CFL1 1072 cofilin 1 (non-muscle) 
MCM10 55388 minichromosome maintenance complex component 

10 
SOS1 6654 son of sevenless homolog 1 (Drosophila) 
MCM2 4171 minichromosome maintenance complex component 

2 
MAP2K1 5604 mitogen-activated protein kinase kinase 1 
ORC6L 23594 origin recognition complex, subunit 6 
E2F1 1869 E2F transcription factor 1 
E2F2 1870 E2F transcription factor 2 
SHC1 6464 SHC (Src homology 2 domain containing) 

transforming protein 1 
PKMYT1 9088 protein kinase, membrane associated 

tyrosine/threonine 1 
PPIA 5478 peptidylprolyl isomerase A (cyclophilin A) 
RB1 5925 retinoblastoma 1 
PLK1 5347 polo-like kinase 1 
PSMA7 5688 proteasome (prosome, macropain) subunit, alpha 

type, 7 
PSMD2 5708 proteasome (prosome, macropain) 26S subunit, 

non-ATPase, 2 
PSMD7 5713 proteasome (prosome, macropain) 26S subunit, 

non-ATPase,7 
CSNK2A1 1457 casein kinase 2, alpha 1 polypeptide 
DPYD 1806 dihydropyrimidine dehydrogenase 

Bold: Validated driver genes 

D. Core module markers in predicted protein-protein 
interaction networks underpin functional modules 

As shown in Fig. 6, we used known protein-protein 
interaction between the core module markers to construct a 
regulatory network, consisting of 96 nodes and 485 edges.  The 
protein information was obtained from STRING 9[26]. The 
biomarkers neatly clustered into a few interconnected 
functional modules, including JAK-STAT, cell cycle and ECM.  
The gene nodes with many connections  were considered the 
most important nodes in the network.   Here we regard the 20 
most highly connected genes as "hub genes" (larger pink/green 
nodes), which interconnected the eight functional modules. In 
particular, 13 of the hub genes overlapped with common genes 
(highlighted in Table II).   
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Fig. 6 Regulatory networks of CMI-COMBINER biomarkers The pink/green 
nodes denote up-/down-regulation of gene expression.  The orange nodes 
indicate contradictory regulation in different datasets.  Larger nodes are highly 
connected in the network; most are overlaps between CMI- and CORG-
COMBINER.  

E. Weight difference between non-metastatic and metastatic 
network 
 We consider the metastatic and non-metastatic breast 
cancer networks as two disease networks with the same 
structure but differing interaction strengths Fig. 6.  When fit 
with either the 559 non-metastatic samples xC and 220 
metastatic samples xD from three breast cancer datasets, we 
obtained two sets of scaled strengths ˆ C

ij  and ˆ D
ij , each of 

which represents 970 directed interactions.  The difference 
between the two networks can be measured by the differential 
ratio ˆ ˆ ˆ( )/ | |D C C

ij ij ij ijR .  As shown in Fig. 7, the colored 
edges represent the significant differential ratios such that 
| | 10ijR , with red/green edges denoting increasing/ 
decreasing interaction strenth, i.e. 10ijR  or 10ijR . 
Notably, 29 of the 35 common genes in Table I and 22 hub 
genes were identified as differentially connected.  Significant 
differences occurred inside the cell cycle module, as well as in 
interactions between the Growth, survival, and anti-apoptosis 
module and the ECM module.    

F. Overall Gene Sensitivity and interaction sensitivity 
difference between non-metastatic and metastatic network 
 
 To further investigate the influence of a node or an edge 
upon the entire network, we applied the sensitivity analysis and 
calculated overall gene sensitivities and overall interaction 
sensitivities (See Methods section F).   Table II lists the top 20 

most sensitive genes of both non-metastatic and metastatic 
networks.  The two sensitive gene sets are similar, and both 
have 8 genes not included in the hub genes.  Among those, 
GNG12, VAV3, and CFL1 belong to the common gene 
markers in Table I.   
 Fig 8 shows the top 20 most sensitive interactions for both 
non-metastatic and metastatic networks. The black edges 
denote the common sensitive interactions, while the 
blue/orange edges are sensitive interactions for non-metastatic 
only/ metastatic only. Five common markers (CCNA2, 
GNG12, PIK3CG, CSNK2A1, MYC) were involved in six 
metastatic-specific links (blue), while only four common 
markers appeared in 19 non-metastatic-specifc links (black and 
orange).   
 Taken together, our results involving the hallmark genes of 
cancer, HUB genes, weight differences, and highly sensitive 
genes and interactions suggest the 29 common COMBINER 
gene markers to be the most probable "driver" genes of breast 
cancer metastasis (highlighted in Table I). In particular, we 
note that MYC and PIK3CG were highlighted in all of the 
above analyses.   

 
 
Fig. 7  Differences between metastatic and non metastatic core module network. 
The red/green edges denote increasing / decreasing strengths of protein-protein 
interaction in the metastatic network.    

TABLE II 
TOP 20 HUB, SENSITIVE GENES 

HUB Gene Sens.  Non-Metastatic Gene Sens.  Metastatic
MYC FN1 MYC 
BCL2 FOS NAT1 

PIK3CA NAT1 FN1 
FOS MYC FOS 

PIK3R1 STAT3 IRS1 
STAT3 HSP90AA1 STAT3 
IRS1 IRS1 HSP90AA1 

MAP2K1 JAK1 PIK3R1 
NFKB1 VAV3 JAK1 
SHC1 NFKBIA NFKBIA 
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JAK1 PIK3CA GNG12 
E2F1 PIK3R1 VAV3 
HRAS GNG12 BCL2 
IGF1 IGF1 PIK3CA 

BRCA1 BCL2 CFL1 
CCNA2 CFL1 IGF1 
GRB2 IMPDH2 MAP2K1 

PIK3CD PIK3CG PIK3CG 
PIK3CG TPI1 IMPDH2 
NFKBIA MAP2K1 ITGAV 

Bold: common genes between CMI- and CORG-COMBINER 

 

 
Fig. 8 Top 20 overall interaction sensitivities for both non-metastatic and 
metastatic network. The black edges denote the common sensitive interactions, 
while the blue/orange edges are sensitive interactions for non-metastatic only/ 
metastatic only. Five common markers were involved in metastatic specific 
sensitive links (blue).  
 

IV.  CONCLUSIONS 

 Identifying core modules of complex diseases is an 
important challenge for gene expression analysis. To facilitate 
this task, we developed COMBINER, a novel computational 
framework that extracts the essential "core module" of disease 
from known biological pathways.  We generated a list of 
"driver genes" by finding the common core modules between 
CMI- and CORG-COMBINER markers.  Overlaying the 
markers on the map of "the hallmarks of cancer"  and 
constructing a weighted regulatory network with sensitivity 
analysis, we validated 29 driver genes.  After proving the 
efficiency of COMBINER using the benchmark cancer 
datasets, we have extended this framework to diseases that are 
less well-characterized, such as Post-Traumatic Stress Disorder 
(PTSD) and prion diseases. 
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