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CANONICAL FORMS AND SOLVABLE SINGULAR
SYSTEMS OF DIFFERENTIAL EQUATIONS*

STEPHEN L. CAMPBELL’t AND LINDA R. PETZOLD

Abstract. In this paper we investigate the relationship between solvability and the existence of canonical
forms for the linear system of differential equations E(t)x’(t)+F(t)x(t)=f(t). We show that if E, F are
analytic on the interval [0 T], then the differential equation is solvable if and only if it can be put into a
certain canonical form. We give examples to show that this is not true if E, F are only differentiable.

1. Introduction. Linear systems of differential equations of the form

(1) E(t)x’(t) +F(t)x (t) f(t)

with E(t) a singular n n matrix occur in a wide variety of circuit and control
applications. Many of these applications are described in some detail in [3], [4], see
also [2]. The constant coefficient case is now fairly well understood. However, the
theory for the time varying case is still incomplete. This note has several purposes.
One is to clear up some of the misconceptions and confusion in the current literature.
A second is to give some new results.

We shall say (1) is analytically solvable on the interval [0 T] if for any sufficiently
smooth (C will do) there exist solutions to (1), and solutions when they exist, are
defined on all of [0 T] and are uniquely determined by their value at any to [0 T].
It is useful to note that a system fails to be analytically solvable if it has any turning
points in [0 T] (where by turning point we mean a point where the dimension of the
manifold of solutions changes), since at these points solutions fail either to exist or
to be unique.

If (1) is in the form

(2a) y + C(t)y f,

(2b) N(t)y’ + y2 =fz,

where N(t) is nilpotent and lower (or upper) triangular, the system is said to be in
standard canonical form, SCF [7]. If, in addition, N is constant, then the system is in
strong standard canonical form, SSCF. The SSCF is the one considered in the work
of Petzold and Gear [8], [9], [11].

We shall consider transformations of the form

(3) x O(t)y, and left multiplication of the equation by P(t),

where P, are invertible on [0 T] and are as smooth as E, F. Clearly, if (1) can be
put into SCF, it is analytically solvable. Recently some authors have suggested that
analytic solvability implies SSCF except at a finite number of isolated points. In 2
we shall give a series of examples that show this is not the case unless the matrices
E(t), F(t) in (1) are analytic functions of t. In 3 we prove that if E,F are analytic
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on [0 T], then analytic solvability implies (1) can be transformed by (3) to SCF
everywhere on [0 T].

2. Examples.
Example 1. Let r(t) be an infinitely differentiable function defined on [0 T] so

that r/= 0 on [2-k-I 2-k] for k even and r/> 0 otherwise. Consider the system

0
(4) It/ f,

which has the solution

(5a) x =f,

(5b) x2 f-nf’.
Clearly (4) is solvable on [0 1] and already in SCF. However any P, Q putting (4)
into SSCF will have discontinuities at {2-k: k even} D {0}.

This example is also interesting from another point of view. Suppose r/(t) is
analytic on [0 T], r/(t*)= 0, t* [0 T] and nonzero on [0 T]\{t*}. Then (4) is trans-
formable to SSCF on any closed subinterval of [0 T]\{t*}. The point t* is not a turning
point as we defined it in 1. However, the system (4) does have, in some sense, a
structure change at t* since the coefficient of x’ changes rank and index at t*.

Example 2. Let

(6) N(t) t3[ sin (t-l) ][cos (t -1) -sin (t-l)], N(0) 0
t_cos (t-)J

Note that N’(0)= 0 and N2 -0. Thus there is an interval containing zero so that

(7) Nx’ + x f
is solvable on that interval [5]. However, if O(t) is a vector valued function so that
NO =-0, if(0) 0, then (t) is a multiple of [sin (t-), cos (t-)] and hence is discon-
tinuous at 0. In particular any P, Q putting (6), (7) into SCF must be discontinuous
at zero.

A slight modification of Example 2, along the lines of Example 1, can be used
to construct a solvable system such that any P, Q putting the system into SCF would
have an infinite number of singularities in a finite interval.

3. Analytic coefficients. The essential problem in Example 2 is that if rank
(A (t)) <_- r < n for all and A is n x n, then there need not exist any piecewise smooth,
nonzero vectors O(t) so that AO-=0. However, it is a not generally known, and
nontrivial fact, that such a exists if A is analytic. The version of the result we shall
need is the following theorem from [13, p. 335].

THEOREM 1. If A(t) is real analytic on [0 T] and r _->rank (A(t)) for all t, then
there exists real analytic P(t), Q(t) so that

(8) PAQ [Ao 00]
and A is r r.

An infinite dimensional version of Theorem 1 appears in [1, Thm. 2.2]. See also
[0].

We are now in a position to prove the main result of this section.
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THEOREM 2. If E, F are analytic on [0 T], and (1) is analytically solvable, then
there exist analytic P, Q so that the transformations (3) put (1) into SCF.

The key to proving Theorem 2 is to first show that while E may have variable
rank, solvability forces E to be always singular or always nonsingular.

LEMMA 1. /f (1) is analytically solvable on [0 T], then E is either always singular
or always nonsingular on [0 T].

ProofofLemma 1. Suppose for purposes of contradiction thatE(to) is nonsingular
and E(t) is singular. Then for any f, there are n linearly independent solutions of
(1) at to. Let be a vector so that rE(t) 0. Now multiply (1) by Or and evaluate
at tl to observe that rF(tl)X(t)=f. The case f=O implies F(tl) 0. Hence all
solutions for f=0 satisfy OrF(tl)X(t)=O and are not linearly independent at tl
which contradicts analytic solvability.

Proof of Theorem 2. Suppose Theorem 2 is not true and that E, F are analytic
on [0 T], (1) is analytically solvable, but it is not possible to transform to SCF and
E, F give a counterexample of minimum possible dimension n. Clearly E is singular
and n > 1. By Lemma 1, E is always singular on [0 T]. Let r be such that rank E r < n
on [0 T]. Let P be such that

where E is r x r and P is analytic on [0 T]. Such a P exists by Theorem 1. Multiplying
(1) by P gives the still analytically solvable system

But [F F] has full rank n-r on [0 T], since if it did not, there would exist a

0 0, such that 0r[F(t) F(t)] 0. But then

which contradicts the fact that can be an arbitrary function. Now there exists an
invertible analytic O on [0 T] so that [F F]O [0 G] where G is invertible.
Note this follows as (9) by using

r[F 0 [G2O tF: 0] 00]t 0

Making the change of variable x Qy turns (10) into

where [1 2]=[E E2]Q, [x P12]=[F F2]Q+[E E2]Q’. But (11) is
equivalent to solving

(12) y +y=f-2(Gf2)’-P2Gf2,
or

(13) yl
for arbitrary smooth Thus (13) is also an analytically solvable system. Since it has
lower dimension than n, by assumption, there exists analytic R(t), R2(t) that puts
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(13) into (upper triangular) SCF. Letting

and multiplying by

changes (11) to

(14) 0 N(t) Iz’x +
0 01 C!t) 0

I
0 a-J L_i LfJ

Now multiply this equation by

to yield

(15)

Now let

[_LI o
/ 0
Lol o

and multiply by

to get the SCF

0 I 23
0 0 022

Z I W

0

(16)
/_[ 0 0 w: t) 0 0 w: []

IN(t) + z
Io o Lj

which contradicts the assumption that (1) could not be put into SCF. 71

4. Comments. An examination of the proof of Theorem 2 shows that the analytic-
ity of E, F was used only in applying Theorem 1 to get analytic P, Q such that (8),
(9) hold. Since (8), (9) hold for many matrix functions met in practice, it seems
plausible that the nonexistence of the SCF is an exceptional event.

The approach in this paper differs from those of earlier authors, for example,
Silverman [12], in that we do not assume E(t) in (1) has constant rank. In particular,
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we include systems which cannot be put in the form

x A xl (t)x +A 12(t)x2 -t- fl(X ),

0 A 21 (t)xl +A22(t)x2 +f2(t)

by transformations of the form (3).
The proof of Theorem 2 also provides an algorithmic procedure for obtaining

the $CF. Starting with Ex’+Fx =f, compute P, Q as in (9), (10) to get (11). Now
take the subsystem xy +ff’llYl--fl of (11) and repeat the procedure again to get
again a system in the form (11). At each step we work with a smaller subsystem. At
some step we arrive at a system in the form (11) with either identically zero or
always invertible and the procedure terminates.
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