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Abstract 

In solving stiff systems of ordinary differential equations using BDF methods, Jacobians needed for quasi-Newton 
iteration are frequently computed using finite differences. Round-off errors in the finite-difference approximation 
can lead to Newton failures forcing the code to choose its time steps based on “stability” rather than accuracy 

considerations. When standard stepsize control is used, the code can experience thrashing which increases the total 
number of time steps, Jacobian evaluations, and function evaluations. In this paper we investigate this situation, 
explaining some surprising time step selection behavior produced by the standard control mechanism. A new control 
mechanism is proposed which attempts to find and use a “stability” stepsize. A comparison of the new strategy with 

the standard strategy and with two PI controllers introduced earlier is made using the stiff test set. 

1. Introduction 

In solving stiff systems of ordinary differential equations using BDF methods, Jacobians 
which are needed for the quasi-Newton iteration are often approximated using finite differ- 
ences [1,2,9]. Smaller stepsizes than allowed by accuracy considerations may be needed to 
guarantee convergence of the Newton iteration due to round-off errors in the finite-difference 
Jacobians. The standard stepsize control mechanism, such as that used in DASSL [2], is 

h, = (TOL/EST,,_,)l’ph,,_,, (1.1) 
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Fig. 1. Time steps used in solving problem D2 from the stiff test set 151 on 0 < t < 8 (left) and on 1.83 Q t < 1.98 (right 
denoted by A) using DASSL with absolute and relative error tolerances of 0.01 and (Y = 0.5. Estimates of the 

stepsize based on “stability”, hstab (right, denoted by B) and accuracy, h,,, (right, denoted by C). 

where TOL is the user-prescribed tolerance, EST, ~ I is the local error estimate computed at 
time fn_i, and p is the method order. However, (1.1) is based solely on accuracy considera- 
tions. This can lead to highly oscillatory stepsize behavior (see Fig. 1). 

Here we apply DASSL to the stiff test set [4,5] with an approximate Jacobian to simulate the 
effects of an inaccurate finite difference Jacobian. The stepsize behavior shown in Fig. 1 when 
DASSL is applied to problem D2 is typical. After periods of taking relatively small stepsizes the 
algorithm suddenly increases the stepsize by several orders of magnitude. It remains at this 
larger stepsize for several time steps, and then decreases the stepsize dramatically whereupon 
the process begins again. Although most of the time steps taken by DASSL are of the smaller 
size, the solution on most of the time interval is found using the larger time steps. 

In Section 2 we analyze the behavior of DASSL on a simple linear system which leads to an 
understanding of the stepsize behavior discussed above. We also present a modification of the 
time step selection strategy used in DASSL based on the quasi-Newton algorithm of Dennis 
and Schnabel [3]. The revised strategy prevents the larger “anomalous” steps but leads to a 
much larger number of time steps with no significant improvement in accuracy. The stepsize 
controller of Gustafsson et al. [6], referred to henceforth as the PI controller I, is presented in 
Section 3 with a new interpretation. This controller was developed for explicit time integrators. 
Gustafsson [8] developed a PI controller (referred to herein as PI controller II> for implicit 
methods. We also discuss this controller in Section 3. In Section 4 we present a new control 
strategy and compare it with the standard stepsize controller and the PI controllers on the stiff 
test set [4,5]. Brief conclusions are given in Section 5. 
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2. Analysis of a stiff system 

Consider first the standard test problem 

Y’=hY, Y(O) = 1, (24 

where Re(A) < 0. Applying the backward Euler method together with quasi-Newton iteration 

yields 

(1 -&z)A~:,+~ = -yf;:(l -Ah) +y,, i> 1. (2.2) 

Typically, if an analytic Jacobian is used, (Y = 1. To model the effects of an inaccurate matrix 
approximation, we choose a different from 1. After k + 1 iterations of the quasi-Newton 
method we obtain 

k+, =y,, (a - l)k+‘(-Wk+l Y, 

+ 1 -aAh ’ - 
[ 

(a - l)hh 

(l-ahh)k+l 
. . . + 

(a - l)k( -Ah)" 
Y n+l n+l 1 -ahh 

+ 
(1 -crAh)” 1 ’ 

where y,“, 1 is the predicted solution. If 1 Ah( CY - l)/(l - ahh) I < 1, the quasi-Newton iterates 
converge to the true solution where the rate of convergence, p, is given by 

IY ,k:: - YAl - Ah) I p- 
lYk 

= I Ah(a - l)/(l - crhh) I. 
ntl -Y,/(l -Ah)1 

In DASSL [2] the quasi-Newton iteration is said to converge if 

r; I y,k=; - y,k+ 1 I < 0.33, 
l-6 

(2.4) 

(2.5a) 

where p^ is an approximation of the rate p given by 

p^=(lYx:: -Ynk+1I/IY;+, -Y,l+ll)lik. (2.5b) 

Thus the number of iterations before convergence is determined by both the accuracy of the 
predictor and the rate of convergence p^. 

For systems of equations, the analysis is complicated by the norm used. Although DASSL 
uses a weighted rms norm, herein we consider the l2 norm which displays the same type of 
behavior. Consider the diagonal system 

r’=Dy, Y(O) = 1, (2.6) 

where D = diag(A,, A,, . . . , A,) with Re(A,) < 0, i = 1, 2,. . . , m. After two iterations the rate of 
convergence is given by 

k ( PI Y,o+ 1,l - Y,,l/(l - A&))2 + . . . + (Pm(Y,o+ l,m - Yn,m/(l - Lh)))2] I’* 

k 

PJ) 

Y0 n+l,l - y,,l/(l - Ah))’ + . . . + (~:+l,m - y,,,/(l - LhI)2] 1’2 ’ 
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Fig. 2. Time steps (A) and error in yin (B) in solving A4 from the stiff test set [5] on 0 < t < 0.4 with DASSL with 
absolute and relative error tolerances of 0.01 and (Y = 0.5. 

where the second subscript indicates the component of the vector y and pi is given by (2.4) with 
the appropriate hi. Unlike (2.1) the rate of convergence of (2.7) is not constant, but is instead 
determined by the stiffness (through pi) and the accuracy of the predictor (Y:+,,~ - y,,J 
(1 - A$)). Thus if the stiff components are sufficiently more accurately predicted than the 
nonstiff components (which is likely since the stiff components change little from step-to-step) 
the rate of convergence will be controlled by the rate of convergence for the nonstiff 
components which have smaller rate constants. The stepsize controller may then wish to 
increase the stepsize (which may be low for the nonstiff components) until the errors in the stiff 
components are excited whereupon the stepsize undergoes a drastic reduction since the rate is 
now being determined by the stiff components. 

That this actually happens can be seen by applying DASSL to problem A4 of the stiff test set 
[5] which has hi = -i5, i = 1, 2,. . . , 10. We solved this problem on 0 < t G 0.4 with absolute and 
relative error tolerances of 0.01 and with CI = 0.5. Fig. 2 shows the time steps and the error in 
the stiffest component over the interval. When the stiff component becomes sufficiently 
accurate (after very small time steps), the time step increases rapidly, reaching a value 
controlled by the error in nonstiff components. Such large time steps excite errors in the stiff 
components until the rate of convergence becomes dominated by the stiff components and the 
time steps is drastically reduced, beginning the process again. Such behavior is also seen in 
non-diagonal systems as shown in Fig. 1. 

The question arises, is it desirable to permit the large stepsizes. We observed that on some 
successful steps at the larger stepsizes I] g(t, Y, Y’) I] increased where Y is the BDF solution 
when we are solving 

g(t, Y, Y') = 0. (2.8) 
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One approach we implemented to correct this problem was to insist that ]]g(t, Y, Y’) I( decrease 
before a step was converged. Specifically we required that on each Newton step 

II g(Y + AY) II 2 - II g(Y) 11 2 > o 

-211g(Y)l12 ’ . 

o5 
(2.9) 

(cf. Dennis and Schnabel [3]), where AY is the quasi-Newton direction. Although using (2.9) did 
reduce the number and extent of the large stepsize regions, more time steps were used with no 
significant improvement in accuracy. Thus, it seems reasonable to allow the large steps and 
subsequently we do not use (2.9). 

3. PI control 

As was seen in Section 2 the standard stepsize control mechanism (1.1) leads to oscillatory 
time steps. The difficulty is finding a way to smooth out the selection of small time steps 
without eliminating the selection of the large time steps. One possible approach is to use PI 
controller I introduced by Gustafsson et al. [6-81 for explicit methods or PI controller II of 
Gustafsson [8] for implicit methods. In this section we present a new interpretation of these 
strategies along with some modifications for use in our situation. 

PI controller I can be written in the form (with some modifications for maximum rate of 
stepsize increase and decrease) [7] 

h, = (TCIL/EST,~,)“‘(EST,,_,/EST,,_,)”’h,,~,, (34 

where EST, _ 2 and EST,_ 1 are estimates of the local truncation error at time t,_, and t,_ ,, 

respectively, and K, and K, are parameters whose values depend only on whether a step is 
successful or not. Values for K, and K, are given in [6] and [7] although they differ slightly. 
For our purposes it is important to note first that in the case of a rejected step K, = l/p and 
K, = 0. Thus, when a step is rejected the standard controller is used. Second, in the case of an 
accepted step K, + K, = l/p. 

We can rewrite (3.1) as 

h, = (ESTn_2/TOL)K’(TOL,‘ESTn_,)‘K’+“”h,,_,. P-2) 

Assuming K, + K, = l/p and using 

hacc,n_l = (TOL/ESTn_,)“ph,_,, (3.3a) 

we obtain 

h, = (EST,,-2/TOL)Kphacc,n-i, (3.3b) 

where h acc,n _ 1 represents the stepsize based on the local truncation error that could have been 
taken at time t,_,. We note that ha,,,,_ 1 also represents the stepsize based on accuracy that is 
typically used for the next time step [tnpl, t,]. Now, since (3.3a) holds at time t,_, we obtain 

h, = (h,,~2/hacc.n-2)KOhacc,n-1. (3.4) 
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where K, = Kp/(Kp + K,). Thus the new stepsize is chosen to be the stepsize based on 
accuracy multiplied by a factor that represents the ratio of the actual stepsize to accuracy 
stepsize we could have chosen on the previous step. If on the last step the accuracy and actual 
time step were the same, the accuracy stepsize is used on the present step. Otherwise (the 
previous stepsize can never be larger than the previous stepsize based on accuracy), if the 
previous stepsize was much smaller than the previous stepsize based on accuracy only a fraction 
of the accuracy stepsize is used. 

A similar analysis shows that PI controller II has the form 

hn = (hn-l/h,,-z)(EST,,-,/EST,,_,)l’ph,,~,,_l, (3.5) 
if two or more successive accepted time steps have been taken (otherwise the standard 
controller is used). Now the accuracy time step ha,,,,_ 1 is multiplied by a factor representing 
the ratio of successive accepted time steps and factor proportional to the ratio of successive 
error on those steps. 

The version of PI algorithm I we used in our testing consists of three cases. 

(1) If the present step is rejected due to the error test, set h, = hacc,n_l and K, = K,,. 
(2) If the present step is rejected due to Newton divergence, set h, = he_,/4 and K, = K,,. 
(3) If the present step is accepted update K, = max(fac* K,, K,,) if the previous step was 

not a Newton failure. Set h, = min(1, (h,_z/h,cc,n_2)KG)h,,,,,_l. 

Here fat = 0.9, K,, = 0.5, and K,, = 0.7 are fixed parameters. This differs slightly from the 
approach taken by Gustafsson [6,8], since we allow K, to vary. We found varying K, resulted 
in slightly better performance over fixed K,. The algorithm for PI controller II is similar with 
(3.4) replaced by (3.5). Thus, for PI controller II, there is no K, (and hence no K,, and K,,). 
If Newton’s method diverges we always revert to the standard controller after the next step for 
which Newton converges. 

Gustafsson [8] offers some additional ideas for PI controller II. He has a stepsize algorithm 
for the case of successive stepsize failure due to error control. In our situation, however, we 
encounter successive stepsize failure due to divergence in Newton’s method so we did not 
incorporate this heuristic in our algorithm. In certain cases of Newton divergence he computes 
a second, “stability” stepsize which is based on the size of the norm of the Jacobian. Since we 
are also interested in solving differential-algebraic equations, we are very reluctant to use a 
scale-dependent quantity in our algorithm so we have neglected this feature. 

4. A new controller 

For reasons that will become clear from the examples in this section neither the standard 
controller nor the PI controllers possess the desired stepsize behavior. Using the analysis from 
Section 2 we present a new controller which we refer to as the STAB controller. We then 
present a numerical comparison of the standard, PI, and STAB controllers applied to the stiff 
test set [4,5]. 

From our observations in Section 2 we desire a controller that interferes with the standard 
controller as little as possible. Our goal was to smooth out the time step selection strategy only 
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when the code is thrashing due to Newton convergence difficulties. When the code is able to 
use larger stepsizes because of a good predictor for the stiff components, we want to let it do 
this because this is where it makes most of its progress. Additionally, as indicated in Section 2, 
no accuracy is lost in accepting the large steps. 

We begin with the observation that there are two important time step sizes, an accuracy size 

h act and a stability size hstab, where here, stability refers to the convergence of Newton’s 
method. Normally h._ is smaller than hstab for BDF methods but when the Jacobian is poorly 
approximated the reverse can occur. In the graph on the right side of Fig. 1, the peaks in curve 
A indicate stepsizes chosen by accuracy but which caused the quasi-Newton iteration to 

diverge. Thus the best guess at h,,, is represented by the peaks, although it may be quite a bit 
larger (curve C on the right, Fig. 1). After each peak two successful, smaller steps are taken. 
The value hstab is approximated by curve B in Fig. 1. Our controller seeks to detect when hstab 
is smaller than ha,, and then makes two attempts at finding hstab. The algorithm then limits the 
time step size for 10 steps to 0.87 hstab after which it reverts to the standard controller. The 
value 0.87 is chosen to reduce the number of step failures and to reduce the number of Newton 
iterates required for convergence. If the time step used was hstab, Newton make take several 
steps to converge due to a larger rate and a poorer predictor. 

The new controller is invoked only when the Newton iteration fails to converge (as long as 
the convergence is not due to a singular Jacobian), i.e., when the criterion (2Sa) fails and when 
the last successful time step h,- 1 is smaller than the first failed (Newton) step h,. Two 
attempts are made at finding hstab. After the first Newton failure, if h,_,/h, a 0.8, h, = 
0.87h n _ 1 and the time step is not allowed to become larger than this value for 10 time steps (of 
course it can become smaller due to subsequent Newton failures or error failure). If h,- ,/h, < 
0.8, then h, = 0.8h, _ 1 + 0.2/z,. Now, however, the stepsize is allowed to increase, but at a 
reduced maximum rate of 1.18. If Newton fails for a second (but not second consecutive) time 
within the 10 step limit, h, = 0.87h,_, and no increase above this value is allowed for 10 steps. 
Consecutive Newton failures result in the algorithm reverting to the standard controller since 
we no longer seem to have a good approximation to hstab. We limit our controller to 10 steps so 
that larger stepsize increases are allowed from time to time which should preserve the desirable 
property of the standard controller. 

We solved the stiff set using DASSL with the three controllers and absolute and relative 
error tolerances of 10pk, k = 2, 3,. . . ,6 and (Y = 0.5. Tables l-4 contain the number of time 
steps used (including successful and unsuccessful time steps), the number of Jacobian evalua- 
tions, the number of function evaluations, and the Z* error at the final time by each of the four 
algorithms with tolerances of 0.0001, respectively. None of the algorithms was able to solve Fl 
or F4 in 10000 time steps and only PI controller I was able to do so for F5 with this poor 
approximation to the iteration matrix. In almost all cases the STAB controller outperforms the 
standard controller. In a number of cases (Al, B2, B4, B5, C3, C5, D6, El, E4) the standard 
controller has a smaller error than the STAB controller (cf. Table 4). However, except for cases 
C5 and D6 the STAB controller is superior with respect to the other measures. For problems 
A2 and D3 where the standard controller appears to outperform the STAB controller, the 
error produced using the STAB controller was at least a factor of three smaller. Also note the 
anomalous behavior of the standard controller on F3. PI controller II is slightly better than PI 
controller I. The STAB controller is more efficient than the PI controllers for a significant 
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Table 1 
The number of time steps needed by DASSL with the standard controller, the STAB controller, and the PI 
controllers in solving the problems of the stiff test set [4,5] with tolerances 0.0001 and (Y = 0.5. None of the three 
algorithms solved Fl or F4 in fewer than 10000 steps and only PI controller I was able to solve F.5 in fewer than 
10000 steps. The standard controller and PI controllers I and II failed to reach the final time in 15000 steps for 
problem F3 

Stiff set Number of time steps 
problem 

Standard 
controller 

STAB 
controller 

PI 
controller I 

PI 
controller II 

Al 
A2 
A3 
A4 
Bl 
B2 
B3 
B4 
B5 
Cl 
c2 
c3 
c4 
C5 
Dl 
D2 
D3 
D4 
D5 
D6 
El 
E2 
E3 
E4 
E5 
F2 
F3 I 

367 
1546 
2446 
1469 
1154 

110 
145 
277 

1633 
347 
328 
322 
348 
272 

2099 
2767 

376 
154 
144 
517 

62 
156 

2121 
1298 

19 

159 
15002 

217 286 321 
1627 1990 816 
1467 1946 525 
1417 1201 652 
892 2578 3173 
106 120 104 
120 132 119 
184 360 355 

1071 1413 780 
238 153 134 
242 258 270 
152 257 304 
281 420 474 
233 393 493 
621 1928 2042 

1576 2408 1694 
449 358 346 
497 99 87 
182 131 160 
604 476 511 

40 73 74 
156 871 981 

1063 1973 1618 
972 1339 789 

19 19 19 
135 112 96 
152 15002 15002 

number of the test problems. Although PI controller II appears to perform better than the 
STAB controller on the early problems A2, A3, and A4, the STAB controller produced 
solutions with errors at least a factor of 10 smaller than PI controller II. On problems D4 and 
D5 the STAB controller is significantly more accurate (cf. Table 4). The results at this tolerance 
were typical of the performance of the control algorithms at the other tolerances. 

The data in Table 2 clearly indicate that the STAB controller significantly reduces the 
number of Jacobian evaluations over the standard controller. It also frequently uses fewer such 
evaluations than either PI controller I or II. The improvement in the number of function 
evaluations (cf. Table 3) is not as dramatic but still noticeable. From Table 4 we see that the 
standard and STAB controllers consistently produce more accurate solutions (with respect to 
the l2 error at the final time) than do the PI controllers. 
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Table 2 
The number of Jacobian evaluations needed by DASSL with the standard controller, the STAB controller, and the 
PI controllers in solving the problems of the stiff test set [4,5] with tolerances 0.0001 and CY = 0.5 

Stiff set Number of Jacobian evaluations 
problem 

Standard STAB PI PI 

controller controller controller I controller II 

Al 303 55 176 248 
A2 1429 383 1813 655 
A3 2242 410 1603 139 
A4 1333 306 1000 454 
Bl 1154 892 266 851 
B2 35 20 18 17 
B3 59 24 18 24 
B4 139 29 159 220 
B5 945 153 858 294 
Cl 270 51 26 26 
c2 254 63 151 192 
c3 258 39 147 239 
c4 285 86 94 417 
c5 196 71 249 427 
Dl 2021 168 1577 1903 
D2 2685 388 2194 1523 
D3 294 119 97 190 
D4 152 153 89 86 
D5 118 72 476 135 
D6 515 230 57 511 
El 46 19 33 66 
E2 22 22 57 276 
E3 1998 325 1693 1454 
E4 1058 339 948 450 
E5 19 19 19 19 
F2 128 41 31 23 
F3 15002 152 15002 15002 

In Table 5 we have listed the number of Jacobian evaluations, function evaluations, and 
errors (in the I2 norm) for several cases. The STAB controller is clearly more efficient than the 
standard controller in almost every case. For several problems it uses a factor of 6 fewer 
Jacobian evaluations and less than half the number of function evaluations while obtaining a 
smaller error. Even in the cases where it uses more function evaluations and time steps, such as 
D4, its solution is more accurate. PI controller II is generally superior to PI controller I. The PI 
controllers have, in general, larger errors and are often between the STAB and standard 
controllers in the other measures, 

Fig. 3 presents the time steps used in the standard controller and the STAB controller for 
0 < t G 8 with tolerances of 0.00001 and (Y = 0.5. Clearly the STAB controller produces a 
smoother time step history than the standard controller. 

The only problem which presented any difficulty to DASSL with the standard controller and 
(Y = 1 was F.5. We solved F5 with the standard, the STAB, and the PI controllers with (Y = 1 and 
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Table 3 

The number of function evaluations needed by DASSL with the standard controller, the STAB controller, and the 
PI controllers in solving the problems of the stiff test set [4,5] with tolerances 0.0001 and (Y = 0.5 

Stiff set Number of function evaluations 
problem 

Standard STAB PI PI 
controller controller controller I controller II 

Al 960 563 803 818 
A2 3560 3811 4779 974 

A3 2242 410 4515 1074 

A4 3590 3388 2896 1460 

Bl 2547 2130 5190 6379 

B2 274 241 241 209 

B3 351 295 265 252 
B4 754 426 1021 897 

B5 3639 2527 3987 1841 

Cl 845 590 307 271 

c2 795 603 606 617 

c3 792 406 596 689 

c4 891 713 959 1086 

c5 740 607 904 1159 

Dl 5600 1624 5574 5516 

D2 6408 3724 5824 4001 

D3 899 1048 721 717 

D4 342 1138 260 214 

D5 302 431 265 348 

D6 1069 1433 1132 1099 

El 128 86 150 157 
E2 315 315 1743 1964 

E3 5338 2686 5498 4226 

E4 3041 2477 2871 1656 
E5 39 39 39 39 

F2 366 333 240 198 

F3 25393 355 25292 25119 

with both analytic and finite difference Jacobians for tolerances of lo-“, k = 2, 3,. . . ,6. The 
results shown in Table 6 (analytic Jacobians) and Table 7 (finite-difference Jacobians) indicate 
that the STAB controller enhances the performance of DASSL in both cases. PI controller II 
has surprisingly poor performance for this problem. 

5. Conclusions 

When finite-difference approximations to the Jacobian are used in stiff solvers such as 
DASSL, thrashing of the time step can occur because the accuracy stepsize exceeds the stepsize 
required for convergence of the quasi-Newton iteration. After damping the stiff components at 
small stepsizes, such algorithms using the standard stepsize control mechanism are able to take 
larger time steps based on the error in the nonstiff components. However, the stiff components 



P.K. Moore, L.R. Petzold /Applied Numerical Mathematics 15 (1994) 449-463 459 

Table 4 
The l2 error at the final time of the solution computed by DASSL with the standard controller, the STAB controller, 
and the PI controllers in solving the problems of the stiff test set [4,5] with tolerances 0.0001 and (Y = 0.5. The 
standard controller and PI controllers I and II failed to reach the final time in 15,000 steps for problem F3; hence, 

no error was computed 

Stiff set 1’ error at the final time 
problem 

Standard STAB PI PI 

controller controller controller I controller II 

Al 0.73 x 10-6 0.24 x 10V5 0.32x 1O-4 0.14 x 1om4 

A2 0.10x 1o-4 0.62x lo-’ 0.12x lo-” 0.23 x 10m4 

A3 0.79 x 10-Z 0.48x 1OK” 0.13x 10-1 0.18 x lo- ’ 
A4 0.20x lo-’ 0.20 x 10-5 0.21 x 10-2 0.39 x 10-2 

Bl 0.18x lo-’ 0.18x lo-’ 0.18x lo-’ 0.18x lo-’ 
B2 0.59 x 10-4 0.22x lo-” 0.53 x 10-3 0.73x10-3 
B3 0.76 x lop4 0.80x lop4 0.54x 10-3 0.71 x lo-” 

B4 0.18~10~~ 0.51 x 1o-4 0.16x 1O-4 0.14x lop4 

B.5 0.29 x lop3 0.42x 1O-3 0.39 x lo-” 0.28x 1O-2 
Cl 0.45 x 10-8 0.34 x 10-X 0.74x 10-5 0.19x 1o-5 
c2 0.64x 10-s 0.20x 10-X 0.27 x lo-’ 0.14x lo-’ 
c3 0.26 x lop8 0.11 x 10-4 0.41 x 10-7 0.22x lo-’ 
c4 0.80 x lop3 0.40x 10-5 0.32x lo-’ 0.77 x 10-s 

c5 0.28 x lop3 0.63x 10-l 0.50x 10-3 0.90x 1om2 
Dl 0.11 x 10-l 0.81 x lo-” 0.12 0.11 
D2 0.39 x 10-l 0.20 x 10-2 0.32x 10-l 0.57 x 10-l 
D3 0.44x lo-’ 0.97 x lo- I3 0.52 x 10-O 0.59 x 10-x 
D4 0.55 x 10-3 0.64x lo-” 0.32 x lo-’ 0.31 x lo-’ 
D5 0.23 x lo-* 0.79x 10-3 0.19x 1o-2 0.17x lo-” 
D6 0.21 x 10-4 0.68x 1O-4 0.15 x 10-5 0.18x 10m5 
El 0.11 x 10-6 0.22x 10-6 0.45 x 10-s 0.17x 10-s 
E2 0.81 x lop2 0.81 x lo-* 0.76x 10-l 0.72x 10-l 
E3 0.35 x 10-l 0.20 x 10-2 0.52 x lo- ’ 0.67x 10-l 
E4 0.90x 1om5 0.12 x 10-4 0.17 x 10-6 0.28x 10-j 
E5 0.74x 10-j 0.74 x 10-5 0.74x 10-5 0.74 x 10-s 
F2 0.17 x 10-j 0.31 x 1o-4 0.22x 1o-2 0.25 x lop2 
F3 _ 0.73x 10-s _ _ 

then become excited resulting in drastic decreases in the stepsize. We analyzed a simple linear 
system to explain this stepsize phenomena. To smooth out the smaller stepsizes we tried 
modified versions of two PI controllers proposed by Gustafsson et al. [6-81 for explicit 
Runge-Kutta methods and implicit Runge-Kutta methods, respectively, which we reinter- 
preted to our situation. A new controller was also proposed which attempts to find and use a 
“stability” stepsize. In comparing the four controllers on the stiff test set with altered Jacobian 
we found the new controller superior in almost every case. In fact for a number of cases it 
offers dramatic improvement over the standard and the PI controllers. 

Although most of the test results of Section 4 were somewhat artificial the new controller 
does produce significantly better results especially in terms of the number of Jacobian 
evaluations. This continued to be true even when analytic and finite difference Jacobians were 
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The number of Jacobian evaluations (JACS), function evaluations (FNS), time steps (STEPS), and error in the l2 
norm for selected problems from the stiff test [5] using DASSL with standard, STAB, and PI controllers with (Y = 0.5 

Stiff set TOL Standard STAB PI PI 
problem controller controller controller I controller II 

A2 10-s 3349 697 2361 584 
8649 6423 7182 2668 
3595 2632 2918 1190 

0.42 x lo-” 0.11 x 10-6 0.68 x 10-5 0.13 x 10-4 

JACS 
FNS 
STEPS 
/2 ERROR 

A3 

D2 

D4 

E3 

10-6 

10-5 

10-h 

10-5 

10-6 

10-5 

10-h 

10-h 

8241 1077 2679 868 
22570 10237 10037 5631 

8630 4110 3958 2709 
0.19x 10-5 0.54x 10-7 0.25 x 1O-5 0.50 x 10-5 

6002 905 3666 479 
15458 8554 11065 3375 
4375 2933 4312 1582 

0.36x 1O-2 0.43x10-” 0.35 x 10 -2 0.60x 1O-2 

9901 1207 
25928 11786 
10595 4594 
0.96 x 10-j 0.14x lo-” 

1906 3232 
10087 12022 
4109 5166 

0.20 x 10-2 0.18x 10V2 

5223 704 3092 2302 
13226 6431 10014 7122 
5377 2607 3788 2884 

0.11 x10-1 0.12x 10-2 0.12x lo-’ 0.19x 10-l 

9123 967 4519 3588 
24408 9806 18768 14089 

9403 3761 6762 5547 
0.28 x lop2 0.29x 10m3 0.44x 10-2 0.65 x 1O-2 

488 434 1029 585 
1129 3520 2500 1392 
506 1538 1066 606 

0.19x 10-j 0.12x lo-” 0.64 x lop3 0.92 x lop3 

1998 589 209 359 
4859 5353 1058 1436 
2129 2330 482 649 

0.18x lo-” 0.35 x 10-4 0.30 x 10-3 0.28x lo-” 

5403 521 3393 1400 
14102 5905 12103 9960 
5609 2120 4293 4293 

0.21 x 10-4 0.28 x 1O-4 0.31 x 10-3 0.93x 10-3 

JACS 
FNS 
STEPS 
1’ ERROR 

JACS 
FNS 
STEPS 
l2 ERROR 

JACS 
FNS 
STEPS 
l2 ERROR 

JACS 
FNS 
STEPS 
l2 ERROR 

JACS 
FNS 
STEPS 
Z2 ERROR 

JACS 
FNS 
STEPS 
l2 ERROR 

JACS 
FNS 
STEPS 
l2 ERROR 

JACS 
FNS 
STEPS 
1’ ERROR 

used for problem F5. Smoothing out the smaller stepsizes also seems to be beneficial for the 
error. At the suggestion of the referee we made an initial attempt at a method that combined 
our STAB controller and PI controller II. The results were not favorable and further study is 
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Fig. 3. Time steps used in solving problem D2 from the stiff test set [4] on 0 < t < 8 using DASSL with the standard 
controller (left) and the STAB controller (right) and with absolute and relative error tolerances of 0.00001 and 
(Y = 0.5. 

Table 6 
The number of Jacobian evaluations (JACS), function evaluations (FNS), and time steps (STEPS) needed to solve 
problem F.5 from the stiff test set with DASSL and analytic Jacobians using the standard, STAB, and PI controllers 

TOL Analytic Jacobian 

Standard STAB PI PI 

controller controller controller I controller II 

10-Z 49 28 51 47 JACS 
82 83 86 79 FNS 
49 44 52 47 STEPS 

10-j 39 51 84 48 JACS 
71 170 142 88 FNS 
39 87 85 48 STEPS 

10-4 356 100 313 857 JACS 
637 314 545 1303 FNS 
370 145 329 863 STEPS 

10-5 2575 119 2137 7298 JACS 
4138 435 3495 11509 FNS 
2604 195 2180 7355 STEPS 

10-6 9296 3547 12576 14037 JACS 
14798 12166 20006 22379 FNS 

9339 5675 12710 14305 STEPS 
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Table 7 
The number of Jacobian evaluations (JACS), function evaluations (FNS), and time steps (STEPS) needed to solve 
problem F5 from the stiff test set with DASSL and finite-difference Jacobians using the standard, STAB, and PI 
controllers 

TOL Finite-difference Jacobian 

Standard 
controller 

STAB 
controller 

PI 
controiler I 

PI 
controller II 

10-z 41 
202 

35 

lo-” 74 
418 

74 

34 43 35 JACS 
226 248 202 FNS 

47 44 35 STEPS 

48 39 117 JACS 
346 230 655 FNS 

74 40 117 STEPS 

10-4 411 146 38 617 JACS 
2328 1043 261 3443 FNS 

425 197 54 622 STEPS 

10-5 2805 897 3202 4616 JACS 
15783 6764 17954 25741 FNS 

2834 1443 3245 4667 STEPS 

10-6 2683 1383 4655 12513 JACS 
15160 10362 26317 70046 FNS 

2726 2269 4789 12739 STEPS 

needed. More testing needs to be done to verify the usefulness of the algorithm in a wider 
setting, when used to solve partial differential equations by the method-of-lines and differen- 
tial-algebraic equations. 
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